Research on discrete memristor-based neural networks has received much attention.However,current research mainly focuses on memristor–based discrete homogeneous neuron networks,while memristor-coupled discrete hetero...Research on discrete memristor-based neural networks has received much attention.However,current research mainly focuses on memristor–based discrete homogeneous neuron networks,while memristor-coupled discrete heterogeneous neuron networks are rarely reported.In this study,a new four-stable discrete locally active memristor is proposed and its nonvolatile and locally active properties are verified by its power-off plot and DC V–I diagram.Based on two-dimensional(2D)discrete Izhikevich neuron and 2D discrete Chialvo neuron,a heterogeneous discrete neuron network is constructed by using the proposed discrete memristor as a coupling synapse connecting the two heterogeneous neurons.Considering the coupling strength as the control parameter,chaotic firing,periodic firing,and hyperchaotic firing patterns are revealed.In particular,multiple coexisting firing patterns are observed,which are induced by different initial values of the memristor.Phase synchronization between the two heterogeneous neurons is discussed and it is found that they can achieve perfect synchronous at large coupling strength.Furthermore,the effect of Gaussian white noise on synchronization behaviors is also explored.We demonstrate that the presence of noise not only leads to the transition of firing patterns,but also achieves the phase synchronization between two heterogeneous neurons under low coupling strength.展开更多
The collective Unmanned Weapon System-of-Systems(UWSOS)network represents a fundamental element in modern warfare,characterized by a diverse array of unmanned combat platforms interconnected through hetero-geneous net...The collective Unmanned Weapon System-of-Systems(UWSOS)network represents a fundamental element in modern warfare,characterized by a diverse array of unmanned combat platforms interconnected through hetero-geneous network architectures.Despite its strategic importance,the UWSOS network is highly susceptible to hostile infiltrations,which significantly impede its battlefield recovery capabilities.Existing methods to enhance network resilience predominantly focus on basic graph relationships,neglecting the crucial higher-order dependencies among nodes necessary for capturing multi-hop meta-paths within the UWSOS.To address these limitations,we propose the Enhanced-Resilience Multi-Layer Attention Graph Convolutional Network(E-MAGCN),designed to augment the adaptability of UWSOS.Our approach employs BERT for extracting semantic insights from nodes and edges,thereby refining feature representations by leveraging various node and edge categories.Additionally,E-MAGCN integrates a regularization-based multi-layer attention mechanism and a semantic node fusion algo-rithm within the Graph Convolutional Network(GCN)framework.Through extensive simulation experiments,our model demonstrates an enhancement in resilience performance ranging from 1.2% to 7% over existing algorithms.展开更多
In Beyond the Fifth Generation(B5G)heterogeneous edge networks,numerous users are multiplexed on a channel or served on the same frequency resource block,in which case the transmitter applies coding and the receiver u...In Beyond the Fifth Generation(B5G)heterogeneous edge networks,numerous users are multiplexed on a channel or served on the same frequency resource block,in which case the transmitter applies coding and the receiver uses interference cancellation.Unfortunately,uncoordinated radio resource allocation can reduce system throughput and lead to user inequity,for this reason,in this paper,channel allocation and power allocation problems are formulated to maximize the system sum rate and minimum user achievable rate.Since the construction model is non-convex and the response variables are high-dimensional,a distributed Deep Reinforcement Learning(DRL)framework called distributed Proximal Policy Optimization(PPO)is proposed to allocate or assign resources.Specifically,several simulated agents are trained in a heterogeneous environment to find robust behaviors that perform well in channel assignment and power allocation.Moreover,agents in the collection stage slow down,which hinders the learning of other agents.Therefore,a preemption strategy is further proposed in this paper to optimize the distributed PPO,form DP-PPO and successfully mitigate the straggler problem.The experimental results show that our mechanism named DP-PPO improves the performance over other DRL methods.展开更多
Interference management is one of the most important issues in the device-to-device(D2D)-enabled heterogeneous cellular networks(HetCNets)due to the coexistence of massive cellular and D2D devices in which D2D devices...Interference management is one of the most important issues in the device-to-device(D2D)-enabled heterogeneous cellular networks(HetCNets)due to the coexistence of massive cellular and D2D devices in which D2D devices reuse the cellular spectrum.To alleviate the interference,an efficient interference management way is to set exclusion zones around the cellular receivers.In this paper,we adopt a stochastic geometry approach to analyze the outage probabilities of cellular and D2D users in the D2D-enabled HetCNets.The main difficulties contain three aspects:1)how to model the location randomness of base stations,cellular and D2D users in practical networks;2)how to capture the randomness and interrelation of cellular and D2D transmissions due to the existence of random exclusion zones;3)how to characterize the different types of interference and their impacts on the outage probabilities of cellular and D2D users.We then run extensive Monte-Carlo simulations which manifest that our theoretical model is very accurate.展开更多
In this paper,we analyze a hybrid Heterogeneous Cellular Network(HCNet)framework by deploying millimeter Wave(mmWave)small cells with coexisting traditional sub-6GHz macro cells to achieve improved coverage and high d...In this paper,we analyze a hybrid Heterogeneous Cellular Network(HCNet)framework by deploying millimeter Wave(mmWave)small cells with coexisting traditional sub-6GHz macro cells to achieve improved coverage and high data rate.We consider randomly-deployed macro base stations throughout the network whereas mmWave Small Base Stations(SBSs)are deployed in the areas with high User Equipment(UE)density.Such user centric deployment of mmWave SBSs inevitably incurs correlation between UE and SBSs.For a realistic scenario where the UEs are distributed according to Poisson cluster process and directional beamforming with line-of-sight and non-line-of-sight transmissions is adopted for mmWave communication.By using tools from stochastic geometry,we develop an analytical framework to analyze various performance metrics in the downlink hybrid HCNets under biased received power association.For UE clustering we considered Thomas cluster process and derive expressions for the association probability,coverage probability,area spectral efficiency,and energy efficiency.We also provide Monte Carlo simulation results to validate the accuracy of the derived expressions.Furthermore,we analyze the impact of mmWave operating frequency,antenna gain,small cell biasing,and BSs density to get useful engineering insights into the performance of hybrid mmWave HCNets.Our results show that network performance is significantly improved by deploying millimeter wave SBS instead of microwave BS in hot spots.展开更多
