This short review paper aims at assembling the present state of the art of the multiuses of metal oxides in heterogeneous catalysis, concerning liquid and gaseous phases of the reactant mixtures on solid catalysts. It...This short review paper aims at assembling the present state of the art of the multiuses of metal oxides in heterogeneous catalysis, concerning liquid and gaseous phases of the reactant mixtures on solid catalysts. It includes the description of the main types of metal oxide catalysts, of their various preparation procedures and of the main reactions catalysed by them (acid-base type, selective and total oxidations, bi-functional catalysis, photocatalysis, biomass treatments, environmental catalysis and some of the numerous industrial applications). Challenges and prospectives are also discussed.展开更多
Heterogeneous catalysts with ultrafine or nano particle size have currently attracted considerable attentions in the chemical and petrochemical production processes, but their large-scale applications remain challengi...Heterogeneous catalysts with ultrafine or nano particle size have currently attracted considerable attentions in the chemical and petrochemical production processes, but their large-scale applications remain challenging because of difficulties associated with their efficient separation from the reaction slurry. A porous ceramic membrane reactor has emerged as a promising method to solve the problem concerning catalysts separation in situ from the reaction mixture and make the production process continuous in heterogeneous catalysis. This article presents a review of the present progress on porous ceramic membrane reactors for heterogeneous catalysis, which covers classification of configurations of porous ceramic membrane reactor, major considerations and some important industrial applications. A special emphasis is paid to major considerations in term of application-oriented ceramic membrane design, optimization of ceramic membrane reactor performance and membrane fouling mechanism. Finally, brief concluding remarks on porous ceramic membrane reactors are given and possible future research interests are also outlined.展开更多
In recent years,an increasing amount of interest has been dedicated to the synthesis and application of ZIF-67-based materials due to their exceptionally high surface area,tunable porosity,and excellent thermal and ch...In recent years,an increasing amount of interest has been dedicated to the synthesis and application of ZIF-67-based materials due to their exceptionally high surface area,tunable porosity,and excellent thermal and chemical stabilities.This review summarizes the latest strategies of synthesizing ZIF-67-based materials by exploring the prominent examples.Then,the recent progress in the applications of ZIF-67-based materials in heterogeneous catalysis,including catalysis of the redox reactions,addition reactions,esterification reactions,Knoevenagel condensations,and hydrogenation-dehydrogenation reactions,has been elaborately discussed.Finally,we end this work by shedding some light on the large-scale industrial production of ZIF-67-based materials and their applications in the future.展开更多
Due to metal leaching and poor catalyst stability, the chemical industry's fine chemical and pharmaceutical sectors have been historically reluctant to use supported transition metal catalysts to manufacture fine ...Due to metal leaching and poor catalyst stability, the chemical industry's fine chemical and pharmaceutical sectors have been historically reluctant to use supported transition metal catalysts to manufacture fine chemicals and active pharmaceutical ingredients. With the advent of new generation supported metal catalysts and flow chemistry, we argue in this study, this situation is poised to quickly change. Alongside heterogenized metal nanoparticles, both single-site molecular and single-atom catalyst will become ubiquitous. This study offers a critical outlook taking into account both technical and economic aspects.展开更多
The hydrogenation of carbon dioxide(CO_(2))to produce chemicals and transportation liquid fuels in huge demand via heterogeneous thermochemical catalysis achieved using renewable energy has received increasing attenti...The hydrogenation of carbon dioxide(CO_(2))to produce chemicals and transportation liquid fuels in huge demand via heterogeneous thermochemical catalysis achieved using renewable energy has received increasing attention,and substantial advances have been made in this research field in recent years.In this study,we summarize our progress in the rational design and construction of highly efficient catalysts for CO_(2) hydrogenation to methanol,lower olefins,aromatics,and gasolineand jet fuel-range hydrocarbons.The structure‐performance relationship,nature of the active sites,and mechanism of the reactions occurring over these catalysts are explored by combining computational and experimental evidence.The results of this study will promote further fundamental studies and industrial applications of heterogeneous catalysts for CO_(2) hydrogenation to produce bulk chemicals and liquid fuels.展开更多
Growing concern regarding the sustainability of the chemical industry has driven the developmentof more efficient catalytic reactions.First‐generation estimates of catalyst viability are based oncrustal abundance,whi...Growing concern regarding the sustainability of the chemical industry has driven the developmentof more efficient catalytic reactions.First‐generation estimates of catalyst viability are based oncrustal abundance,which has severe limitations.Herein,we propose a second‐generation approachto predicting the viability of novel catalysts prior to industrial implementation to benefit the globalchemical industry.Using this prediction,we found that a correlation exists between catalyst consumptionand the annual production or price of the catalyst element for11representative industrialcatalytic processes.Based on this correlation,we have introduced two new descriptors for catalystviability,namely,catalyst consumption to availability ratio per annum(CCA)and consumed catalystcost to product value ratio per annum(CCP).Based on evaluations of CCA and CCP for selected industrial reactions,we have grouped catalysts from the case studies according to viability,allowing the identification of general limits of viability based on CCA and CCP.Calculating the CCA and CCP and their comparing with the general limits of viability provides researchers with a novel framework for evaluating whether the cost or physical availability of a new catalyst could be limiting.We have extended this analysis to calculate the predicted limits of economically viable production and product cost for new catalysts.?2018,Dalian Institute of Chemical Physics,Chinese Academy of Sciences.Published by Elsevier B.V.All rights reserved.展开更多
