Microwave heterodyne detection can be used to measure the temperature and strain distribution along a fiber with high accuracy in a Brillouin optical time domain reflectometry (BOTDR) system. This method involves si...Microwave heterodyne detection can be used to measure the temperature and strain distribution along a fiber with high accuracy in a Brillouin optical time domain reflectometry (BOTDR) system. This method involves simultaneous measurement of Brillouin scattering and Rayleigh scattering in fiber, and scanning of Brillouin spectrum to obtain the desired information. This paper presents a simultaneous measurement system of temperature and strain based on microwave detection and analyzed the system performances such as measurement accuracy, dynamic range, and spatial resolution theoretically. The analysis shows that the system can achieve a temperature resolution of 1°C and a strain resolution of 100 μs.展开更多
To boost the performance of 4-ary pulse amplitude modulated(PAM) at low signal-to-noise ratio(SNR), bistable stochastic resonance(BSR) system is introduced into digital communications system and get a reliable signal ...To boost the performance of 4-ary pulse amplitude modulated(PAM) at low signal-to-noise ratio(SNR), bistable stochastic resonance(BSR) system is introduced into digital communications system and get a reliable signal detection scheme. In this paper, we first analyse BSR system for different amplitudes of 4-ary PAM signals. The steadystate of the bistable system will be statistically distinct, and the feasibility of the proposed detection scheme is confirmed. On this basis, we present a detailed study on steady-state transitions of the BSR system, and an explicit expression of the bistable system parameters is derived. By setting the bistable system parameters, bistable system, 4-ary PAM signal, and noise reach the resonance state, and the BSR-based detection scheme is implemented. Moreover, we derive an analytical expression to calculate the symbol error rate(SER) of 4-ary PAM signals with the BSR-based detection under additive white Gaussian noise(AWGN). Finally, the simulation results validate that BSR-based detection scheme can improve the detection performance while efficiently reducing the symbol error rate.展开更多
We present an ameliorated arctangent algorithm based on phase-locked loop for digital Doppler signal processing,utilized within the heterodyne detection system. We define the error gain factor given by the approximati...We present an ameliorated arctangent algorithm based on phase-locked loop for digital Doppler signal processing,utilized within the heterodyne detection system. We define the error gain factor given by the approximation of Taylor expansion by means of a comparison of the measured values and true values. Exact expressions are derived for the amplitude error of two in-phase & quadrature signals and the frequency error of the acousto-optic modulator. Numerical simulation results and experimental results make it clear that the dynamic instability of the intermediate frequency signals leads to cumulative errors, which will spiral upward. An improved arctangent algorithm for the heterodyne detection is proposed to eliminate the cumulative errors and harmonic components. Depending on the narrow-band filter, our experiments were performed to realize the detectable displacement of 20 nm at a detection distance of 20 m. The aim of this paper is the demonstration of the optimized arctangent algorithm as a powerful approach to the demodulation algorithm, which will advance the signal-to-noise ratio and measurement accuracy of the heterodyne detection system.展开更多
The application of Golay pulse coding technique in spontaneous Brillouin-based distributed temperature sensor based on self-heterodyne detection of Rayleigh and Brillouin scattering is theoretically and experimentally...The application of Golay pulse coding technique in spontaneous Brillouin-based distributed temperature sensor based on self-heterodyne detection of Rayleigh and Brillouin scattering is theoretically and experimentally analyzed. The enhancement of system signal to noise ratio(SNR) and reduction of temperature measurement error provided by coding are characterized. By using 16-bit Golay coding, SNR can be improved by about 2.77 d B, and temperature measurement error of the 100 m heated fiber is reduced from 1.4 °C to 0.5 °C with a spatial resolution of 13 m. The results are believed to be beneficial for the performance improvement of self-heterodyne detection Brillouin optical time domain reflectometer.展开更多
Heterodyne detectors as phase-insensitive(PI) devices have found important applications in precision measurements such as space-based gravitational-wave(GW) observation.However, the output signal of a PI heterodyne de...Heterodyne detectors as phase-insensitive(PI) devices have found important applications in precision measurements such as space-based gravitational-wave(GW) observation.However, the output signal of a PI heterodyne detector is supposed to suffer from signal-to-noise ratio(SNR) degradation due to image band vacuum and imperfect quantum efficiency.Here, we show that the SNR degradation can be overcome when the image band vacuum is quantum correlated with the input signal.We calculate the noise figure of the detector and prove the feasibility of heterodyne detection with enhanced noise performance through quantum correlation.This work should be of great interest to ongoing space-borne GW signal searching experiments.展开更多