A heterogeneous information network,which is composed of various types of nodes and edges,has a complex structure and rich information content,and is widely used in social networks,academic networks,e-commerce,and oth...A heterogeneous information network,which is composed of various types of nodes and edges,has a complex structure and rich information content,and is widely used in social networks,academic networks,e-commerce,and other fields.Link prediction,as a key task to reveal the unobserved relationships in the network,is of great significance in heterogeneous information networks.This paper reviews the application of presentation-based learning methods in link prediction of heterogeneous information networks.This paper introduces the basic concepts of heterogeneous information networks,and the theoretical basis of representation learning,and discusses the specific application of the deep learning model in node embedding learning and link prediction in detail.The effectiveness and superiority of these methods on multiple real data sets are demonstrated by experimental verification.展开更多
We propose a novel rumor propagation model with guidance mechanism in hetero geneous complex networks.Firstly,the sharp threshold of rumor propagation,global stability of the information-equilibrium and information-pr...We propose a novel rumor propagation model with guidance mechanism in hetero geneous complex networks.Firstly,the sharp threshold of rumor propagation,global stability of the information-equilibrium and information-prevailingequilibrium under R_(0)<1 and R_(0)>1 is carried out by Lyapunov method and LaSalle's invariant principle.Next,we design an aperiodically intermittent stochastic stabilization method to suppress the rumor propagation.By using the Ito formula and exponential martingale inequality,the expression of the minimum control intensity is calculated.This method can effectively stabilize the rumor propagation by choosing a suitable perturb intensity and a perturb time ratio,while minimizing the control cost.Finally,numerical examples are given to illustrate the analysis and method of the paper.展开更多
Even though various wireless Net- work Access Technologies (NATs) with dif- ferent specifications and applications have been developed in the recent years, no single wireless technology alone can satisfy the any- ti...Even though various wireless Net- work Access Technologies (NATs) with dif- ferent specifications and applications have been developed in the recent years, no single wireless technology alone can satisfy the any- time, anywhere, and any service wire- less-access needs of mobile users. A real seamless wireless mobile environment is only realized by considering vertical and horizontal handoffs together. One of the major design issues in heterogeneous wireless networks is the support of Vertical Handoff (VHO). VHO occurs when a multi-interface enabled mobile terminal changes its Point of Attachment (PoA) from one type of wireless access technology to another, while maintaining an active session. In this paper we present a novel multi-criteria VHO algorithm, which chooses the target NAT based on several factors such as user preferences, system parameters, and traf- tic-types with varying Quality of Service (QoS) requirements. Two modules i.e., VHO Neces- sity Estimation (VHONE) module and target NAT selection module, are designed. Both modules utilize several "weighted" users' and system's parameters. To improve the robust- ness of the proposed algorithm, the weighting system is designed based on the concept of fuzzy linguistic variables.展开更多
Traditional cellular network requires that a user equipment(UE) should associate to the same base station(BS) in both the downlink(DL) and the uplink(UL). Based on dual connectivity(DC) introduced in LTE-Advanced R12,...Traditional cellular network requires that a user equipment(UE) should associate to the same base station(BS) in both the downlink(DL) and the uplink(UL). Based on dual connectivity(DC) introduced in LTE-Advanced R12, DL/UL decouple access scheme has been proposed, which is especially suitable for heterogeneous networks(Het Nets). This paper is the pioneer to take the DL/UL decouple access scheme into consideration and develop a novel resource allocation algorithm in a two-tier Het Net to improve the total system throughput in the UL and ease the load imbalance between macro base stations(MBSs) and pico base stations(PBSs). A model is formulated as a nonlinear integer programming, and the proposed algorithm is a sub-optimal algorithm based on the graph theory. First, an undirected and weighted interference graph is obtained. Next, the users are grouped to let users with large mutual interferences to be assigned to different clusters. Then, the users in different clusters are allocated to different resource blocks(RBs) by using the Hungarian algorithm. Simulation results show that the proposed algorithm can provide great promotions for both the total system throughput and the average cell edge user throughput and successfully ease the load imbalance between MBSs and PBSs.展开更多
Although small cell offloading technology can alleviate the congestion in macrocell, aggressively offloading data traffic from macrocell to small cell can also degrade the performance of small cell due to the heavy lo...Although small cell offloading technology can alleviate the congestion in macrocell, aggressively offloading data traffic from macrocell to small cell can also degrade the performance of small cell due to the heavy load. Because of collision and backoff, the degradation is significant especially in network with contention-based channel access, and finally decreases throughput of the whole network. To find an optimal fraction of traffic to be offloaded in heterogeneous network, we combine Markov chain with the Poisson point process model to analyze contention-based throughput in irregularly deployment networks. Then we derive the close-form solution of the throughput and find that it is a function of the transmit power and density of base stations.Based on this, we propose the load-aware offloading strategies via power control and base station density adjustment. The numerical results verify our analysis and show a great performance gain compared with non-load-aware offloading.展开更多