Capsule catalysts composed of pre-shaped core catalysts and layer zeolites have been widely used in the tandem reactions where multiple continuous reactions are combined into one process. They show excellent catalytic...Capsule catalysts composed of pre-shaped core catalysts and layer zeolites have been widely used in the tandem reactions where multiple continuous reactions are combined into one process. They show excellent catalytic performance in heterogeneous catalysis, including the direct synthesis of middle isoparaflins or dimethyl ether from syngas, as compared to the conventional hybrid catalysts. The present review highlights the recent development in the design of capsule catalysts and their catalytic applications in heterogeneous catalysis. The capsule catalyst preparation methods are introduced in detail, such as hydrothermal synthe- sis method, dual-layer method, physically adhesive method and single crystal crystallization method. Purthermore, several new applications of capsule catalysts in heterogeneous cat- alytic processes are presented such as in the direct synthesis of liquefied petroleum gas from syngas, the direct synthesis of para-xylene from syngas and methane dehydroaromatization. In addition, the development in the design of multifunctional capsule catalysts is discussed, which makes the capsule catalyst not just a simple combination of two dill)rent catalysts, but has some special functions such as changing the surface hydrophobic or acid properties of the core catalysts. Finally, the future perspectives of the design and applications of capsule catalysts in heterogeneous catalysis are provided.展开更多
Recovering noble metals from waste resources and incorporating them into catalysts stands out as a promising strategy for advancing sustainability within the catalysis field. This review provides a comprehensive overv...Recovering noble metals from waste resources and incorporating them into catalysts stands out as a promising strategy for advancing sustainability within the catalysis field. This review provides a comprehensive overview of recent investigations into noble metal recovery from waste streams, specifically employing porous organic frameworks(POFs). Additionally, the study delves into the utilization of the resultant composites, enriched with noble metals, in heterogeneous catalysis. Moreover, we offer insights into the challenges faced and outline prospects for the practical implementation of extracting noble metal catalysts from waste streams using POFs, aiming to develop cost-effective, sustainable, and efficient heterogeneous catalysts.展开更多
Metal-containing crystalline porous materials(CPMs)are gaining popularity in heterogeneous catalysis because of their highly crystalline and porous systems,and their excellent chemical tunability.Modification of the m...Metal-containing crystalline porous materials(CPMs)are gaining popularity in heterogeneous catalysis because of their highly crystalline and porous systems,and their excellent chemical tunability.Modification of the metal species and framework structure permits them to have greater activity,selectivity,and stability over other materials.An in-depth understanding of the complex nature of metal active sites in CPMs is essential for revealing the structure-performance relationships and directing the rational design of such catalysts.Compared to conventional characterization techniques,the rapid development of X-ray absorption spectroscopy(XAS)has provided element-and site-specific deep insights into the electronic and structural information of metal species in CPMs.As such,this review begins by summarizing novel XAS techniques and analysis methods in accurately obtaining such data.Next,the combination of XAS with other high-level characterization methods into disclosing the configuration of active sites in metalcontaining CPMs is presented.Then,the utilization of theory-assisted XAS data analysis in examining complex metal-containing CPM catalysts is discussed.Afterwards,advanced in-situ/operando XAS studies into revealing the working sites in metal-containing CPMs under catalytic conditions are highlighted.We conclude by outlining the future challenges and prospects of XAS measurements,data analyses,and in-situ/operando setups in advancing the study of metal-in-CPM catalysts.展开更多
Layered double hydroxide(LDH)is regarded as an advanced platform material in catalysis and attracts vast attrition recently.As a kind of two-dimensional layered material,it exhibits great advantages including cation-t...Layered double hydroxide(LDH)is regarded as an advanced platform material in catalysis and attracts vast attrition recently.As a kind of two-dimensional layered material,it exhibits great advantages including cation-tunability in layer,lattice limitation,topological transformation,ion exchange and intercalation characteristics.It also can be used as building blocks for composite catalytic materials.Over 100 years,a large number of works have been accomplished and researchers made great progress on investigating the LDH-based catalytic materials.In this review,we summarize representative achievements and significant progress in recent years,which mainly include constructing high entropy catalytic material,high dispersion/stability and interfacial supported catalytic material,composite catalytic materials and nano-reactor based on LDH.Furthermore,through collecting the excellent works,we conclude the future development potential of LDH and provide a perspective.展开更多
