In order to obtain higher conversion efficiency and to reduce production cost for hydrogenated amorphous silicon/crystalline silicon(a-Si:H/c-Si) based heterojunction solar cells, an a-Si:H/c-Si heterojunction with lo...In order to obtain higher conversion efficiency and to reduce production cost for hydrogenated amorphous silicon/crystalline silicon(a-Si:H/c-Si) based heterojunction solar cells, an a-Si:H/c-Si heterojunction with localized p–n structure(HACL) is designed. A numerical simulation is performed with the ATLAS program. The effect of the a-Si:H layer on the performance of the HIT(heterojunction with intrinsic thin film) solar cell is investigated. The performance improvement mechanism for the HACL cell is explored. The potential performance of the HACL solar cell is compared with those of the HIT and HACD(heterojunction of amorphous silicon and crystalline silicon with diffused junction) solar cells.The simulated results indicate that the a-Si:H layer can bring about much absorption loss. The conversion efficiency and the short-circuit current density of the HACL cell can reach 28.18% and 43.06 m A/cm^2, respectively, and are higher than those of the HIT and HACD solar cells. The great improvement are attributed to(1) decrease of optical absorption loss of a-Si:H and(2) decrease of photocarrier recombination for the HACL cell. The double-side local junction is very suitable for the bifacial solar cells. For an HACL cell with n-type or p-type c-Si base, all n-type or p-type c-Si passivating layers are feasible for convenience of the double-side diffusion process. Moreover, the HACL structure can reduce the consumption of rare materials since the transparent conductive oxide(TCO) can be free in this structure. It is concluded that the HACL solar cell is a promising structure for high efficiency and low cost.展开更多
The effect of sputtering current that flow in a carbon rod on the structural and transport properties of Si-C junction is studied. Si-C junction is fabricated by plasma sputtering in Argon gas atmosphere without catal...The effect of sputtering current that flow in a carbon rod on the structural and transport properties of Si-C junction is studied. Si-C junction is fabricated by plasma sputtering in Argon gas atmosphere without catalysts with thickness of 20, 40 and 60 nm. Images of the specimen by scanning electron microscope (SEM) and atomic force microscope (AFM) show that the carbon layer is as carbon nanotubes with diameters about 20 - 30 nm. X-ray and Raman spectrums show peak characteristics of the carbon nanotubes, the G and D bands appear for all thicknesses indicating free of defect carbon nanotubes. Two parameters about the thickness of the carbon layer and the sputtering current for different thicknesses and currents were studied. Nanotubes evidence was clear. We noticed that the sputtering current and thickness of layers affect the structure of CNT layer leading to the formation of grains. Increasing plasma current led to decrease grain formation however increasing thickness ends to increase grain size;moreover it led to amorphous structure formation and this was proved through X-ray, Raman spectra and AFM images.展开更多
Interdigitated back contact silicon hetero-junction(IBC-SHJ) solar cells exhibit excellent performance owing to the IBC and SHJ structures.The front surface field(FSF) layer composed of electric field passivation and ...Interdigitated back contact silicon hetero-junction(IBC-SHJ) solar cells exhibit excellent performance owing to the IBC and SHJ structures.The front surface field(FSF) layer composed of electric field passivation and chemical passivation has been proved to play an important role in IBC-SHJ solar cells.The electric field passivated layer n^+-a-Si: H, an n-type Si alloy with carbon or oxygen in amorphous phase, is simulated in this study to investigate its effect on IBC-SHJ.It is indicated that the n^+-a-Si: H layer with wider band gap can reduce the light absorption on the front side efficaciously,which hinders the surface recombination of photo-generated carriers and thus contributes to the improvement of the short circuit current density Jsc.The highly doped n^+-a-Si: H can result in the remakable energy band bending, which makes it outstanding in the field passivation, while it makes little contribution to the chemical passivation.It is noteworthy that when the electric field intensity exceeds 1.3 × 10^5 V/cm, the efficiency decrease caused by the inferior chemical passivation is only 0.16%.In this study, the IBC-SHJ solar cell with a front n^+-a-Si: H field passivation layer is simulated, which shows the high efficiency of 26% in spite of the inferior chemical passivation on the front surface.展开更多
A hetero-junction of n-silicon(n-Si) and copper phthalocyanine(CuPc) has been fabricated.The current -voltage characteristics were investigated to explain the rectification and conduction mechanism.The effect of t...A hetero-junction of n-silicon(n-Si) and copper phthalocyanine(CuPc) has been fabricated.The current -voltage characteristics were investigated to explain the rectification and conduction mechanism.The effect of temperature and humidity on the electrical properties of n-Si/CuPc hetero-junction has also been investigated.The characteristics of the junction have been observed to be temperature and humidity dependent,so it is suggested that this junction can be used as a temperature and humidity sensor.展开更多