A K-tier uplink heterogeneous cellular network is modelled and analysed by accounting for both truncated channel inversion power control and biased user association. Each user has a maximum transmit power constraint a...A K-tier uplink heterogeneous cellular network is modelled and analysed by accounting for both truncated channel inversion power control and biased user association. Each user has a maximum transmit power constraint and transmits data when it has sufficient transmit power to perform channel inversion. With biased user association, each user is associated with a base station(BS) that provides the maximum received power weighted by a bias factor, but not their nearest BS. Stochastic geometry is used to evaluate the performances of the proposed system model in terms of the outage probability and ergodic rate for each tier as functions of the biased and power control parameters. Simulations validate our analytical derivations. Numerical results show that there exists a trade-off introduced by the power cut-off threshold and the maximum user transmit power constraint. When the maximum user transmit power becomes a binding constraint, the overall performance is independent of BS densities. In addition, we have shown that it is beneficial for the outage and rate performances by optimizing different network parameters such as the power cut-off threshold as well as the biased factors.展开更多
Social networks are becoming increasingly popular and influential,and users are frequently registered on multiple networks simultaneously,in many cases leaving large quantities of personal information on each network....Social networks are becoming increasingly popular and influential,and users are frequently registered on multiple networks simultaneously,in many cases leaving large quantities of personal information on each network.There is also a trend towards the personalization of web applications;to do this,the applications need to acquire information about the particular user.To maximise the use of the various sets of user information distributed on the web,this paper proposes a method to support the reuse and sharing of user profiles by different applications,and is based on user profile integration.To realize this goal,the initial task is user identification,and this forms the focus of the current paper.A new user identification method based on Multiple Attribute Decision Making(MADM) is described in which a subjective weight-directed objective weighting,which is obtained from the Similarity Weight method,is proposed to determine the relative weights of the common properties.Attribute Synthetic Evaluation is used to determine the equivalence of users.Experimental results show that the method is both feasible and effective despite the incompleteness of the candidate user dataset.展开更多
In order to solve the problem the existing vertical handoff algorithms of vehicle heterogeneous wireless network do not consider the diversification of network's status, an optimized vertical handoff algorithm bas...In order to solve the problem the existing vertical handoff algorithms of vehicle heterogeneous wireless network do not consider the diversification of network's status, an optimized vertical handoff algorithm based on markov process is proposed and discussed in this paper. This algorithm takes into account that the status transformation of available network will affect the quality of service(Qo S) of vehicle terminal's communication service. Firstly, Markov process is used to predict the transformation of wireless network's status after the decision via transition probability. Then the weights of evaluating parameters will be determined by fuzzy logic method. Finally, by comparing the total incomes of each wireless network, including handoff decision incomes, handoff execution incomes and communication service incomes after handoff, the optimal network to handoff will be selected. Simulation results show that: the algorithm proposed, compared to the existing algorithm, is able to receive a higher level of load balancing and effectively improves the average blocking rate, packet loss rate and ping-pang effect.展开更多
Motivated by the objective of pursuing revenue, improvement in coverage and reduction in energy cost for wireless communication networks have been of great significance for mobile operators. Therefore, heterogeneous c...Motivated by the objective of pursuing revenue, improvement in coverage and reduction in energy cost for wireless communication networks have been of great significance for mobile operators. Therefore, heterogeneous cellular networks(HCNs) and Coordinated Multipoint(Co MP) transmission are considered as promising solutions to enhance the performances of wireless communication systems. This paper analyzed the K-tier HCNs with a dynamic downlink Co MP scheme, in which the flexible clusters of cooperative stations are determined by a connecting threshold θ. Using stochastic geometry, the coverage probability(CP) and energy efficiency(EE) of a K-tier HCN operating under this scheme are derived, based on which the trade-off between CP and EE is discovered and discussed. Simulation results show the validity of our derivations. The proposed schememay significantly reduce energy consumption sacrificing a small amount of CP, and outperforms the fixed scheme as well. The CP-EE trade-off are also revealed, whichsuggests suitable trade-off points between CP and EE that will deliver the maximum economic profitability. Tendencies discovered in this paper may provide the operators with opportunities for further optimization in pursuit of economic profitability.展开更多
The Poisson point process(PPP) has been widely used in wireless network modeling and performance analysis due to the independence between its nodes. Therefore, it may not be a suitable model for many of the exclusive ...The Poisson point process(PPP) has been widely used in wireless network modeling and performance analysis due to the independence between its nodes. Therefore, it may not be a suitable model for many of the exclusive networks between the nodes. This paper analyzes the energy efficiency(EE) and optimizes the two-tier heterogeneous cellular networks(Het Nets). Considering the mutual exclusion between macro base stations(MBSs) distribution, the deployment of MBSs is modeled by the Matérn hard-core point process(MHCPP), and the deployment of pico base stations(PBSs) is modeled by the PPP. We adopt a simple approximation method to study the signal to interference ratio(SIR) distribution in two-tier MHCPP-PPP networks and then derive the coverage probabilities, the average data rates and the energy efficiency of Het Nets. Finally, an optimization algorithm is proposed to improve the EE of Het Nets by controlling the transmit power of PBSs. The simulation results show that the EE of a system can be effectively improved by selecting the appropriate transmit power for the PBSs. In addition, two-tier MHCPP-PPP Het Nets have higher energy efficiency than two-tier PPP-PPP Het Nets.展开更多