This Perspective explores the integration of machine learning potentials(MLPs)in the research of heterogeneous catalysis,focusing on their role in identifying in situ active sites and enhancing the understanding of ca...This Perspective explores the integration of machine learning potentials(MLPs)in the research of heterogeneous catalysis,focusing on their role in identifying in situ active sites and enhancing the understanding of catalytic processes.MLPs utilize extensive databases from high-throughput density functional theory(DFT)calculations to train models that predict atomic configurations,energies,and forces with near-DFT accuracy.These capabilities allow MLPs to handle significantly larger systems and extend simulation times beyond the limitations of traditional ab initio methods.Coupled with global optimization algorithms,MLPs enable systematic investigations across vast structural spaces,making substantial contributions to the modeling of catalyst surface structures under reactive conditions.The review aims to provide a broad introduction to recent advancements and practical guidance on employing MLPs and also showcases several exemplary cases of MLP-driven discoveries related to surface structure changes under reactive conditions and the nature of active sites in heterogeneous catalysis.The prevailing challenges faced by this approach are also discussed.展开更多
Metallosalen covalent organic frameworks(M(salen)-COFs)have garnered significant attention as promising candidates for advanced heterogeneous catalysis,including organocatalysis,electrocatalysis,and photocatalysis,due...Metallosalen covalent organic frameworks(M(salen)-COFs)have garnered significant attention as promising candidates for advanced heterogeneous catalysis,including organocatalysis,electrocatalysis,and photocatalysis,due to their unique structural advantages(combining molecules catalysts and crystalline porous materials)and tunable topological network.It is essential to provide a comprehensive overview of emerging designs of M(salen)-COFs and corresponding advances in this field.Herein,this review first summarizes the reported metallolinkers and the synthesis methods of M(salen)-COFs.In addition,the review enumerates the excellent M(salen)-COF based heterogeneous catalysts and discusses the fundamental mechanisms behind the outstanding heterogeneous catalytic performance of M(salen)-COFs.These mechanisms include the pore enrichment effect(enhancing local concentration within porous materials to promote catalytic reactions),the three-in-one strategy(integrating enrichment,reduction,and oxidation sites in one system),and the incorporation of a built-in electric field(implanting a built-in electric field in heterometallic phthalocyanine covalent organic frameworks).Furthermore,this review discusses the challenges and prospects related to M(salen)-COFs in heterogeneous catalysis.展开更多
Hierarchically porous metal-organic frameworks(H-MOFs)with micro-,meso-and macropores have emerged as a popular class of crystalline porous materials that have attracted extensive interests,and they have been studied ...Hierarchically porous metal-organic frameworks(H-MOFs)with micro-,meso-and macropores have emerged as a popular class of crystalline porous materials that have attracted extensive interests,and they have been studied in diverse applications,especially in heterogeneous catalysis.The hierarchical structures enable sufficient diffusion and accessibility to the active sites of the molecules and permit the encapsulation of catalytic guest molecules to exploit more possibilities with enhanced catalytic performance.In this review,we have summarized the recent representative developments of H-MOFs in the field of heterogeneous catalysis,which includes oxidation reaction,hydrogenation reaction,and condensation reaction.Emphasis is placed on the multiple functions of hierarchical structures,and the catalytic activity,selectivity,stability,recyclability,etc.of the industrial utility of H-MOFs.Finally,the prospects and challenges of H-MOFs in heterogeneous catalysis and the remaining issues in this field are presented.展开更多
Magnetic yolk-shell structured anatase-based microspheres were fabricated through successive and facile sol-gel coating on magnetite particles, followed by annealing treatments. Upon loading with gold nanoparticles, t...Magnetic yolk-shell structured anatase-based microspheres were fabricated through successive and facile sol-gel coating on magnetite particles, followed by annealing treatments. Upon loading with gold nanoparticles, the obtained functional magnetic microspheres as heterogeneous catalysts showed superior performance in catalyzing the epoxidation of styrene with extraordinary high conversion (89.5%) and selectivity (90.8%) towards styrene oxide. It is believed that the construction process of these fascinating materials features many implications for creating other functional nanocomposites.展开更多
Herein,we report a microwave-assisted acid-induced post-treatment method for the formation of linker vacancies within Zr-based metal organic frameworks(Zr-MOFs).The number of linker vacancies can be easily regulated w...Herein,we report a microwave-assisted acid-induced post-treatment method for the formation of linker vacancies within Zr-based metal organic frameworks(Zr-MOFs).The number of linker vacancies can be easily regulated with this method by changing the concentration of the HCl solution and the duration of microwave irradiation.The optimized defective UiO-66 showed higher linker defects with a higher specific surface area and thermal stability.The results of the catalytic cyclization of citronella showed that the Zr-MOFs with more defects exhibited enhanced catalytic performance.This work may provide a new method for the creation of defective MOFs with high activity and stability.展开更多
Heterogeneous catalysis taking place at solid interfaces plays a crucial role not only in industrial chemical production, energy conversion but also in fundamental research. The dynamic evolution of surface morphology...Heterogeneous catalysis taking place at solid interfaces plays a crucial role not only in industrial chemical production, energy conversion but also in fundamental research. The dynamic evolution of surface morphology and composition requires full understanding especially under realistic reaction conditions. To this end, conventional scanning tunneling microscopy(STM) has been integrated with high pressure cell and electrochemical cell, forming high pressure(HP) STM and electrochemical(EC) STM for the in-situ/operando characterization at solid-gas and solid-liquid interfaces with atomic resolution, respectively. In this review, we attempt to give a brief introduction to the development and working principle of these two techniques and subsequently summarize several representative progresses in recent days. The dynamic changes in active sites, surface reconstruction, absorbates alteration and products formation are directly characterized in a combination with other surface sensitive technologies. The correlation between surface structures and catalytic performance as well as the underlying mechanism can thus be unraveled, which provides insights into the rational design and optimization of catalysts.展开更多
