Ion implantation may favorably modify the properties of polyaniline/Si heterojunction solar cells fabricated by the electrochemical method. Influences of the implantation on the absorption spectrum and the thermal sta...Ion implantation may favorably modify the properties of polyaniline/Si heterojunction solar cells fabricated by the electrochemical method. Influences of the implantation on the absorption spectrum and the thermal stability were discussed and output properties were measured. The results show that the absorption spectrum of the polyaniline films modified by ion implantation is much wider; its pyrolytic temperature increases by 40℃, and the polyaniline/Si cell efficiency increases 18 and 3 times under the illumination of (10.92) and 37.2W/m2, respectively.展开更多
M0 S2 is a promising candidate for hydrogen evolution reaction(HER),while its active sites are mainly distributed on the edge sites rather than the basal plane sites.Herein,a strategy to overcome the inertness of the ...M0 S2 is a promising candidate for hydrogen evolution reaction(HER),while its active sites are mainly distributed on the edge sites rather than the basal plane sites.Herein,a strategy to overcome the inertness of the M0 S2 basal surface and achieve high HER activity by combining single-boron catalyst and compressive strain was reported through density functional theory(DFT)computations.The ab initio molecular dynamics(AIMD)simulation on B@MoS2 suggests high thermodynamic and kinetic stability.We found that the rather strong adsorption of hydrogen by B@MoS2 can be alleviated by stress engineering.The optimal stress of -7%can achieve a nearly zero value of △Gh(〜-0.084 eV),which is close to that of the ideal Pt-SACs for HER.The novel HER activity is attributed to(i)the Bdoping brings the active site to the basal plane of M0 S2 and reduces the band-gap,thereby increasing the conductivity;(ii)the compressive stress regulates the number of charge transfer between(H)-(B)-(MoS2),weakening the adsorption energy of hydrogen on B@MoS2.Moreover,we constructed a SiN/B@MoS2 heterojunction,which introduces an 8.6%compressive stress for B@MoS2 and yields an ideal AGh-This work provides an effective means to achieve high intrinsic HER activity for M0 S2.展开更多
基金Natural Science Foundation of Shaanxi Province ( 2004CS110005 ) Research Foundation of NorthwesternPolytechnical University
文摘Ion implantation may favorably modify the properties of polyaniline/Si heterojunction solar cells fabricated by the electrochemical method. Influences of the implantation on the absorption spectrum and the thermal stability were discussed and output properties were measured. The results show that the absorption spectrum of the polyaniline films modified by ion implantation is much wider; its pyrolytic temperature increases by 40℃, and the polyaniline/Si cell efficiency increases 18 and 3 times under the illumination of (10.92) and 37.2W/m2, respectively.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.21771182 and 21501177)the Open Project Program of Structural Chemistry,Fujian Institute of Research on the Structure of Matter,Chinese Academy of Sciences.The authors also gratefully acknowledge the Supercomputing Center in Yantai university for providing the computing resources.
文摘M0 S2 is a promising candidate for hydrogen evolution reaction(HER),while its active sites are mainly distributed on the edge sites rather than the basal plane sites.Herein,a strategy to overcome the inertness of the M0 S2 basal surface and achieve high HER activity by combining single-boron catalyst and compressive strain was reported through density functional theory(DFT)computations.The ab initio molecular dynamics(AIMD)simulation on B@MoS2 suggests high thermodynamic and kinetic stability.We found that the rather strong adsorption of hydrogen by B@MoS2 can be alleviated by stress engineering.The optimal stress of -7%can achieve a nearly zero value of △Gh(〜-0.084 eV),which is close to that of the ideal Pt-SACs for HER.The novel HER activity is attributed to(i)the Bdoping brings the active site to the basal plane of M0 S2 and reduces the band-gap,thereby increasing the conductivity;(ii)the compressive stress regulates the number of charge transfer between(H)-(B)-(MoS2),weakening the adsorption energy of hydrogen on B@MoS2.Moreover,we constructed a SiN/B@MoS2 heterojunction,which introduces an 8.6%compressive stress for B@MoS2 and yields an ideal AGh-This work provides an effective means to achieve high intrinsic HER activity for M0 S2.