This paper introduces the research progress on the cognition flow in the National Basic Research Program of China(973 Program)under Grant No. 2009CB320400 "Research on Basic Theories and Key Technologies of Cogni...This paper introduces the research progress on the cognition flow in the National Basic Research Program of China(973 Program)under Grant No. 2009CB320400 "Research on Basic Theories and Key Technologies of Cognitive Radio Networks". We present the motivation behind the proposal of the concept of cognition flow, provide the definition, discuss the features, behaviours, representations, mathematical models, and the functions of cognition flow in Cognitive Radio Networks(CRNs). We also analyse how the cognition flow promotes the convergence of heterogeneous networks.Our group also constructed the test platform to verify the usefulness of cognition flow. The results that were simulated by computers and tested on the platform both confirm that cognition flow can realise efficient interaction of cognitive information among heterogeneous networks in CRNs, which contributes to the seamless convergence of heterogeneous networks,and significantly improves the spectrum efficiency and users' Quality of Experience(QoE).展开更多
A network selection optimization algorithm based on the Markov decision process(MDP)is proposed so that mobile terminals can always connect to the best wireless network in a heterogeneous network environment.Consideri...A network selection optimization algorithm based on the Markov decision process(MDP)is proposed so that mobile terminals can always connect to the best wireless network in a heterogeneous network environment.Considering the different types of service requirements,the MDP model and its reward function are constructed based on the quality of service(QoS)attribute parameters of the mobile users,and the network attribute weights are calculated by using the analytic hierarchy process(AHP).The network handoff decision condition is designed according to the different types of user services and the time-varying characteristics of the network,and the MDP model is solved by using the genetic algorithm and simulated annealing(GA-SA),thus,users can seamlessly switch to the network with the best long-term expected reward value.Simulation results show that the proposed algorithm has good convergence performance,and can guarantee that users with different service types will obtain satisfactory expected total reward values and have low numbers of network handoffs.展开更多
In this paper,a new communication model is built named grouping D2D(GD2D).Different from the traditional D2D coordination,we proposed GD2D communication in licensed and unlicensed spectrum simultaneously.We formulate ...In this paper,a new communication model is built named grouping D2D(GD2D).Different from the traditional D2D coordination,we proposed GD2D communication in licensed and unlicensed spectrum simultaneously.We formulate a resource allocation problem,which aims at maximizing the energy efficiency(EE)of the system while guaranteeing the quality-of-service(Qos)of users.To efficiently solve this problem,the non-convex optimization problem is first transformed into a convex optimization problem.By transforming the fractional-form problem into an equivalent subtractive-form problem,an iterative power allocation algorithm is proposed to maximize the system EE.Moreover,the optimal closedform power allocation expressions are derived by the Lagrangian approach.Simulation results show that our algorithm achieves higher EE performance than the traditional D2D communication scheme.展开更多
Heterogeneous wireless access technologies will coexist in next generation wireless networks.These technologies form integrated networks,and these networks support multiple services with high quality level.Various acc...Heterogeneous wireless access technologies will coexist in next generation wireless networks.These technologies form integrated networks,and these networks support multiple services with high quality level.Various access technologies allow users to select the best available access network to meet the requirements of each type of communication service.Being always best connected anytime and anywhere is a major concern in a heterogeneous wireless networks environment.Always best connected enables network selection mechanisms to keep mobile users always connected to the best network.We present an overview of the network selection and prediction problems and challenges.In addition,we discuss a comprehensive classification of related theoretic approaches,and also study the integration between these methods,finding the best solution of network selection and prediction problems.The optimal solution can fulfill the requirements of the next generation wireless networks.展开更多
The traffic with tidal phenomenon in Heterogeneous Wireless Networks(HWNs)has radically increased the complexity of radio resource management and its performance analysis.In this paper,a Simplified Dynamic Hierarchy R...The traffic with tidal phenomenon in Heterogeneous Wireless Networks(HWNs)has radically increased the complexity of radio resource management and its performance analysis.In this paper,a Simplified Dynamic Hierarchy Resource Management(SDHRM)algorithm exploiting the resources dynamically and intelligently is proposed with the consideration of tidal traffic.In network-level resource allocation,the proposed algorithm first adopts wavelet neural network to forecast the traffic of each sub-area and then allocates the resources to those sub-areas to maximise the network utility.In connection-level network selection,based on the above resource allocation and the pre-defined QoS requirement,three typical network selection policies are provided to assign traffic flow to the most appropriate network.Furthermore,based on multidimensional Markov model,we analyse the performance of SDHRM in HWNs with heavy tailed traffic.Numerical results show that our theoretical values coincide with the simulation results and the SDHRM can improve the resource utilization.展开更多
基金Project supported by the National Natural Science Foundations of China(Grant Nos.62171401 and 62071411).