Recently,there is a growing interest in the use of microalga in various fields.Microalgae have properties such as rapid reproduction and high biomass accumulation,and under certain conditions,some are able to accumula...Recently,there is a growing interest in the use of microalga in various fields.Microalgae have properties such as rapid reproduction and high biomass accumulation,and under certain conditions,some are able to accumulate a large amount of oil.However,microalgae oil often contains more free fatty acids than the vegetable oil and is therefore unsuitable for biodiesel synthesis using alkaline catalysts.For this reason,some authors suggest the application of heterogeneous catalysis.A particular interest in the use of immobilized enzymes has developed.Other solid substances can also be used as heterogeneous catalysts are usually metal oxides,carbonates or zeolites.The use of these catalysts results in simpler biodiesel synthesis,especially purification processes,a cleaner end product and a less polluted environment.The molar ratio of alcohol to oil is lower during enzymatic transesterification,and more than 90%ester yield is obtained using a molar ratio of alcohol to oil of 3:1 to 4.5:1.The alcohols do not have a negative effect on the effectiveness of chemical catalysts,so it is possible to use alcohols in molar ratio from 4:1 to 12:1.The optimal temperature of enzymatic process is 30℃–50℃.An ester yield of more than 95%was obtained in 12–48 h.Using chemical catalysts,greater than a 95%yield of esters was obtained at higher temperatures in a shorter time.Material costs of enzymatic catalysis can be reduced by reusing the catalysts directly or after regeneration.展开更多
The mass production of disposable polyolefin products has led to serious plastic pollution and an imbalance between manufacturing and recycling.Given these challenges,the chemical upcycling of waste polyolefins has at...The mass production of disposable polyolefin products has led to serious plastic pollution and an imbalance between manufacturing and recycling.Given these challenges,the chemical upcycling of waste polyolefins has attracted extensive attention due to its high efficiency and economic benefits.Herein,we review the development of polyolefin chemical upcycling in heterogeneous catalysis.The status quo of polyolefin recycling is first discussed.We then introduce the advanced strategies for chemical upcycling in the view of different value-added products and discuss their challenges and prospects.Our in-depth analysis centers on the catalytic mechanism and the design principle of heterogeneous catalysts.Finally,we outlook the promising directions to facilitate the degradation process via polymer and catalyst design and optimized catalytic engineering.Innovative strategies are expected to promote the chemical upcycling of polyolefins,bringing great promise for the sustainable development of society.展开更多
High-resolution magic angle spinning(MAS)NMR can afford both qualitative and quantitative information of the solid,liquid and gas phase at atomic level,and such information obtained at in situ/operando conditions is o...High-resolution magic angle spinning(MAS)NMR can afford both qualitative and quantitative information of the solid,liquid and gas phase at atomic level,and such information obtained at in situ/operando conditions is of vital importance for understanding the crystallization process of material as well as the reaction mechanism of catalysis.To meet the requirement of experimental conditions for material synthesis and catalytic reactions,in situ MAS NMR techniques have been continuously developed for using at higher temperatures and pressures with high sensitivity.Herein,we will briefly outline the development of this technology and discuss its detailed applications in understanding material synthesis and heterogeneous catalysis.展开更多
Selective cleavage of Csp^(2)-OCH_(3)bond in lignin without breaking other types of C-O bonds followed by N-functionalization is fascinating for on-purpose valorization of biomass.Here,a Co/Ni-based dual-atom catalyst...Selective cleavage of Csp^(2)-OCH_(3)bond in lignin without breaking other types of C-O bonds followed by N-functionalization is fascinating for on-purpose valorization of biomass.Here,a Co/Ni-based dual-atom catalyst CoNiDA@NC prepared by in-situ evaporation and acid-etching of metal species from tailor-made metal–organic frameworks was efficient for reductive upgrading of various lignin-derived phenols to cyclohexanols(88.5%–99.9%yields),which had ca.4 times higher reaction rate than the single-atom catalyst and was superior to state-of-the-art heterogeneous catalysts.The synergistic catalysis of Co/Ni dual atoms facilitated both hydrogen dissociation and hydrogenolysis steps,and could optimize adsorption configuration of lignin-derived methoxylated phenols to further favor the Csp^(2)-OCH_(3)cleavage,as elaborated by theoretical calculations.Notably,the CoNi_(DA)@NC catalyst was highly recyclable,and exhibited excellent demethoxylation performance(77.1%yield)in real lignin monomer mixtures.Via in-situ cascade conversion processes assisted by dual-atom catalysis,various high-value N-containing chemicals,including caprolactams and cyclohexylamines,could be produced from lignin.展开更多
文摘This short review paper aims at assembling the present state of the art of the multiuses of metal oxides in heterogeneous catalysis, concerning liquid and gaseous phases of the reactant mixtures on solid catalysts. It includes the description of the main types of metal oxide catalysts, of their various preparation procedures and of the main reactions catalysed by them (acid-base type, selective and total oxidations, bi-functional catalysis, photocatalysis, biomass treatments, environmental catalysis and some of the numerous industrial applications). Challenges and prospectives are also discussed.
