It was tried to microencapsulate camellia oil using heterocoagulation between fatty acid dissolved in camellia oil and chitosan dissolved in the continuous water phase. Oleic acid as a fatty acid was dissolved in came...It was tried to microencapsulate camellia oil using heterocoagulation between fatty acid dissolved in camellia oil and chitosan dissolved in the continuous water phase. Oleic acid as a fatty acid was dissolved in camellia oil in order to certainly form the microcapsule shell made from oleic acid and chitosan. The microcapsules were observed with optical microscope and characterized about the diameters, ζ-potential, FTIR analysis and adhesion feature on human hair. Microcapsules with the mean diameter in the range from ca. 1.5 μm to 4.5 μm could be prepared with the preparation method presented in this study. The oil droplets of camellia oil charged negatively to be -54.6 mV and the microcapsules charged positively to be 59.6 mV. The microcapsules adhered well on the negatively charged human hair and were kept stably before and after drying at room temperature for 24 h and blowing.展开更多
The microcapsules containing the artificial diet for tropical fishes were prepared with the spray gelling method in order to prevent water environmental pollution. The carboxymethyl cellulose sodium aqueous solution, ...The microcapsules containing the artificial diet for tropical fishes were prepared with the spray gelling method in order to prevent water environmental pollution. The carboxymethyl cellulose sodium aqueous solution, in which α-tocopherol droplets containing the powdery artificial diet were dispersed, was dropped or sprayed into the chitosan aqueous solution. Microcapsules were prepared by forming polyionic complex shell made from chitosan and carboxymethyl cellulose sodium. In the experiment, the concentration of carboxymethyl cellulose sodium (CMCNa) was mainly changed to investigate the effect on the diameters of microcapsules, the content and the microencapsulation efficiency. The microcapsules couldn’t be prepared with the concentration of carboxymethyl cellulose sodium less than 3.0 wt%. The microcapsules were the core-shell type. The diameters of microcapsules were increased with the concentration of CMCNa and the microencapsulation efficiency of ca. 100% could be obtained by the preparation method presented in this study. The microcapsules were found to be eaten well by tropical fishes and to prevent water environmental pollution.展开更多
Herein a facile and controllable heterocoagulation between polystyrene (PS) microspheres and multiwalled carbon nanotubes (MWCNTs) is introduced based on colloid thermodynamics. The MWCNTs play the role of steric ...Herein a facile and controllable heterocoagulation between polystyrene (PS) microspheres and multiwalled carbon nanotubes (MWCNTs) is introduced based on colloid thermodynamics. The MWCNTs play the role of steric stabilizer for stabilizing the metastable PS microspheres and thus immobilize spontaneously on the surface of PS microspheres. The synthesized MWCNTs-coated PS composite particles have been extensively characterized by scanning electron microscopy, transmission electron microscopy, thermogravimetry and Raman spectroscopy. The results indicate that the structure and morphology of the resultant MWCNTs-coated PS composite particles are significantly affected by the weight ratio of PS and MWNCTs and the amount of poly(vinylpyrrolidone) that is injected into PS dispersion before they are mixed with MWCNTs. Therefore, these composite particles have the potential to produce MWCNTs-based composite materials with controllable mass loading and dispersity of MWCNTs.展开更多
文摘It was tried to microencapsulate camellia oil using heterocoagulation between fatty acid dissolved in camellia oil and chitosan dissolved in the continuous water phase. Oleic acid as a fatty acid was dissolved in camellia oil in order to certainly form the microcapsule shell made from oleic acid and chitosan. The microcapsules were observed with optical microscope and characterized about the diameters, ζ-potential, FTIR analysis and adhesion feature on human hair. Microcapsules with the mean diameter in the range from ca. 1.5 μm to 4.5 μm could be prepared with the preparation method presented in this study. The oil droplets of camellia oil charged negatively to be -54.6 mV and the microcapsules charged positively to be 59.6 mV. The microcapsules adhered well on the negatively charged human hair and were kept stably before and after drying at room temperature for 24 h and blowing.
文摘The microcapsules containing the artificial diet for tropical fishes were prepared with the spray gelling method in order to prevent water environmental pollution. The carboxymethyl cellulose sodium aqueous solution, in which α-tocopherol droplets containing the powdery artificial diet were dispersed, was dropped or sprayed into the chitosan aqueous solution. Microcapsules were prepared by forming polyionic complex shell made from chitosan and carboxymethyl cellulose sodium. In the experiment, the concentration of carboxymethyl cellulose sodium (CMCNa) was mainly changed to investigate the effect on the diameters of microcapsules, the content and the microencapsulation efficiency. The microcapsules couldn’t be prepared with the concentration of carboxymethyl cellulose sodium less than 3.0 wt%. The microcapsules were the core-shell type. The diameters of microcapsules were increased with the concentration of CMCNa and the microencapsulation efficiency of ca. 100% could be obtained by the preparation method presented in this study. The microcapsules were found to be eaten well by tropical fishes and to prevent water environmental pollution.
基金financially supported by the National Natural Science Foundation of China(Nos.21204030 and 51133002)the Fundamental Research Funds for the Central Universities(JUSRP111A05)
文摘Herein a facile and controllable heterocoagulation between polystyrene (PS) microspheres and multiwalled carbon nanotubes (MWCNTs) is introduced based on colloid thermodynamics. The MWCNTs play the role of steric stabilizer for stabilizing the metastable PS microspheres and thus immobilize spontaneously on the surface of PS microspheres. The synthesized MWCNTs-coated PS composite particles have been extensively characterized by scanning electron microscopy, transmission electron microscopy, thermogravimetry and Raman spectroscopy. The results indicate that the structure and morphology of the resultant MWCNTs-coated PS composite particles are significantly affected by the weight ratio of PS and MWNCTs and the amount of poly(vinylpyrrolidone) that is injected into PS dispersion before they are mixed with MWCNTs. Therefore, these composite particles have the potential to produce MWCNTs-based composite materials with controllable mass loading and dispersity of MWCNTs.