We experimentally study optical homodyne and heterodyne detections with the same setup, which is flexible to manipulate the signal sideband modulation. When the modulation only generates a single signal sideband, the ...We experimentally study optical homodyne and heterodyne detections with the same setup, which is flexible to manipulate the signal sideband modulation. When the modulation only generates a single signal sideband, the light field measurement by mixing the single sideband at ω0 ±? with a strong local oscillator at the carrier frequency ω0on a beam splitter becomes balanced heterodyne detection. When two signal sidebands at ω0 ±? are generated and the relative phase of the two sidebands is locked, this measurement corresponds to optical balanced homodyne detection. With this setup, we may confirm directly that the signal-to-noise ratio with heterodyne detection is two-fold worse than that with homodyne detection. This work will have important applications in quantum state measurement and quantum information.展开更多
Seismic data with high signal-to-noise ratios(SNRs) are useful in reservoir exploration. To obtain high SNR seismic data, significant effort is required to achieve noise attenuation in seismic data processing, which i...Seismic data with high signal-to-noise ratios(SNRs) are useful in reservoir exploration. To obtain high SNR seismic data, significant effort is required to achieve noise attenuation in seismic data processing, which is costly in materials, and human and financial resources. We introduce a method for improving the SNR of seismic data. The SNR is calculated by using the frequency domain method. Furthermore, we optimize and discuss the critical parameters and calculation procedure. We applied the proposed method on real data and found that the SNR is high in the seismic marker and low in the fracture zone. Consequently, this can be used to extract detailed information about fracture zones that are inferred by structural analysis but not observed in conventional seismic data.展开更多
<div style="text-align:justify;"> This paper introduces the working principle of the balanced heterodyne detection system, establishes the corresponding mathematical model, deduces the signal to noise ...<div style="text-align:justify;"> This paper introduces the working principle of the balanced heterodyne detection system, establishes the corresponding mathematical model, deduces the signal to noise ratio (SNR) formula of the balanced heterodyne detection. By comparing balance heterodyne detection with general coherent detection with MATLAB numerical simulation, the superiority of balance heterodyne detection system is proved theoretically. Finally, the simulation models of ordinary heterodyne detection, balance detection and double balance detection system are built by OptiSystem. The simulation results are consistent with the conclusions derived from the mathematical analysis, which provides a new method for the research of weak laser detection technology. </div>展开更多
This paper introduces a new theory and algorithm that can be used in blind detection of the carrier wave signal and the pseudo-random sequence of the direct sequence spread spectrum (DS/SS) signal with negative SNR....This paper introduces a new theory and algorithm that can be used in blind detection of the carrier wave signal and the pseudo-random sequence of the direct sequence spread spectrum (DS/SS) signal with negative SNR. First, without any a priori knowledge of the DS/SS signal, the carrier wave signal can be detected from DS/SS signal with negative SNR by using stochastic differential equations and energy detection method. Based on this, the pseudo-random sequence can also be blindly detected in DS/SS signal with negative SNR by reducing noise of the nonlinear signal and the algorithm of wavelet multiscale decomposition algorithm. Finally, the computer simulation shows that we can detect the carrier wave signal with SNR=-27 dB and the pseudo-random sequence under error code ratio 10^-4with SNR =-10 dB.展开更多
The measurement of the rolling angle of the projectile is one of the key technologies for the terminal correction projectile.To improve the resolution accuracy of the rolling angle in the laser seeker weapon system, t...The measurement of the rolling angle of the projectile is one of the key technologies for the terminal correction projectile.To improve the resolution accuracy of the rolling angle in the laser seeker weapon system, the imaging model of the detector, calculation model of the position and the signal-to-noise ratio(SNR) model of the circuit are built to derive both the correlation between the resolution error of the rolling angle and the spot position, and the relation between the position resolution error and the SNR. Then the influence of each parameter on the SNR is analyzed at large,and the parameters of the circuit are determined. Meanwhile, the SNR and noise voltage of the circuit are calculated according to the SNR model and the decay model of the laser energy. Finally,the actual photoelectric detection circuit is built, whose SNR is measured to be up to 53 d B. It can fully meet the requirement of0.5° for the resolution error of the rolling angle, thereby realizing the analysis of critical technology for photoelectric detection of laser seeker signals.展开更多