基金Supported by the National Natural Science Foundation of China (20990222, 21106061), the National Basic Research Program of China (2009CB623406), the National Key Science and Technology Program of China (2011BAE07B05) and the Natural Science Foundation of Jiangsu Province, China (BK2010549, BK2009021).
文摘Heterogeneous catalysts with ultrafine or nano particle size have currently attracted considerable attentions in the chemical and petrochemical production processes, but their large-scale applications remain challenging because of difficulties associated with their efficient separation from the reaction slurry. A porous ceramic membrane reactor has emerged as a promising method to solve the problem concerning catalysts separation in situ from the reaction mixture and make the production process continuous in heterogeneous catalysis. This article presents a review of the present progress on porous ceramic membrane reactors for heterogeneous catalysis, which covers classification of configurations of porous ceramic membrane reactor, major considerations and some important industrial applications. A special emphasis is paid to major considerations in term of application-oriented ceramic membrane design, optimization of ceramic membrane reactor performance and membrane fouling mechanism. Finally, brief concluding remarks on porous ceramic membrane reactors are given and possible future research interests are also outlined.
基金financial support from the National Natural Science Foundation of China(22008032)the Guangdong Basic and Applied Basic Research Foundation(2019A1515110706)+1 种基金the Shandong Provincial Natural Science Foundation(ZR2020ZD08)the Guangdong Provincial Key Lab of Green Chemical Product Technology(GC202111)
文摘In recent years,an increasing amount of interest has been dedicated to the synthesis and application of ZIF-67-based materials due to their exceptionally high surface area,tunable porosity,and excellent thermal and chemical stabilities.This review summarizes the latest strategies of synthesizing ZIF-67-based materials by exploring the prominent examples.Then,the recent progress in the applications of ZIF-67-based materials in heterogeneous catalysis,including catalysis of the redox reactions,addition reactions,esterification reactions,Knoevenagel condensations,and hydrogenation-dehydrogenation reactions,has been elaborately discussed.Finally,we end this work by shedding some light on the large-scale industrial production of ZIF-67-based materials and their applications in the future.
文摘Due to metal leaching and poor catalyst stability, the chemical industry's fine chemical and pharmaceutical sectors have been historically reluctant to use supported transition metal catalysts to manufacture fine chemicals and active pharmaceutical ingredients. With the advent of new generation supported metal catalysts and flow chemistry, we argue in this study, this situation is poised to quickly change. Alongside heterogenized metal nanoparticles, both single-site molecular and single-atom catalyst will become ubiquitous. This study offers a critical outlook taking into account both technical and economic aspects.
文摘The hydrogenation of carbon dioxide(CO_(2))to produce chemicals and transportation liquid fuels in huge demand via heterogeneous thermochemical catalysis achieved using renewable energy has received increasing attention,and substantial advances have been made in this research field in recent years.In this study,we summarize our progress in the rational design and construction of highly efficient catalysts for CO_(2) hydrogenation to methanol,lower olefins,aromatics,and gasolineand jet fuel-range hydrocarbons.The structure‐performance relationship,nature of the active sites,and mechanism of the reactions occurring over these catalysts are explored by combining computational and experimental evidence.The results of this study will promote further fundamental studies and industrial applications of heterogeneous catalysts for CO_(2) hydrogenation to produce bulk chemicals and liquid fuels.
基金support from the Villum Foundation V-SUSTAIN grant 9455 to the Villum Center for the Science of Sustainable Fuels and Chemicals
文摘Growing concern regarding the sustainability of the chemical industry has driven the developmentof more efficient catalytic reactions.First‐generation estimates of catalyst viability are based oncrustal abundance,which has severe limitations.Herein,we propose a second‐generation approachto predicting the viability of novel catalysts prior to industrial implementation to benefit the globalchemical industry.Using this prediction,we found that a correlation exists between catalyst consumptionand the annual production or price of the catalyst element for11representative industrialcatalytic processes.Based on this correlation,we have introduced two new descriptors for catalystviability,namely,catalyst consumption to availability ratio per annum(CCA)and consumed catalystcost to product value ratio per annum(CCP).Based on evaluations of CCA and CCP for selected industrial reactions,we have grouped catalysts from the case studies according to viability,allowing the identification of general limits of viability based on CCA and CCP.Calculating the CCA and CCP and their comparing with the general limits of viability provides researchers with a novel framework for evaluating whether the cost or physical availability of a new catalyst could be limiting.We have extended this analysis to calculate the predicted limits of economically viable production and product cost for new catalysts.?2018,Dalian Institute of Chemical Physics,Chinese Academy of Sciences.Published by Elsevier B.V.All rights reserved.