基金Project supported by the National Key R&D Program of China(Grant No.2018YFB1500403)the National Natural Science Foundation of China(Grant Nos.11964018,61741404,and 61464007)the Natural Science Foundation of Jiangxi Province of China(Grant No.20181BAB202027)
文摘In order to obtain higher conversion efficiency and to reduce production cost for hydrogenated amorphous silicon/crystalline silicon(a-Si:H/c-Si) based heterojunction solar cells, an a-Si:H/c-Si heterojunction with localized p–n structure(HACL) is designed. A numerical simulation is performed with the ATLAS program. The effect of the a-Si:H layer on the performance of the HIT(heterojunction with intrinsic thin film) solar cell is investigated. The performance improvement mechanism for the HACL cell is explored. The potential performance of the HACL solar cell is compared with those of the HIT and HACD(heterojunction of amorphous silicon and crystalline silicon with diffused junction) solar cells.The simulated results indicate that the a-Si:H layer can bring about much absorption loss. The conversion efficiency and the short-circuit current density of the HACL cell can reach 28.18% and 43.06 m A/cm^2, respectively, and are higher than those of the HIT and HACD solar cells. The great improvement are attributed to(1) decrease of optical absorption loss of a-Si:H and(2) decrease of photocarrier recombination for the HACL cell. The double-side local junction is very suitable for the bifacial solar cells. For an HACL cell with n-type or p-type c-Si base, all n-type or p-type c-Si passivating layers are feasible for convenience of the double-side diffusion process. Moreover, the HACL structure can reduce the consumption of rare materials since the transparent conductive oxide(TCO) can be free in this structure. It is concluded that the HACL solar cell is a promising structure for high efficiency and low cost.
文摘The effect of sputtering current that flow in a carbon rod on the structural and transport properties of Si-C junction is studied. Si-C junction is fabricated by plasma sputtering in Argon gas atmosphere without catalysts with thickness of 20, 40 and 60 nm. Images of the specimen by scanning electron microscope (SEM) and atomic force microscope (AFM) show that the carbon layer is as carbon nanotubes with diameters about 20 - 30 nm. X-ray and Raman spectrums show peak characteristics of the carbon nanotubes, the G and D bands appear for all thicknesses indicating free of defect carbon nanotubes. Two parameters about the thickness of the carbon layer and the sputtering current for different thicknesses and currents were studied. Nanotubes evidence was clear. We noticed that the sputtering current and thickness of layers affect the structure of CNT layer leading to the formation of grains. Increasing plasma current led to decrease grain formation however increasing thickness ends to increase grain size;moreover it led to amorphous structure formation and this was proved through X-ray, Raman spectra and AFM images.
基金Project supported by the National Key Research Program of China(Grant Nos.2018YFB1500500 and 2018YFB1500200)the National Natural Science Foundation of China(Grant Nos.51602340,51702355,and 61674167)JKW Project,China(Grant No.31512060106)
文摘Interdigitated back contact silicon hetero-junction(IBC-SHJ) solar cells exhibit excellent performance owing to the IBC and SHJ structures.The front surface field(FSF) layer composed of electric field passivation and chemical passivation has been proved to play an important role in IBC-SHJ solar cells.The electric field passivated layer n^+-a-Si: H, an n-type Si alloy with carbon or oxygen in amorphous phase, is simulated in this study to investigate its effect on IBC-SHJ.It is indicated that the n^+-a-Si: H layer with wider band gap can reduce the light absorption on the front side efficaciously,which hinders the surface recombination of photo-generated carriers and thus contributes to the improvement of the short circuit current density Jsc.The highly doped n^+-a-Si: H can result in the remakable energy band bending, which makes it outstanding in the field passivation, while it makes little contribution to the chemical passivation.It is noteworthy that when the electric field intensity exceeds 1.3 × 10^5 V/cm, the efficiency decrease caused by the inferior chemical passivation is only 0.16%.In this study, the IBC-SHJ solar cell with a front n^+-a-Si: H field passivation layer is simulated, which shows the high efficiency of 26% in spite of the inferior chemical passivation on the front surface.
文摘A hetero-junction of n-silicon(n-Si) and copper phthalocyanine(CuPc) has been fabricated.The current -voltage characteristics were investigated to explain the rectification and conduction mechanism.The effect of temperature and humidity on the electrical properties of n-Si/CuPc hetero-junction has also been investigated.The characteristics of the junction have been observed to be temperature and humidity dependent,so it is suggested that this junction can be used as a temperature and humidity sensor.