Stochastic resonance (SR) has been proved to be an effective approach to extract weak signals overwhelmed in noise. However, the detection effect of current SR models is still unsatisfactory. Here, a coupled tri-sta...Stochastic resonance (SR) has been proved to be an effective approach to extract weak signals overwhelmed in noise. However, the detection effect of current SR models is still unsatisfactory. Here, a coupled tri-stable stochastic resonance (CTSSR) model is proposed to further increase the output signal-to-noise ratio (SNR) and improve the detection effect of SR. The effects of parameters a, b, c, and r in the proposed resonance system on the SNR are studied, by which we determine a set of parameters that is relatively optimal to implement a comparison with other classical SR models. Numerical experiment results indicate that this proposed model performs better in weak signal detection applications than the classical ones with merits of higher output SNR and better anti-noise capability.展开更多
Surface plasmon resonance (SPR) sensing is an optical method based on evanescent wave.SPR biosensor can detect interaction of label-free biomolecules in real-time.With further development,it can become a research ins...Surface plasmon resonance (SPR) sensing is an optical method based on evanescent wave.SPR biosensor can detect interaction of label-free biomolecules in real-time.With further development,it can become a research instrument in proteomics.SPR biosensor can be divided intensity measurement and phase measurement,and the latter possesses higher sensitivity than the former one.This paper attempts to summarize the SPR phase detection theory,discuss the major developments,compare the merits and deficiencies of various methods,and look forward to future prospects.展开更多
The periodic short-impulse signals under strong noise background are successfully detected with a special chaotic system invented by the authors. Simulation experiments show that the chaotic system is very sensitive t...The periodic short-impulse signals under strong noise background are successfully detected with a special chaotic system invented by the authors. Simulation experiments show that the chaotic system is very sensitive to periodic short-impulse signals submerged by strong noise background, and it can effectively restrain any zero-mean noise. The system has a stable working-detection limit of -83dB.展开更多
Real-Time segmented pulse compression-detection is one of the key technologies of space-borne tracking receiver. Its implementation requires an optimized and dedicated hardware. The real-time processing places several...Real-Time segmented pulse compression-detection is one of the key technologies of space-borne tracking receiver. Its implementation requires an optimized and dedicated hardware. The real-time processing places several constraints such as area occupied, power comumption, and speed. A number of segmented compression techniques have been proposed to overcome these limitations and decrease the processing latency. However, relatively high power loss in the partial field could limit their implementation in many current real-time systems. A good theoretical model was designed with intersection signal accumulation to enhance signal- noise-ratio (SNR) gain of detecting signal in the paper. From the experimental results it is known that this approach works well for pulse compression-detection, which is better suited for implementation in the high performance of current field programmable gate array (FPGA) with dedicated hardware multipliers.展开更多
The characteristics such as signal noise ratio(SNR) and sensitivity of the fluorescence detection system for micro-fluidic chip influence the performance of the whole system extremely. The confocal laser induced flu...The characteristics such as signal noise ratio(SNR) and sensitivity of the fluorescence detection system for micro-fluidic chip influence the performance of the whole system extremely. The confocal laser induced fluorescence detection system is presented. Based on the debugging of optical and circuit modules, the results of detecting the samples are given and analyzed theoretically, and the improved project is put forward.展开更多