基金supported by the Key R&D plan(East-West Cooperation) of Ningxiathe First-rate Discipline Construction Project of Ningxia(NXYLXK2017A04)
文摘Capsule catalysts composed of pre-shaped core catalysts and layer zeolites have been widely used in the tandem reactions where multiple continuous reactions are combined into one process. They show excellent catalytic performance in heterogeneous catalysis, including the direct synthesis of middle isoparaflins or dimethyl ether from syngas, as compared to the conventional hybrid catalysts. The present review highlights the recent development in the design of capsule catalysts and their catalytic applications in heterogeneous catalysis. The capsule catalyst preparation methods are introduced in detail, such as hydrothermal synthe- sis method, dual-layer method, physically adhesive method and single crystal crystallization method. Purthermore, several new applications of capsule catalysts in heterogeneous cat- alytic processes are presented such as in the direct synthesis of liquefied petroleum gas from syngas, the direct synthesis of para-xylene from syngas and methane dehydroaromatization. In addition, the development in the design of multifunctional capsule catalysts is discussed, which makes the capsule catalyst not just a simple combination of two dill)rent catalysts, but has some special functions such as changing the surface hydrophobic or acid properties of the core catalysts. Finally, the future perspectives of the design and applications of capsule catalysts in heterogeneous catalysis are provided.
基金supported by the ÅForsk Research Foundation,the Swedish Energy Agency,Formas。
文摘Recovering noble metals from waste resources and incorporating them into catalysts stands out as a promising strategy for advancing sustainability within the catalysis field. This review provides a comprehensive overview of recent investigations into noble metal recovery from waste streams, specifically employing porous organic frameworks(POFs). Additionally, the study delves into the utilization of the resultant composites, enriched with noble metals, in heterogeneous catalysis. Moreover, we offer insights into the challenges faced and outline prospects for the practical implementation of extracting noble metal catalysts from waste streams using POFs, aiming to develop cost-effective, sustainable, and efficient heterogeneous catalysts.
基金the National Natural Science Foundation of China(grant no.22301057)the financial support by the Natural Science Foundation of Hebei Province(grant no.B2023201065)+4 种基金Hebei University High-level Talent Research Program(grant no.521100223025)Y.L.thanks the funding from the National Natural Science Foundation of China(grant no.22305060)Hebei University High-level Talent Research Program(grant no.521100222060)P.Z.acknowledges the financial support from an Natural Sciences and Engineering Research Council of Canada(NSERC)Discovery GrantA.G.W.thanks financial support from an NSERC Canada Graduate Scholarships-Doctoral Program(CGS-D)scholarship.
文摘Metal-containing crystalline porous materials(CPMs)are gaining popularity in heterogeneous catalysis because of their highly crystalline and porous systems,and their excellent chemical tunability.Modification of the metal species and framework structure permits them to have greater activity,selectivity,and stability over other materials.An in-depth understanding of the complex nature of metal active sites in CPMs is essential for revealing the structure-performance relationships and directing the rational design of such catalysts.Compared to conventional characterization techniques,the rapid development of X-ray absorption spectroscopy(XAS)has provided element-and site-specific deep insights into the electronic and structural information of metal species in CPMs.As such,this review begins by summarizing novel XAS techniques and analysis methods in accurately obtaining such data.Next,the combination of XAS with other high-level characterization methods into disclosing the configuration of active sites in metalcontaining CPMs is presented.Then,the utilization of theory-assisted XAS data analysis in examining complex metal-containing CPM catalysts is discussed.Afterwards,advanced in-situ/operando XAS studies into revealing the working sites in metal-containing CPMs under catalytic conditions are highlighted.We conclude by outlining the future challenges and prospects of XAS measurements,data analyses,and in-situ/operando setups in advancing the study of metal-in-CPM catalysts.
基金supported by the National Key R&D Program of China(Nos.2023YFA1507800,2023YFA1507801)the National Natural Science Foundation of China(Nos.22288102,22208008)the Fundamental Research Funds for the Central Universities,China(No.ZY2423).
文摘Layered double hydroxide(LDH)is regarded as an advanced platform material in catalysis and attracts vast attrition recently.As a kind of two-dimensional layered material,it exhibits great advantages including cation-tunability in layer,lattice limitation,topological transformation,ion exchange and intercalation characteristics.It also can be used as building blocks for composite catalytic materials.Over 100 years,a large number of works have been accomplished and researchers made great progress on investigating the LDH-based catalytic materials.In this review,we summarize representative achievements and significant progress in recent years,which mainly include constructing high entropy catalytic material,high dispersion/stability and interfacial supported catalytic material,composite catalytic materials and nano-reactor based on LDH.Furthermore,through collecting the excellent works,we conclude the future development potential of LDH and provide a perspective.
基金the NKRDPC(2021YFA1500700)and NSFC(92045303).X.C.is grateful for financial support from ShanghaiTech University.
文摘This Perspective explores the integration of machine learning potentials(MLPs)in the research of heterogeneous catalysis,focusing on their role in identifying in situ active sites and enhancing the understanding of catalytic processes.MLPs utilize extensive databases from high-throughput density functional theory(DFT)calculations to train models that predict atomic configurations,energies,and forces with near-DFT accuracy.These capabilities allow MLPs to handle significantly larger systems and extend simulation times beyond the limitations of traditional ab initio methods.Coupled with global optimization algorithms,MLPs enable systematic investigations across vast structural spaces,making substantial contributions to the modeling of catalyst surface structures under reactive conditions.The review aims to provide a broad introduction to recent advancements and practical guidance on employing MLPs and also showcases several exemplary cases of MLP-driven discoveries related to surface structure changes under reactive conditions and the nature of active sites in heterogeneous catalysis.The prevailing challenges faced by this approach are also discussed.