文摘Research on discrete memristor-based neural networks has received much attention.However,current research mainly focuses on memristor–based discrete homogeneous neuron networks,while memristor-coupled discrete heterogeneous neuron networks are rarely reported.In this study,a new four-stable discrete locally active memristor is proposed and its nonvolatile and locally active properties are verified by its power-off plot and DC V–I diagram.Based on two-dimensional(2D)discrete Izhikevich neuron and 2D discrete Chialvo neuron,a heterogeneous discrete neuron network is constructed by using the proposed discrete memristor as a coupling synapse connecting the two heterogeneous neurons.Considering the coupling strength as the control parameter,chaotic firing,periodic firing,and hyperchaotic firing patterns are revealed.In particular,multiple coexisting firing patterns are observed,which are induced by different initial values of the memristor.Phase synchronization between the two heterogeneous neurons is discussed and it is found that they can achieve perfect synchronous at large coupling strength.Furthermore,the effect of Gaussian white noise on synchronization behaviors is also explored.We demonstrate that the presence of noise not only leads to the transition of firing patterns,but also achieves the phase synchronization between two heterogeneous neurons under low coupling strength.
基金This research was supported by the Key Research and Development Program of Shaanxi Province(2024GX-YBXM-010)the National Science Foundation of China(61972302).
文摘The collective Unmanned Weapon System-of-Systems(UWSOS)network represents a fundamental element in modern warfare,characterized by a diverse array of unmanned combat platforms interconnected through hetero-geneous network architectures.Despite its strategic importance,the UWSOS network is highly susceptible to hostile infiltrations,which significantly impede its battlefield recovery capabilities.Existing methods to enhance network resilience predominantly focus on basic graph relationships,neglecting the crucial higher-order dependencies among nodes necessary for capturing multi-hop meta-paths within the UWSOS.To address these limitations,we propose the Enhanced-Resilience Multi-Layer Attention Graph Convolutional Network(E-MAGCN),designed to augment the adaptability of UWSOS.Our approach employs BERT for extracting semantic insights from nodes and edges,thereby refining feature representations by leveraging various node and edge categories.Additionally,E-MAGCN integrates a regularization-based multi-layer attention mechanism and a semantic node fusion algo-rithm within the Graph Convolutional Network(GCN)framework.Through extensive simulation experiments,our model demonstrates an enhancement in resilience performance ranging from 1.2% to 7% over existing algorithms.
基金supported by the Key Research and Development Program of China(No.2022YFC3005401)Key Research and Development Program of China,Yunnan Province(No.202203AA080009,202202AF080003)Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX21_0482).
文摘In Beyond the Fifth Generation(B5G)heterogeneous edge networks,numerous users are multiplexed on a channel or served on the same frequency resource block,in which case the transmitter applies coding and the receiver uses interference cancellation.Unfortunately,uncoordinated radio resource allocation can reduce system throughput and lead to user inequity,for this reason,in this paper,channel allocation and power allocation problems are formulated to maximize the system sum rate and minimum user achievable rate.Since the construction model is non-convex and the response variables are high-dimensional,a distributed Deep Reinforcement Learning(DRL)framework called distributed Proximal Policy Optimization(PPO)is proposed to allocate or assign resources.Specifically,several simulated agents are trained in a heterogeneous environment to find robust behaviors that perform well in channel assignment and power allocation.Moreover,agents in the collection stage slow down,which hinders the learning of other agents.Therefore,a preemption strategy is further proposed in this paper to optimize the distributed PPO,form DP-PPO and successfully mitigate the straggler problem.The experimental results show that our mechanism named DP-PPO improves the performance over other DRL methods.
基金This work is funded in part by the Science and Technology Development Fund,Macao SAR(Grant Nos.0093/2022/A2,0076/2022/A2 and 0008/2022/AGJ)in part by the National Nature Science Foundation of China(Grant No.61872452)+3 种基金in part by Special fund for Dongguan’s Rural Revitalization Strategy in 2021(Grant No.20211800400102)in part by Dongguan Special Commissioner Project(Grant No.20211800500182)in part by Guangdong-Dongguan Joint Fund for Basic and Applied Research of Guangdong Province(Grant No.2020A1515110162)in part by University Special Fund of Guangdong Provincial Department of Education(Grant No.2022ZDZX1073).
文摘Interference management is one of the most important issues in the device-to-device(D2D)-enabled heterogeneous cellular networks(HetCNets)due to the coexistence of massive cellular and D2D devices in which D2D devices reuse the cellular spectrum.To alleviate the interference,an efficient interference management way is to set exclusion zones around the cellular receivers.In this paper,we adopt a stochastic geometry approach to analyze the outage probabilities of cellular and D2D users in the D2D-enabled HetCNets.The main difficulties contain three aspects:1)how to model the location randomness of base stations,cellular and D2D users in practical networks;2)how to capture the randomness and interrelation of cellular and D2D transmissions due to the existence of random exclusion zones;3)how to characterize the different types of interference and their impacts on the outage probabilities of cellular and D2D users.We then run extensive Monte-Carlo simulations which manifest that our theoretical model is very accurate.
文摘In this paper,we analyze a hybrid Heterogeneous Cellular Network(HCNet)framework by deploying millimeter Wave(mmWave)small cells with coexisting traditional sub-6GHz macro cells to achieve improved coverage and high data rate.We consider randomly-deployed macro base stations throughout the network whereas mmWave Small Base Stations(SBSs)are deployed in the areas with high User Equipment(UE)density.Such user centric deployment of mmWave SBSs inevitably incurs correlation between UE and SBSs.For a realistic scenario where the UEs are distributed according to Poisson cluster process and directional beamforming with line-of-sight and non-line-of-sight transmissions is adopted for mmWave communication.By using tools from stochastic geometry,we develop an analytical framework to analyze various performance metrics in the downlink hybrid HCNets under biased received power association.For UE clustering we considered Thomas cluster process and derive expressions for the association probability,coverage probability,area spectral efficiency,and energy efficiency.We also provide Monte Carlo simulation results to validate the accuracy of the derived expressions.Furthermore,we analyze the impact of mmWave operating frequency,antenna gain,small cell biasing,and BSs density to get useful engineering insights into the performance of hybrid mmWave HCNets.Our results show that network performance is significantly improved by deploying millimeter wave SBS instead of microwave BS in hot spots.