Land cover change detection is the major goal in multitemporal remote sensing studies. It is well known that remotely-sensed images of the same area acquired on different dates tend to be affected by radiometric diffe...Land cover change detection is the major goal in multitemporal remote sensing studies. It is well known that remotely-sensed images of the same area acquired on different dates tend to be affected by radiometric differences and registration problems. These influences are considered as noise in the process and may induce the user to both: signalling false changes and masking real surface changes. The difference image produced by subtracting two co-registered images is a standard initial step in change detection algorithms. This image naturally appears to be noisier than the original ones and has at least two populations: (1) the noise-like and (2) the real changes. The problem that arises is how to discriminate them. There are several approaches to perform change detection reported in the literature and some studies have employed synthetic images. By using synthetic images, the accuracy assessment of specific algorithm can be done more accurately. The question at this point is: what is the acceptable noise level to be added on the synthetic images to simulate a real problem? This paper attempts to answer this question by suggesting values of SNR (signal-to-noise ratio) obtained from experiments performed on TM-Landsat-5 and CCD-CBERS-2B images.展开更多
基金supported by the National 863 Program under Grant No. 2006AA09Z141the Scientific Research Foundation for the Returned Overseas Chinese Scholars (Ministry of Education of China) under Grant No. 2005383the Scientific Research Foundation for the Returned Overseas Scholars (North China Electric Power University) under Grant No. 20041401
文摘Microwave heterodyne detection can be used to measure the temperature and strain distribution along a fiber with high accuracy in a Brillouin optical time domain reflectometry (BOTDR) system. This method involves simultaneous measurement of Brillouin scattering and Rayleigh scattering in fiber, and scanning of Brillouin spectrum to obtain the desired information. This paper presents a simultaneous measurement system of temperature and strain based on microwave detection and analyzed the system performances such as measurement accuracy, dynamic range, and spatial resolution theoretically. The analysis shows that the system can achieve a temperature resolution of 1°C and a strain resolution of 100 μs.
基金supported by the National Natural Science Foundation of China (61631015, 61501354, 61501356, and 61573202)the Fundamental Research Funds of the Ministry of Education (7215433803)+5 种基金the Foundation of State Key Laboratory of Integrated Services Networks (ISN1101002)Higher School Subject Innovation Engineering Plan (B08038)Science and Technology Innovation Team Key Plan of Shaanxi Province (2016KCT-01)The Fundamental Research Funds of the Ministry of Education, China (Grant No. JB160101)The Key Laboratory Foundation of Ministry of Industry and Information Technology (KF20181912)China Postdoctoral Science Foundation (2018M631122)
文摘To boost the performance of 4-ary pulse amplitude modulated(PAM) at low signal-to-noise ratio(SNR), bistable stochastic resonance(BSR) system is introduced into digital communications system and get a reliable signal detection scheme. In this paper, we first analyse BSR system for different amplitudes of 4-ary PAM signals. The steadystate of the bistable system will be statistically distinct, and the feasibility of the proposed detection scheme is confirmed. On this basis, we present a detailed study on steady-state transitions of the BSR system, and an explicit expression of the bistable system parameters is derived. By setting the bistable system parameters, bistable system, 4-ary PAM signal, and noise reach the resonance state, and the BSR-based detection scheme is implemented. Moreover, we derive an analytical expression to calculate the symbol error rate(SER) of 4-ary PAM signals with the BSR-based detection under additive white Gaussian noise(AWGN). Finally, the simulation results validate that BSR-based detection scheme can improve the detection performance while efficiently reducing the symbol error rate.
基金supported by Key Research Program of Frontier Science,Chinese Academy of Sciences(Grant No.QYZDB-SSW-SLH014)the Yong Scientists Fund of the National Natural Science Foundation of China(Grant No.61205143)
文摘We present an ameliorated arctangent algorithm based on phase-locked loop for digital Doppler signal processing,utilized within the heterodyne detection system. We define the error gain factor given by the approximation of Taylor expansion by means of a comparison of the measured values and true values. Exact expressions are derived for the amplitude error of two in-phase & quadrature signals and the frequency error of the acousto-optic modulator. Numerical simulation results and experimental results make it clear that the dynamic instability of the intermediate frequency signals leads to cumulative errors, which will spiral upward. An improved arctangent algorithm for the heterodyne detection is proposed to eliminate the cumulative errors and harmonic components. Depending on the narrow-band filter, our experiments were performed to realize the detectable displacement of 20 nm at a detection distance of 20 m. The aim of this paper is the demonstration of the optimized arctangent algorithm as a powerful approach to the demodulation algorithm, which will advance the signal-to-noise ratio and measurement accuracy of the heterodyne detection system.