基金National Natural Science Foundation of China,Grant/Award Numbers:21925104,92261204National Key Research and Development Program of China,Grant/Award Number:2022YFB3807700Scientific Research Staring Foundation of Hainan University,Grant/Award Number:KYQD(ZR)23171。
文摘Metallosalen covalent organic frameworks(M(salen)-COFs)have garnered significant attention as promising candidates for advanced heterogeneous catalysis,including organocatalysis,electrocatalysis,and photocatalysis,due to their unique structural advantages(combining molecules catalysts and crystalline porous materials)and tunable topological network.It is essential to provide a comprehensive overview of emerging designs of M(salen)-COFs and corresponding advances in this field.Herein,this review first summarizes the reported metallolinkers and the synthesis methods of M(salen)-COFs.In addition,the review enumerates the excellent M(salen)-COF based heterogeneous catalysts and discusses the fundamental mechanisms behind the outstanding heterogeneous catalytic performance of M(salen)-COFs.These mechanisms include the pore enrichment effect(enhancing local concentration within porous materials to promote catalytic reactions),the three-in-one strategy(integrating enrichment,reduction,and oxidation sites in one system),and the incorporation of a built-in electric field(implanting a built-in electric field in heterometallic phthalocyanine covalent organic frameworks).Furthermore,this review discusses the challenges and prospects related to M(salen)-COFs in heterogeneous catalysis.
基金supported by the National Natural Science Foundation of China(22008032,12105048,and 22078104)Guangdong Basic and Applied Basic Research Foundation(2019A1515110706 and 2020A1515110817)+5 种基金the Science and Technology Key Project of Guangdong Province,China(2020B010188002)the Special Innovation Projects of Universities in Guangdong Province(2018KTSCX240)the Innovation Team of Universities in Guangdong Province(2020KCXTD011)the Engineering Research Center of Universities in Guangdong Province(2019GCZX002)Guangdong Key Laboratory for Hydrogen Energy Technologies(2018B030322005)Guangdong Provincial Key Lab of Green Chemical Product Technology(GC202111)。
文摘Hierarchically porous metal-organic frameworks(H-MOFs)with micro-,meso-and macropores have emerged as a popular class of crystalline porous materials that have attracted extensive interests,and they have been studied in diverse applications,especially in heterogeneous catalysis.The hierarchical structures enable sufficient diffusion and accessibility to the active sites of the molecules and permit the encapsulation of catalytic guest molecules to exploit more possibilities with enhanced catalytic performance.In this review,we have summarized the recent representative developments of H-MOFs in the field of heterogeneous catalysis,which includes oxidation reaction,hydrogenation reaction,and condensation reaction.Emphasis is placed on the multiple functions of hierarchical structures,and the catalytic activity,selectivity,stability,recyclability,etc.of the industrial utility of H-MOFs.Finally,the prospects and challenges of H-MOFs in heterogeneous catalysis and the remaining issues in this field are presented.
文摘Magnetic yolk-shell structured anatase-based microspheres were fabricated through successive and facile sol-gel coating on magnetite particles, followed by annealing treatments. Upon loading with gold nanoparticles, the obtained functional magnetic microspheres as heterogeneous catalysts showed superior performance in catalyzing the epoxidation of styrene with extraordinary high conversion (89.5%) and selectivity (90.8%) towards styrene oxide. It is believed that the construction process of these fascinating materials features many implications for creating other functional nanocomposites.
基金supported by the National Natural Science Foundation of China (No.21573063)the Hunan Provincial Natural Science Foundation of Youth Fund (No.2020JJ3002)+1 种基金Open Fund from Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion (No.2018TP1037201902)the Training Program of Hunan University of Youth Fund。
文摘Herein,we report a microwave-assisted acid-induced post-treatment method for the formation of linker vacancies within Zr-based metal organic frameworks(Zr-MOFs).The number of linker vacancies can be easily regulated with this method by changing the concentration of the HCl solution and the duration of microwave irradiation.The optimized defective UiO-66 showed higher linker defects with a higher specific surface area and thermal stability.The results of the catalytic cyclization of citronella showed that the Zr-MOFs with more defects exhibited enhanced catalytic performance.This work may provide a new method for the creation of defective MOFs with high activity and stability.
基金financially supported by the National Natural Science Foundation of China (22002183, 11874380)the Photon Science Center for Carbon Neutrality of Chinese Academy of SciencesCAS Key Laboratory of Low-carbon Conversion Science and Engineering,Chinese Academy of Sciences。
文摘Heterogeneous catalysis taking place at solid interfaces plays a crucial role not only in industrial chemical production, energy conversion but also in fundamental research. The dynamic evolution of surface morphology and composition requires full understanding especially under realistic reaction conditions. To this end, conventional scanning tunneling microscopy(STM) has been integrated with high pressure cell and electrochemical cell, forming high pressure(HP) STM and electrochemical(EC) STM for the in-situ/operando characterization at solid-gas and solid-liquid interfaces with atomic resolution, respectively. In this review, we attempt to give a brief introduction to the development and working principle of these two techniques and subsequently summarize several representative progresses in recent days. The dynamic changes in active sites, surface reconstruction, absorbates alteration and products formation are directly characterized in a combination with other surface sensitive technologies. The correlation between surface structures and catalytic performance as well as the underlying mechanism can thus be unraveled, which provides insights into the rational design and optimization of catalysts.
