In the paper,we propose a framework to investigate how to effectively perform traffic flow splitting in heterogeneous wireless networks from a queue point.The average packet delay in heterogeneous wireless networks is...In the paper,we propose a framework to investigate how to effectively perform traffic flow splitting in heterogeneous wireless networks from a queue point.The average packet delay in heterogeneous wireless networks is derived in a probabilistic manner.The basic idea can be understood via treating the integrated heterogeneous wireless networks as different coupled and parallel queuing systems.The integrated network performance can approach that of one queue with maximal the multiplexing gain.For the purpose of illustrating the effectively of our proposed model,the Cellular/WLAN interworking is exploited.To minimize the average delay,a heuristic search algorithm is used to get the optimal probability of splitting traffic flow.Further,a Markov process is applied to evaluate the performance of the proposed scheme and compare with that of selecting the best network to access in terms of packet mean delay and blocking probability.Numerical results illustrate our proposed framework is effective and the flow splitting transmission can obtain more performance gain in heterogeneous wireless networks.展开更多
In this paper,a genetic algorithm (GA) is investigated to deal with cell-by-cell dynamic spectrumallocation (DSA) in the heterogeneous scenario with temporal and spatial traffic demand changes,whichis also known as a ...In this paper,a genetic algorithm (GA) is investigated to deal with cell-by-cell dynamic spectrumallocation (DSA) in the heterogeneous scenario with temporal and spatial traffic demand changes,whichis also known as a difficult combinatorial optimization problem.A new two-dimensional chromosome encodingscheme is defined according to characteristics of the heterogeneous scenario,which prevents forminginvalid solutions during the genetic operation and enables much faster convergence.A novel randomcoloring gene generation function is presented which is the basic operation for initialization and mutationin the genetic algorithm.Simulative comparison demonstrates that the proposed GA-based cell-by-cellDSA outperforms the conventional contiguous DSA scheme both in terms of spectral efficiency gain andquality of service (QoS) satisfaction.展开更多
UAV-assisted D2D networks can provide auxiliary communication for areas with poor communication facilities by using the characteristics of easy deployment of unmanned aerial vehicle(UAV),then it becomes a promising te...UAV-assisted D2D networks can provide auxiliary communication for areas with poor communication facilities by using the characteristics of easy deployment of unmanned aerial vehicle(UAV),then it becomes a promising technology.However,the coexistence of UAV and D2D aggravates the conflict of spectrum resources.In addition,when the UAV performs the communication service,it will inevitably cause the location change,which will make the original channel allocation no longer applicable.Inspired by the influence of frequent channel switching on channel allocation,we define the communication utility as a tradeoff between the throughput and channel switching cost.In the considered model,we investigate the multi-stage hierarchical spectrum access problem with maximizing aggregate communication utilities in UAV-assisted D2D networks.In particular,due to the hierarchical feature of the considered network,we adopt Stackelberg game to formulate this spectrum access problem where both the throughput and channel switching cost are considered.We prove that the proposed game has a stable Stackelberg equilibrium(SE),and the heterogeneous network based channel allocation(HN-CA)algorithm is proposed to achieve the desired solution.Simulation results verify the validity of the proposed game and show the effectiveness of the HN-CA algorithm.展开更多
While operators have started deploying fourth generation(4G) wireless communication systems,which could provide up to1 Gbps downlink peak data rate,the improved system capacity is still insufficient to meet the drasti...While operators have started deploying fourth generation(4G) wireless communication systems,which could provide up to1 Gbps downlink peak data rate,the improved system capacity is still insufficient to meet the drastically increasing demand of mobile users over the next decade.The main causes of the above-mentioned phenomenon include the following two aspects:1) the growth rate of the network capacity is far below that of user's demand,and 2) the relatively deterministic wireless access network(WAN) architecture in the existing systems cannot accommodate the prominent increase of mobile traffic with space-time domain dynamics.In order to address the above-mentioned challenges,we investigate the time-spatial consistency architecture for the future WAN,whilst emphasizing the critical roles of some spectral-efficient techniques such as Massive multiple-input multiple-output(MIMO),full-duplex(FD)operation and heterogeneous networks(HetNets).Furthermore,the energy efficiency(EE)of the HetNets under the proposed architecture is also evaluated,showing that the proposed user-selected uplink power control algorithm outperforms the traditional stochastic-scheduling strategy in terms of both capacity and EE in a two-tier HetNet.The other critical issues,including the tidal effect,the temporal failure owing to the instantaneously increased traffic,and the network wide load-balancing problem,etc.,are also anticipated to be addressed in the proposed architecture.(Abstract)展开更多