基金supported by the National Natural Science Foundation of China(No.61377088)the Natural Science Foundation of Hebei Province of China(Nos.E2015502053 and F2014502098)
文摘The application of Golay pulse coding technique in spontaneous Brillouin-based distributed temperature sensor based on self-heterodyne detection of Rayleigh and Brillouin scattering is theoretically and experimentally analyzed. The enhancement of system signal to noise ratio(SNR) and reduction of temperature measurement error provided by coding are characterized. By using 16-bit Golay coding, SNR can be improved by about 2.77 d B, and temperature measurement error of the 100 m heated fiber is reduced from 1.4 °C to 0.5 °C with a spatial resolution of 13 m. The results are believed to be beneficial for the performance improvement of self-heterodyne detection Brillouin optical time domain reflectometer.
基金supported by the National Natural Science Foundation of China (Nos.11947134 and 12074110)。
文摘Heterodyne detectors as phase-insensitive(PI) devices have found important applications in precision measurements such as space-based gravitational-wave(GW) observation.However, the output signal of a PI heterodyne detector is supposed to suffer from signal-to-noise ratio(SNR) degradation due to image band vacuum and imperfect quantum efficiency.Here, we show that the SNR degradation can be overcome when the image band vacuum is quantum correlated with the input signal.We calculate the noise figure of the detector and prove the feasibility of heterodyne detection with enhanced noise performance through quantum correlation.This work should be of great interest to ongoing space-borne GW signal searching experiments.
基金supported by the National Basic Research Program of China(Grant No.2011CB921601)the National Natural Science Foundation of China(Grant Nos.10725416 and 60821004)
文摘We experimentally study optical homodyne and heterodyne detections with the same setup, which is flexible to manipulate the signal sideband modulation. When the modulation only generates a single signal sideband, the light field measurement by mixing the single sideband at ω0 ±? with a strong local oscillator at the carrier frequency ω0on a beam splitter becomes balanced heterodyne detection. When two signal sidebands at ω0 ±? are generated and the relative phase of the two sidebands is locked, this measurement corresponds to optical balanced homodyne detection. With this setup, we may confirm directly that the signal-to-noise ratio with heterodyne detection is two-fold worse than that with homodyne detection. This work will have important applications in quantum state measurement and quantum information.
基金This work was supported by the National Natural Science Foundation of China (No. 41074104) and Open Fund of Key Laboratory of Exploration Technologies for Oil and Gas Resources (Yangtze University), Ministry of Education (No. K2013-05).
文摘Seismic data with high signal-to-noise ratios(SNRs) are useful in reservoir exploration. To obtain high SNR seismic data, significant effort is required to achieve noise attenuation in seismic data processing, which is costly in materials, and human and financial resources. We introduce a method for improving the SNR of seismic data. The SNR is calculated by using the frequency domain method. Furthermore, we optimize and discuss the critical parameters and calculation procedure. We applied the proposed method on real data and found that the SNR is high in the seismic marker and low in the fracture zone. Consequently, this can be used to extract detailed information about fracture zones that are inferred by structural analysis but not observed in conventional seismic data.
文摘<div style="text-align:justify;"> This paper introduces the working principle of the balanced heterodyne detection system, establishes the corresponding mathematical model, deduces the signal to noise ratio (SNR) formula of the balanced heterodyne detection. By comparing balance heterodyne detection with general coherent detection with MATLAB numerical simulation, the superiority of balance heterodyne detection system is proved theoretically. Finally, the simulation models of ordinary heterodyne detection, balance detection and double balance detection system are built by OptiSystem. The simulation results are consistent with the conclusions derived from the mathematical analysis, which provides a new method for the research of weak laser detection technology. </div>
基金the National Defence Key Foundation of China (Grant No. 614144)
文摘This paper introduces a new theory and algorithm that can be used in blind detection of the carrier wave signal and the pseudo-random sequence of the direct sequence spread spectrum (DS/SS) signal with negative SNR. First, without any a priori knowledge of the DS/SS signal, the carrier wave signal can be detected from DS/SS signal with negative SNR by using stochastic differential equations and energy detection method. Based on this, the pseudo-random sequence can also be blindly detected in DS/SS signal with negative SNR by reducing noise of the nonlinear signal and the algorithm of wavelet multiscale decomposition algorithm. Finally, the computer simulation shows that we can detect the carrier wave signal with SNR=-27 dB and the pseudo-random sequence under error code ratio 10^-4with SNR =-10 dB.