基金Science and Technology Research Project of Jiangxi Provincial Department of Education(Project No.GJJ211348,GJJ211347 and GJJ2201056)。
文摘A heterogeneous information network,which is composed of various types of nodes and edges,has a complex structure and rich information content,and is widely used in social networks,academic networks,e-commerce,and other fields.Link prediction,as a key task to reveal the unobserved relationships in the network,is of great significance in heterogeneous information networks.This paper reviews the application of presentation-based learning methods in link prediction of heterogeneous information networks.This paper introduces the basic concepts of heterogeneous information networks,and the theoretical basis of representation learning,and discusses the specific application of the deep learning model in node embedding learning and link prediction in detail.The effectiveness and superiority of these methods on multiple real data sets are demonstrated by experimental verification.
基金Project supported by the Guangzhou Science and Technology Project(Grant No.20210202710)Scientific Research Project of Guangzhou University(Grant No.YG2020010)。
文摘We propose a novel rumor propagation model with guidance mechanism in hetero geneous complex networks.Firstly,the sharp threshold of rumor propagation,global stability of the information-equilibrium and information-prevailingequilibrium under R_(0)<1 and R_(0)>1 is carried out by Lyapunov method and LaSalle's invariant principle.Next,we design an aperiodically intermittent stochastic stabilization method to suppress the rumor propagation.By using the Ito formula and exponential martingale inequality,the expression of the minimum control intensity is calculated.This method can effectively stabilize the rumor propagation by choosing a suitable perturb intensity and a perturb time ratio,while minimizing the control cost.Finally,numerical examples are given to illustrate the analysis and method of the paper.
文摘Even though various wireless Net- work Access Technologies (NATs) with dif- ferent specifications and applications have been developed in the recent years, no single wireless technology alone can satisfy the any- time, anywhere, and any service wire- less-access needs of mobile users. A real seamless wireless mobile environment is only realized by considering vertical and horizontal handoffs together. One of the major design issues in heterogeneous wireless networks is the support of Vertical Handoff (VHO). VHO occurs when a multi-interface enabled mobile terminal changes its Point of Attachment (PoA) from one type of wireless access technology to another, while maintaining an active session. In this paper we present a novel multi-criteria VHO algorithm, which chooses the target NAT based on several factors such as user preferences, system parameters, and traf- tic-types with varying Quality of Service (QoS) requirements. Two modules i.e., VHO Neces- sity Estimation (VHONE) module and target NAT selection module, are designed. Both modules utilize several "weighted" users' and system's parameters. To improve the robust- ness of the proposed algorithm, the weighting system is designed based on the concept of fuzzy linguistic variables.
基金supported by the National Natural Science Foundation General Program of China under Grant No.61171110the National Basic Research Program of China under Grant No.2013CB329003
文摘Traditional cellular network requires that a user equipment(UE) should associate to the same base station(BS) in both the downlink(DL) and the uplink(UL). Based on dual connectivity(DC) introduced in LTE-Advanced R12, DL/UL decouple access scheme has been proposed, which is especially suitable for heterogeneous networks(Het Nets). This paper is the pioneer to take the DL/UL decouple access scheme into consideration and develop a novel resource allocation algorithm in a two-tier Het Net to improve the total system throughput in the UL and ease the load imbalance between macro base stations(MBSs) and pico base stations(PBSs). A model is formulated as a nonlinear integer programming, and the proposed algorithm is a sub-optimal algorithm based on the graph theory. First, an undirected and weighted interference graph is obtained. Next, the users are grouped to let users with large mutual interferences to be assigned to different clusters. Then, the users in different clusters are allocated to different resource blocks(RBs) by using the Hungarian algorithm. Simulation results show that the proposed algorithm can provide great promotions for both the total system throughput and the average cell edge user throughput and successfully ease the load imbalance between MBSs and PBSs.
基金supported by the National High-Tech R&D Program (863 Program) under grant No. 2015AA01A705Beijing Municipal Science and Technology Commission research fund project under grant No. D151100000115002+1 种基金China Scholarship Council under grant No. 201406470038BUPT youth scientific research innovation program under grant No. 500401238
文摘Although small cell offloading technology can alleviate the congestion in macrocell, aggressively offloading data traffic from macrocell to small cell can also degrade the performance of small cell due to the heavy load. Because of collision and backoff, the degradation is significant especially in network with contention-based channel access, and finally decreases throughput of the whole network. To find an optimal fraction of traffic to be offloaded in heterogeneous network, we combine Markov chain with the Poisson point process model to analyze contention-based throughput in irregularly deployment networks. Then we derive the close-form solution of the throughput and find that it is a function of the transmit power and density of base stations.Based on this, we propose the load-aware offloading strategies via power control and base station density adjustment. The numerical results verify our analysis and show a great performance gain compared with non-load-aware offloading.