The aim of this work is to explore the impact of regional transit service on tour-based commuter travel behavior by using the Bayesian hierarchical multinomial logit model, accounting for the spatial heterogeneity of ...The aim of this work is to explore the impact of regional transit service on tour-based commuter travel behavior by using the Bayesian hierarchical multinomial logit model, accounting for the spatial heterogeneity of the people living in the same area.With two indicators, accessibility and connectivity measured at the zone level, the regional transit service is captured and then related to the travel mode choice behavior. The sample data are selected from Washington-Baltimore Household Travel Survey in 2007,including all the trips from home to workplace in morning hours in Baltimore city. Traditional multinomial logit model using Bayesian approach is also estimated. A comparison of the two different models shows that ignoring the spatial context can lead to a misspecification of the effects of the regional transit service on travel behavior. The results reveal that improving transit service at regional level can be effective in reducing auto use for commuters after controlling for socio-demographics and travel-related factors.This work provides insights for interpreting tour-based commuter travel behavior by using recently developed methodological approaches. The results of this work will be helpful for engineers, urban planners, and transit operators to decide the needs to improve regional transit service and spatial location efficiently.展开更多
A challenge in the convergence of heterogeneous networks is how to combine the ubiquitous resources and provide the diversified individual services. This paper designs a market model for aggregating reconfiguration in...A challenge in the convergence of heterogeneous networks is how to combine the ubiquitous resources and provide the diversified individual services. This paper designs a market model for aggregating reconfiguration in heterogeneous networks based on the tradeoff between resource allocation and consumers' requirement. To unify the benefits of operators and consumers, a novel Stackelberg-based dynamic incentive pricing algorithm is proposed. The results of the theoretical analysis and simulation demonstrate that the proposed strategy provides incentive for cooperation by means of appropriate resource allocation, and improves the utilization of network resources, thereby effectively realizing the optimization of the whole network performance.展开更多
基金ACKNOWLEDGEMENT This work was supported by National Natural Science Foundation of China (Grant No. 61231008), National Basic Research Program of China (973 Program) (Grant No. 2009CB320404), Program for Changjiang Scholars and Innovative Research Team in University (Grant No. IRT0852), and the 111 Project (Grant No. B08038).
文摘In the paper,we propose a framework to investigate how to effectively perform traffic flow splitting in heterogeneous wireless networks from a queue point.The average packet delay in heterogeneous wireless networks is derived in a probabilistic manner.The basic idea can be understood via treating the integrated heterogeneous wireless networks as different coupled and parallel queuing systems.The integrated network performance can approach that of one queue with maximal the multiplexing gain.For the purpose of illustrating the effectively of our proposed model,the Cellular/WLAN interworking is exploited.To minimize the average delay,a heuristic search algorithm is used to get the optimal probability of splitting traffic flow.Further,a Markov process is applied to evaluate the performance of the proposed scheme and compare with that of selecting the best network to access in terms of packet mean delay and blocking probability.Numerical results illustrate our proposed framework is effective and the flow splitting transmission can obtain more performance gain in heterogeneous wireless networks.
基金Supported by the National Basic Research Program of China (No. 2007CB310606)
文摘In this paper,a genetic algorithm (GA) is investigated to deal with cell-by-cell dynamic spectrumallocation (DSA) in the heterogeneous scenario with temporal and spatial traffic demand changes,whichis also known as a difficult combinatorial optimization problem.A new two-dimensional chromosome encodingscheme is defined according to characteristics of the heterogeneous scenario,which prevents forminginvalid solutions during the genetic operation and enables much faster convergence.A novel randomcoloring gene generation function is presented which is the basic operation for initialization and mutationin the genetic algorithm.Simulative comparison demonstrates that the proposed GA-based cell-by-cellDSA outperforms the conventional contiguous DSA scheme both in terms of spectral efficiency gain andquality of service (QoS) satisfaction.
基金This work is supported by the Jiangsu Provincial Natural Science Fund for Outstanding Young Scholars(No.BK20180028)the Natural Science Foundations of China(No.61671474)+1 种基金the Jiangsu Provincial Natural Science Fund for Excellent Young Scholars(No.BK20170089)and in part by Postgraduate Research and Practice Innovation Program of Jiangsu Province under No.KYCX190188.