基金supported by the National Natural Science Foundation of China(61201391)
文摘The measurement of the rolling angle of the projectile is one of the key technologies for the terminal correction projectile.To improve the resolution accuracy of the rolling angle in the laser seeker weapon system, the imaging model of the detector, calculation model of the position and the signal-to-noise ratio(SNR) model of the circuit are built to derive both the correlation between the resolution error of the rolling angle and the spot position, and the relation between the position resolution error and the SNR. Then the influence of each parameter on the SNR is analyzed at large,and the parameters of the circuit are determined. Meanwhile, the SNR and noise voltage of the circuit are calculated according to the SNR model and the decay model of the laser energy. Finally,the actual photoelectric detection circuit is built, whose SNR is measured to be up to 53 d B. It can fully meet the requirement of0.5° for the resolution error of the rolling angle, thereby realizing the analysis of critical technology for photoelectric detection of laser seeker signals.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61071025 and 61502538)
文摘Stochastic resonance (SR) has been proved to be an effective approach to extract weak signals overwhelmed in noise. However, the detection effect of current SR models is still unsatisfactory. Here, a coupled tri-stable stochastic resonance (CTSSR) model is proposed to further increase the output signal-to-noise ratio (SNR) and improve the detection effect of SR. The effects of parameters a, b, c, and r in the proposed resonance system on the SNR are studied, by which we determine a set of parameters that is relatively optimal to implement a comparison with other classical SR models. Numerical experiment results indicate that this proposed model performs better in weak signal detection applications than the classical ones with merits of higher output SNR and better anti-noise capability.
文摘Surface plasmon resonance (SPR) sensing is an optical method based on evanescent wave.SPR biosensor can detect interaction of label-free biomolecules in real-time.With further development,it can become a research instrument in proteomics.SPR biosensor can be divided intensity measurement and phase measurement,and the latter possesses higher sensitivity than the former one.This paper attempts to summarize the SPR phase detection theory,discuss the major developments,compare the merits and deficiencies of various methods,and look forward to future prospects.
文摘The periodic short-impulse signals under strong noise background are successfully detected with a special chaotic system invented by the authors. Simulation experiments show that the chaotic system is very sensitive to periodic short-impulse signals submerged by strong noise background, and it can effectively restrain any zero-mean noise. The system has a stable working-detection limit of -83dB.
文摘Real-Time segmented pulse compression-detection is one of the key technologies of space-borne tracking receiver. Its implementation requires an optimized and dedicated hardware. The real-time processing places several constraints such as area occupied, power comumption, and speed. A number of segmented compression techniques have been proposed to overcome these limitations and decrease the processing latency. However, relatively high power loss in the partial field could limit their implementation in many current real-time systems. A good theoretical model was designed with intersection signal accumulation to enhance signal- noise-ratio (SNR) gain of detecting signal in the paper. From the experimental results it is known that this approach works well for pulse compression-detection, which is better suited for implementation in the high performance of current field programmable gate array (FPGA) with dedicated hardware multipliers.
基金Key Science and Technology Project Tackled of Guangdong Province(B2050070)
文摘The characteristics such as signal noise ratio(SNR) and sensitivity of the fluorescence detection system for micro-fluidic chip influence the performance of the whole system extremely. The confocal laser induced fluorescence detection system is presented. Based on the debugging of optical and circuit modules, the results of detecting the samples are given and analyzed theoretically, and the improved project is put forward.
文摘Land cover change detection is the major goal in multitemporal remote sensing studies. It is well known that remotely-sensed images of the same area acquired on different dates tend to be affected by radiometric differences and registration problems. These influences are considered as noise in the process and may induce the user to both: signalling false changes and masking real surface changes. The difference image produced by subtracting two co-registered images is a standard initial step in change detection algorithms. This image naturally appears to be noisier than the original ones and has at least two populations: (1) the noise-like and (2) the real changes. The problem that arises is how to discriminate them. There are several approaches to perform change detection reported in the literature and some studies have employed synthetic images. By using synthetic images, the accuracy assessment of specific algorithm can be done more accurately. The question at this point is: what is the acceptable noise level to be added on the synthetic images to simulate a real problem? This paper attempts to answer this question by suggesting values of SNR (signal-to-noise ratio) obtained from experiments performed on TM-Landsat-5 and CCD-CBERS-2B images.