文摘Recently,there is a growing interest in the use of microalga in various fields.Microalgae have properties such as rapid reproduction and high biomass accumulation,and under certain conditions,some are able to accumulate a large amount of oil.However,microalgae oil often contains more free fatty acids than the vegetable oil and is therefore unsuitable for biodiesel synthesis using alkaline catalysts.For this reason,some authors suggest the application of heterogeneous catalysis.A particular interest in the use of immobilized enzymes has developed.Other solid substances can also be used as heterogeneous catalysts are usually metal oxides,carbonates or zeolites.The use of these catalysts results in simpler biodiesel synthesis,especially purification processes,a cleaner end product and a less polluted environment.The molar ratio of alcohol to oil is lower during enzymatic transesterification,and more than 90%ester yield is obtained using a molar ratio of alcohol to oil of 3:1 to 4.5:1.The alcohols do not have a negative effect on the effectiveness of chemical catalysts,so it is possible to use alcohols in molar ratio from 4:1 to 12:1.The optimal temperature of enzymatic process is 30℃–50℃.An ester yield of more than 95%was obtained in 12–48 h.Using chemical catalysts,greater than a 95%yield of esters was obtained at higher temperatures in a shorter time.Material costs of enzymatic catalysis can be reduced by reusing the catalysts directly or after regeneration.
基金National Natural Science Foundation of China,Grant/Award Number:51901147Suzhou Key Laboratory of Functional Nano&Soft Materials,Collaborative Innovation Center of Suzhou Nano Science&Technology。
文摘The mass production of disposable polyolefin products has led to serious plastic pollution and an imbalance between manufacturing and recycling.Given these challenges,the chemical upcycling of waste polyolefins has attracted extensive attention due to its high efficiency and economic benefits.Herein,we review the development of polyolefin chemical upcycling in heterogeneous catalysis.The status quo of polyolefin recycling is first discussed.We then introduce the advanced strategies for chemical upcycling in the view of different value-added products and discuss their challenges and prospects.Our in-depth analysis centers on the catalytic mechanism and the design principle of heterogeneous catalysts.Finally,we outlook the promising directions to facilitate the degradation process via polymer and catalyst design and optimized catalytic engineering.Innovative strategies are expected to promote the chemical upcycling of polyolefins,bringing great promise for the sustainable development of society.
基金the financial supports from the National Natural Science Foundation of China(Nos.21773230,91945302 and 21972143)the National Key R&D Program of China(2021YFA1502803)+2 种基金Liao Ning Revitalization Talents Program(XLYC1807207)DICP&QIBEBT UN201808DICP I202104。
文摘High-resolution magic angle spinning(MAS)NMR can afford both qualitative and quantitative information of the solid,liquid and gas phase at atomic level,and such information obtained at in situ/operando conditions is of vital importance for understanding the crystallization process of material as well as the reaction mechanism of catalysis.To meet the requirement of experimental conditions for material synthesis and catalytic reactions,in situ MAS NMR techniques have been continuously developed for using at higher temperatures and pressures with high sensitivity.Herein,we will briefly outline the development of this technology and discuss its detailed applications in understanding material synthesis and heterogeneous catalysis.
基金the National Natural Science Foundation of China(22368014)the Guizhou Provincial S&T Project(ZK[2022]011,GCC[2023]011)+2 种基金the Natural Science Foundation of Guangxi Zhuang Autonomous Region(2023JJA120098)the Guangxi Key Laboratory of Green Chemical Materials and Safety Technology,the Beibu Gulf University(2022SYSZZ02,2022ZZKT04)the Guizhou Provincial Higher Education Institution Program(Qianjiaoji[2023]082)。
文摘Selective cleavage of Csp^(2)-OCH_(3)bond in lignin without breaking other types of C-O bonds followed by N-functionalization is fascinating for on-purpose valorization of biomass.Here,a Co/Ni-based dual-atom catalyst CoNiDA@NC prepared by in-situ evaporation and acid-etching of metal species from tailor-made metal–organic frameworks was efficient for reductive upgrading of various lignin-derived phenols to cyclohexanols(88.5%–99.9%yields),which had ca.4 times higher reaction rate than the single-atom catalyst and was superior to state-of-the-art heterogeneous catalysts.The synergistic catalysis of Co/Ni dual atoms facilitated both hydrogen dissociation and hydrogenolysis steps,and could optimize adsorption configuration of lignin-derived methoxylated phenols to further favor the Csp^(2)-OCH_(3)cleavage,as elaborated by theoretical calculations.Notably,the CoNi_(DA)@NC catalyst was highly recyclable,and exhibited excellent demethoxylation performance(77.1%yield)in real lignin monomer mixtures.Via in-situ cascade conversion processes assisted by dual-atom catalysis,various high-value N-containing chemicals,including caprolactams and cyclohexylamines,could be produced from lignin.