基金supported by the National Natural Science Foundation of China (61401225, 61571234)the National Science Foundation of Jiangsu Province (BK20140894, BK20140883, BK20160899)+4 种基金the Six Talented Eminence Foundation of Jiangsu Province (XYDXXJS-044)the National Science Foundation of the Higher Education Institutions of Jiangsu Province (14KJD510007, 16KJB510035)the Jiangsu Planned Projects for Postdoctoral Research Funds (1501125B)China Postdoctoral Science Foundation funded project (2015M581844)the Introduction of Talent Scientific Research Fund of Nanjing University of Posts Telecommunications project (NY213104, NY214190)
文摘A K-tier uplink heterogeneous cellular network is modelled and analysed by accounting for both truncated channel inversion power control and biased user association. Each user has a maximum transmit power constraint and transmits data when it has sufficient transmit power to perform channel inversion. With biased user association, each user is associated with a base station(BS) that provides the maximum received power weighted by a bias factor, but not their nearest BS. Stochastic geometry is used to evaluate the performances of the proposed system model in terms of the outage probability and ergodic rate for each tier as functions of the biased and power control parameters. Simulations validate our analytical derivations. Numerical results show that there exists a trade-off introduced by the power cut-off threshold and the maximum user transmit power constraint. When the maximum user transmit power becomes a binding constraint, the overall performance is independent of BS densities. In addition, we have shown that it is beneficial for the outage and rate performances by optimizing different network parameters such as the power cut-off threshold as well as the biased factors.
基金supported in part by the Natural Science Basic Research Plan in Shaanxi Province of China under Grant No.2013JM8021the National Natural Science Foundation of China under Grant No.61272458
文摘Social networks are becoming increasingly popular and influential,and users are frequently registered on multiple networks simultaneously,in many cases leaving large quantities of personal information on each network.There is also a trend towards the personalization of web applications;to do this,the applications need to acquire information about the particular user.To maximise the use of the various sets of user information distributed on the web,this paper proposes a method to support the reuse and sharing of user profiles by different applications,and is based on user profile integration.To realize this goal,the initial task is user identification,and this forms the focus of the current paper.A new user identification method based on Multiple Attribute Decision Making(MADM) is described in which a subjective weight-directed objective weighting,which is obtained from the Similarity Weight method,is proposed to determine the relative weights of the common properties.Attribute Synthetic Evaluation is used to determine the equivalence of users.Experimental results show that the method is both feasible and effective despite the incompleteness of the candidate user dataset.
基金supported in part by the National Natural Science Foundation of China under grant No. 61271259, No. 61301123, No. 61471076Scientific and Technological Research Program of Chongqing Municipal Education Commission of Chongqing of China under Grant No.KJ130536
文摘In order to solve the problem the existing vertical handoff algorithms of vehicle heterogeneous wireless network do not consider the diversification of network's status, an optimized vertical handoff algorithm based on markov process is proposed and discussed in this paper. This algorithm takes into account that the status transformation of available network will affect the quality of service(Qo S) of vehicle terminal's communication service. Firstly, Markov process is used to predict the transformation of wireless network's status after the decision via transition probability. Then the weights of evaluating parameters will be determined by fuzzy logic method. Finally, by comparing the total incomes of each wireless network, including handoff decision incomes, handoff execution incomes and communication service incomes after handoff, the optimal network to handoff will be selected. Simulation results show that: the algorithm proposed, compared to the existing algorithm, is able to receive a higher level of load balancing and effectively improves the average blocking rate, packet loss rate and ping-pang effect.
基金supported by the National Natural Science Foundation of China under Grant No.61231009the National High-tech Research and Development Program of China under Grant No.2014AA01A701the Program for New Century Excellent Talents in University of Ministry of Education of China under Grant No.NCET 12-0795
文摘Motivated by the objective of pursuing revenue, improvement in coverage and reduction in energy cost for wireless communication networks have been of great significance for mobile operators. Therefore, heterogeneous cellular networks(HCNs) and Coordinated Multipoint(Co MP) transmission are considered as promising solutions to enhance the performances of wireless communication systems. This paper analyzed the K-tier HCNs with a dynamic downlink Co MP scheme, in which the flexible clusters of cooperative stations are determined by a connecting threshold θ. Using stochastic geometry, the coverage probability(CP) and energy efficiency(EE) of a K-tier HCN operating under this scheme are derived, based on which the trade-off between CP and EE is discovered and discussed. Simulation results show the validity of our derivations. The proposed schememay significantly reduce energy consumption sacrificing a small amount of CP, and outperforms the fixed scheme as well. The CP-EE trade-off are also revealed, whichsuggests suitable trade-off points between CP and EE that will deliver the maximum economic profitability. Tendencies discovered in this paper may provide the operators with opportunities for further optimization in pursuit of economic profitability.
基金partly supported by the National Natural Science Foundation of China(Grant No.61871241,No.61701221)the Natural Science Foundation of Jiangsu Province(No.BK20160781)+1 种基金Nantong Science and Technology Project(No.JC2018127,No.JC2019117)the Research Innovation Project for College Graduates of Jiangsu Province(No.KYLX16_0662)。
文摘The Poisson point process(PPP) has been widely used in wireless network modeling and performance analysis due to the independence between its nodes. Therefore, it may not be a suitable model for many of the exclusive networks between the nodes. This paper analyzes the energy efficiency(EE) and optimizes the two-tier heterogeneous cellular networks(Het Nets). Considering the mutual exclusion between macro base stations(MBSs) distribution, the deployment of MBSs is modeled by the Matérn hard-core point process(MHCPP), and the deployment of pico base stations(PBSs) is modeled by the PPP. We adopt a simple approximation method to study the signal to interference ratio(SIR) distribution in two-tier MHCPP-PPP networks and then derive the coverage probabilities, the average data rates and the energy efficiency of Het Nets. Finally, an optimization algorithm is proposed to improve the EE of Het Nets by controlling the transmit power of PBSs. The simulation results show that the EE of a system can be effectively improved by selecting the appropriate transmit power for the PBSs. In addition, two-tier MHCPP-PPP Het Nets have higher energy efficiency than two-tier PPP-PPP Het Nets.