文摘UAV-assisted D2D networks can provide auxiliary communication for areas with poor communication facilities by using the characteristics of easy deployment of unmanned aerial vehicle(UAV),then it becomes a promising technology.However,the coexistence of UAV and D2D aggravates the conflict of spectrum resources.In addition,when the UAV performs the communication service,it will inevitably cause the location change,which will make the original channel allocation no longer applicable.Inspired by the influence of frequent channel switching on channel allocation,we define the communication utility as a tradeoff between the throughput and channel switching cost.In the considered model,we investigate the multi-stage hierarchical spectrum access problem with maximizing aggregate communication utilities in UAV-assisted D2D networks.In particular,due to the hierarchical feature of the considered network,we adopt Stackelberg game to formulate this spectrum access problem where both the throughput and channel switching cost are considered.We prove that the proposed game has a stable Stackelberg equilibrium(SE),and the heterogeneous network based channel allocation(HN-CA)algorithm is proposed to achieve the desired solution.Simulation results verify the validity of the proposed game and show the effectiveness of the HN-CA algorithm.
基金supported by the key project of the National Natural Science Foundation of China(No.61431001)the 863 project No.2014AA01A701+4 种基金Program for New Century Excellent Talents in University(NECT12-0774)the open research fund of National Mobile Communications Research Laboratory Southeast University(No.2013D12)Fundamental Research Funds for the Central Universities(FRF-BD-15-012A)the Research Foundation of China Mobilethe Foundation of Beijing Engineering and Technology Center for Convergence Networks and Ubiquitous Services
文摘While operators have started deploying fourth generation(4G) wireless communication systems,which could provide up to1 Gbps downlink peak data rate,the improved system capacity is still insufficient to meet the drastically increasing demand of mobile users over the next decade.The main causes of the above-mentioned phenomenon include the following two aspects:1) the growth rate of the network capacity is far below that of user's demand,and 2) the relatively deterministic wireless access network(WAN) architecture in the existing systems cannot accommodate the prominent increase of mobile traffic with space-time domain dynamics.In order to address the above-mentioned challenges,we investigate the time-spatial consistency architecture for the future WAN,whilst emphasizing the critical roles of some spectral-efficient techniques such as Massive multiple-input multiple-output(MIMO),full-duplex(FD)operation and heterogeneous networks(HetNets).Furthermore,the energy efficiency(EE)of the HetNets under the proposed architecture is also evaluated,showing that the proposed user-selected uplink power control algorithm outperforms the traditional stochastic-scheduling strategy in terms of both capacity and EE in a two-tier HetNet.The other critical issues,including the tidal effect,the temporal failure owing to the instantaneously increased traffic,and the network wide load-balancing problem,etc.,are also anticipated to be addressed in the proposed architecture.(Abstract)
基金Project(71173061)supported by the National Natural Science Foundation of ChinaProject(2013U-6)supported by Key Laboratory of Eco Planning & Green Building,Ministry of Education(Tsinghua University),China
文摘The aim of this work is to explore the impact of regional transit service on tour-based commuter travel behavior by using the Bayesian hierarchical multinomial logit model, accounting for the spatial heterogeneity of the people living in the same area.With two indicators, accessibility and connectivity measured at the zone level, the regional transit service is captured and then related to the travel mode choice behavior. The sample data are selected from Washington-Baltimore Household Travel Survey in 2007,including all the trips from home to workplace in morning hours in Baltimore city. Traditional multinomial logit model using Bayesian approach is also estimated. A comparison of the two different models shows that ignoring the spatial context can lead to a misspecification of the effects of the regional transit service on travel behavior. The results reveal that improving transit service at regional level can be effective in reducing auto use for commuters after controlling for socio-demographics and travel-related factors.This work provides insights for interpreting tour-based commuter travel behavior by using recently developed methodological approaches. The results of this work will be helpful for engineers, urban planners, and transit operators to decide the needs to improve regional transit service and spatial location efficiently.
基金Supported by the National High-Tech Research & Development Program of China (Grant No. 2009AA01Z262)the National Basic Research Program of China (Grant No. 2009CB320400)+1 种基金the National Natural Science Foundation of China (Grant No. 60971125) Beijing Municipal Education Commission (Grant No. 050900407)
文摘A challenge in the convergence of heterogeneous networks is how to combine the ubiquitous resources and provide the diversified individual services. This paper designs a market model for aggregating reconfiguration in heterogeneous networks based on the tradeoff between resource allocation and consumers' requirement. To unify the benefits of operators and consumers, a novel Stackelberg-based dynamic incentive pricing algorithm is proposed. The results of the theoretical analysis and simulation demonstrate that the proposed strategy provides incentive for cooperation by means of appropriate resource allocation, and improves the utilization of network resources, thereby effectively realizing the optimization of the whole network performance.