To provide any subscriber from anywhere at anytime with services that have both secured Quality of Service(QoS) and simultaneous expansion of network coverage and communications capacity is a key problem that has to b...To provide any subscriber from anywhere at anytime with services that have both secured Quality of Service(QoS) and simultaneous expansion of network coverage and communications capacity is a key problem that has to be considered and solved in heterogeneous network convergence.Key technologies for a secured QoS and communications capacity analysis under heterogeneous environment are important subjects for research.Key technologies for a secured QoS are mainly on radio resource management algorithms covering Call Admission Control(CAC) algorithm,vertical handover algorithm,heterogeneous resource allocation algorithm and network selection algorithm.The applications of a novel multi-hop in heterogeneous convergence system serve the purposes of network coverage expansion,transmission power reduction,system communication capacity and throughput increase.展开更多
While cellular networks have continuously evolved in re- cent years, the industry has clearly seen unprecedented chal- lenges to meet the exponentially growing expectations in the near future. The 5G system is facing ...While cellular networks have continuously evolved in re- cent years, the industry has clearly seen unprecedented chal- lenges to meet the exponentially growing expectations in the near future. The 5G system is facing grand challenges such as the ever-increasing traffic volumes and remarkably diver- sified services connecting humans and machines alike. As a result, the future network has to deliver massively increased capacity, greater flexibility, incorporated computing capabili- ty, support of significantly extended battery lifetime, and ac- commodation of varying payloads with fast setup and low latency, etc. In particular, as 5G requires more spectrum resource, higher frequency bands are desirable. Nowadays, millimeter wave has been widely accepted as one of the main communication bands for 5G.展开更多
While cellular networks have continuously evolved in recent years, the industry has clearly seen unprecedented challenges to meet the exponentially growing expectations in the near future.
This article addresses the circular formation control problem of a multi-agent system moving on a circle in the presence of limited communication ranges and communication delays.To minimize the number of communication...This article addresses the circular formation control problem of a multi-agent system moving on a circle in the presence of limited communication ranges and communication delays.To minimize the number of communication links,a novel distributed controller based on a cyclic pursuit strategy is developed in which each agent needs only its leading neighbour’s information.In contrast to existing works,we propose a set of new potential functions to deal with heterogeneous communication ranges and communication delays simultaneously.A new framework based on the admissible upper bound of the formation error is established so that both connectivity maintenance and order preservation can be achieved at the same time.It is shown that the multi-agent system can be driven to the desired circular formation as time goes to infinity under the proposed controller.Finally,the effectiveness of the proposed method is illustrated by some simulation examples.展开更多
In order to make full use of the radio resource of heterogeneous wireless networks(HWNs) and promote the quality of service(Qo S) of multi-homing users for video communication, a bandwidth allocation algorithm bas...In order to make full use of the radio resource of heterogeneous wireless networks(HWNs) and promote the quality of service(Qo S) of multi-homing users for video communication, a bandwidth allocation algorithm based on multi-radio access is proposed in this paper. The proposed algorithm adopts an improved distributed common radio resource management(DCRRM) model which can reduce the signaling overhead sufficiently. This scheme can be divided into two phases. In the first phase, candidate network set of each user is obtained according to the received signal strength(RSS). And the simple additive weighted(SAW) method is employed to determine the active network set. In the second phase, the utility optimization problem is formulated by linear combining of the video communication satisfaction model, cost model and energy efficiency model. And finding the optimal bandwidth allocation scheme with Lagrange multiplier method and Karush-Kuhn-Tucker(KKT) conditions. Simulation results show that the proposed algorithm promotes the network load performances and guarantees that users obtain the best joint utility under current situation.展开更多
基金the National Basic Research Program of China("973"Program)under Grant No.2007CB310606the Specialized Foundation for the Achievements Transformation of Science and Technology in Jiangsu Province under Grant No.BA2006101
文摘To provide any subscriber from anywhere at anytime with services that have both secured Quality of Service(QoS) and simultaneous expansion of network coverage and communications capacity is a key problem that has to be considered and solved in heterogeneous network convergence.Key technologies for a secured QoS and communications capacity analysis under heterogeneous environment are important subjects for research.Key technologies for a secured QoS are mainly on radio resource management algorithms covering Call Admission Control(CAC) algorithm,vertical handover algorithm,heterogeneous resource allocation algorithm and network selection algorithm.The applications of a novel multi-hop in heterogeneous convergence system serve the purposes of network coverage expansion,transmission power reduction,system communication capacity and throughput increase.
文摘While cellular networks have continuously evolved in re- cent years, the industry has clearly seen unprecedented chal- lenges to meet the exponentially growing expectations in the near future. The 5G system is facing grand challenges such as the ever-increasing traffic volumes and remarkably diver- sified services connecting humans and machines alike. As a result, the future network has to deliver massively increased capacity, greater flexibility, incorporated computing capabili- ty, support of significantly extended battery lifetime, and ac- commodation of varying payloads with fast setup and low latency, etc. In particular, as 5G requires more spectrum resource, higher frequency bands are desirable. Nowadays, millimeter wave has been widely accepted as one of the main communication bands for 5G.
文摘While cellular networks have continuously evolved in recent years, the industry has clearly seen unprecedented challenges to meet the exponentially growing expectations in the near future.
基金supported in part by the National Natural Science Foundation of China(61773327,62273182)the Research Grants Council of the Hong Kong Special Administrative Region of China(CityU/11217619)the Fundamental Research Funds for the Central Universities(30921011213)。
文摘This article addresses the circular formation control problem of a multi-agent system moving on a circle in the presence of limited communication ranges and communication delays.To minimize the number of communication links,a novel distributed controller based on a cyclic pursuit strategy is developed in which each agent needs only its leading neighbour’s information.In contrast to existing works,we propose a set of new potential functions to deal with heterogeneous communication ranges and communication delays simultaneously.A new framework based on the admissible upper bound of the formation error is established so that both connectivity maintenance and order preservation can be achieved at the same time.It is shown that the multi-agent system can be driven to the desired circular formation as time goes to infinity under the proposed controller.Finally,the effectiveness of the proposed method is illustrated by some simulation examples.
基金supported by the National Natural Science Foundation of China (61571234, 61401225)the National Basic Research Program of China (2013CB329005)+1 种基金the Hi-Tech Research and Development Program of China (2014AA01A705)the Graduate Student Innovation Plan of Jiangsu Province (SJLX15_0365)
文摘In order to make full use of the radio resource of heterogeneous wireless networks(HWNs) and promote the quality of service(Qo S) of multi-homing users for video communication, a bandwidth allocation algorithm based on multi-radio access is proposed in this paper. The proposed algorithm adopts an improved distributed common radio resource management(DCRRM) model which can reduce the signaling overhead sufficiently. This scheme can be divided into two phases. In the first phase, candidate network set of each user is obtained according to the received signal strength(RSS). And the simple additive weighted(SAW) method is employed to determine the active network set. In the second phase, the utility optimization problem is formulated by linear combining of the video communication satisfaction model, cost model and energy efficiency model. And finding the optimal bandwidth allocation scheme with Lagrange multiplier method and Karush-Kuhn-Tucker(KKT) conditions. Simulation results show that the proposed algorithm promotes the network load performances and guarantees that users obtain the best joint utility under current situation.