基金supported by the National Basic Research Program of China(973 Program)under Grant No.2009CB320400the National Natural Science Foundation of China under Grants No.61101117,No.61171099+2 种基金the National Key Scientific and Technological Project of China under Grant No,2012ZX03003-007the Natural Science Foundation of Jiangxi under Grant No.20132BAB201018the Fundamental Research Funds for the Central Universities under Grant No.BUPT2012RC0112
文摘This paper introduces the research progress on the cognition flow in the National Basic Research Program of China(973 Program)under Grant No. 2009CB320400 "Research on Basic Theories and Key Technologies of Cognitive Radio Networks". We present the motivation behind the proposal of the concept of cognition flow, provide the definition, discuss the features, behaviours, representations, mathematical models, and the functions of cognition flow in Cognitive Radio Networks(CRNs). We also analyse how the cognition flow promotes the convergence of heterogeneous networks.Our group also constructed the test platform to verify the usefulness of cognition flow. The results that were simulated by computers and tested on the platform both confirm that cognition flow can realise efficient interaction of cognitive information among heterogeneous networks in CRNs, which contributes to the seamless convergence of heterogeneous networks,and significantly improves the spectrum efficiency and users' Quality of Experience(QoE).
基金partially supported by Nation Science Foundation of China (61661025, 61661026)Foundation of A hundred Youth Talents Training Program of Lanzhou Jiaotong University (152022)
文摘A network selection optimization algorithm based on the Markov decision process(MDP)is proposed so that mobile terminals can always connect to the best wireless network in a heterogeneous network environment.Considering the different types of service requirements,the MDP model and its reward function are constructed based on the quality of service(QoS)attribute parameters of the mobile users,and the network attribute weights are calculated by using the analytic hierarchy process(AHP).The network handoff decision condition is designed according to the different types of user services and the time-varying characteristics of the network,and the MDP model is solved by using the genetic algorithm and simulated annealing(GA-SA),thus,users can seamlessly switch to the network with the best long-term expected reward value.Simulation results show that the proposed algorithm has good convergence performance,and can guarantee that users with different service types will obtain satisfactory expected total reward values and have low numbers of network handoffs.
基金supported in part by the National Natural Science Foundation of China under Grant no.61473066 and Grant no.61601109in part by the Fundamental Research Funds for the Central Universities under Grant No.N152305001.
文摘In this paper,a new communication model is built named grouping D2D(GD2D).Different from the traditional D2D coordination,we proposed GD2D communication in licensed and unlicensed spectrum simultaneously.We formulate a resource allocation problem,which aims at maximizing the energy efficiency(EE)of the system while guaranteeing the quality-of-service(Qos)of users.To efficiently solve this problem,the non-convex optimization problem is first transformed into a convex optimization problem.By transforming the fractional-form problem into an equivalent subtractive-form problem,an iterative power allocation algorithm is proposed to maximize the system EE.Moreover,the optimal closedform power allocation expressions are derived by the Lagrangian approach.Simulation results show that our algorithm achieves higher EE performance than the traditional D2D communication scheme.
基金funded by the University of Malaya, under Grant No.RG208-11AFR
文摘Heterogeneous wireless access technologies will coexist in next generation wireless networks.These technologies form integrated networks,and these networks support multiple services with high quality level.Various access technologies allow users to select the best available access network to meet the requirements of each type of communication service.Being always best connected anytime and anywhere is a major concern in a heterogeneous wireless networks environment.Always best connected enables network selection mechanisms to keep mobile users always connected to the best network.We present an overview of the network selection and prediction problems and challenges.In addition,we discuss a comprehensive classification of related theoretic approaches,and also study the integration between these methods,finding the best solution of network selection and prediction problems.The optimal solution can fulfill the requirements of the next generation wireless networks.
基金ACKNOWLEDGEMENT This work was supported by the National Na- tural Science Foundation of China under Gra- nts No. 61172079, 61231008, No. 61201141, No. 61301176 the National Basic Research Program of China (973 Program) under Grant No. 2009CB320404+2 种基金 the 111 Project under Gr- ant No. B08038 the National Science and Tec- hnology Major Project under Grant No. 2012- ZX03002009-003, No. 2012ZX03004002-003 and the Shaanxi Province Science and Techno- logy Research and Development Program un- der Grant No. 2011KJXX-40.
文摘The traffic with tidal phenomenon in Heterogeneous Wireless Networks(HWNs)has radically increased the complexity of radio resource management and its performance analysis.In this paper,a Simplified Dynamic Hierarchy Resource Management(SDHRM)algorithm exploiting the resources dynamically and intelligently is proposed with the consideration of tidal traffic.In network-level resource allocation,the proposed algorithm first adopts wavelet neural network to forecast the traffic of each sub-area and then allocates the resources to those sub-areas to maximise the network utility.In connection-level network selection,based on the above resource allocation and the pre-defined QoS requirement,three typical network selection policies are provided to assign traffic flow to the most appropriate network.Furthermore,based on multidimensional Markov model,we analyse the performance of SDHRM in HWNs with heavy tailed traffic.Numerical results show that our theoretical values coincide with the simulation results and the SDHRM can improve the resource utilization.