Flexible Cu2ZnSn(S,Se)4(CZTSSe)solar cells show great potential applications due to low-cost,nontoxicity,and stability.The device performances under an especial open circuit voltage(VOC)are limited by the defect recom...Flexible Cu2ZnSn(S,Se)4(CZTSSe)solar cells show great potential applications due to low-cost,nontoxicity,and stability.The device performances under an especial open circuit voltage(VOC)are limited by the defect recombination of CZTSSe/CdS heterojunction interface.We improve the deposition technique to obtain compact CdS layers without any pinholes for flexible CZTSSe solar cells on Mo foils.The efficiency of the device is improved from 5.7%to 6.86%by highquality junction interface.Furthermore,aiming at the S loss of CdS film,the S source concentration in deposition process is investigated to passivate the defects and improve the CdS film quality.The flexible Mo-foil-based CZTSSe solar cells are obtained to possess a 9.05%efficiency with a VOC of 0.44 V at an optimized S source concentration of 0.68 mol/L.Systematic physical measurements indicate that the S source control can effectively suppress the interface recombination and reduce the VOCdeficit.For the CZTSSe device bending characteristics,the device efficiency is almost constant after1000 bends,manifesting that the CZTSSe device has an excellent mechanical flexibility.The effective improvement strategy of CdS deposition is expected to provide a new perspective for promoting the conversion efficiency of CZTSSe solar cells.展开更多
Achieving efficient degradation of organic pollutants via activation of sulfite is meaningful but challenging.Herein,we have constructed a heterogeneous catalyst system involving Co_(3)O_(4) and TiO_(2) nanoparticles ...Achieving efficient degradation of organic pollutants via activation of sulfite is meaningful but challenging.Herein,we have constructed a heterogeneous catalyst system involving Co_(3)O_(4) and TiO_(2) nanoparticles to form the p-n heterojunction(Co_(3)O_(4)/TiO_(2)) to degrade acetaminophen(ACE) through photocatalytic activation of sulfite.Specifically,X-ray photoelectron spectroscopy analysis and theoretical calculations provide compelling evidence of electron transfer from Co_(3)O_(4) to TiO_(2) at the heterointerface.The interfacial electron redistribution of Co_(3)O_(4)/TiO_(2) tunes the adsorption energy of HSO_(3)^(-)/SO_(3)^(2-) in sulfite activation process for enhanced the catalytic activity.Owing to its unique heterointerface,the degradation efficiency of ACE reached 96.78%within 10 min.The predominant active radicals were identified as ·OH,h^(+),and SO_(x)^(·-) through radical quenching experiments and electron spin resonance capture.Besides,the possible degradation pathway was deduced by monitoring the generated intermediate products.Thereafter,the enhanced roles of well-engineered compositing interface in photocatalytic activation of sulfite for complete degradation of ACE were unveiled that it can improve light absorption ability,facilitate the generation of active species,and optimize reactive pathways.Considering that sulfite is a waste from flue gas desulfurization process,the photocatalytic activation of sulfite system will open up new avenues of beneficial use of air pollutants for the removal of pharmaceutical wastewater.展开更多
Inorganic hole transport materials, particularly NiO_X, have shown considerable promise in boosting the efficiency and stability of perovskite solar cells. However, a major barrier to commercialization of NiO_X-based ...Inorganic hole transport materials, particularly NiO_X, have shown considerable promise in boosting the efficiency and stability of perovskite solar cells. However, a major barrier to commercialization of NiO_X-based perovskite solar cells with positive-intrinsic-negative architectures is their direct contact with the absorbing layer, which can lead to losses of photovoltage and fill factor. Furthermore, highly positive under-coordinated Ni cations degrade the perovskite at the interface. Here, we address these issues with the use of an ionic compound(QAPyBF_(4)) as an additive to passivate defects throughout the perovskite layer and improve carrier conduction and interactions with under-coordinated Ni cations. Specifically,the highly electronegative inorganic anion [BF_(4)]~- interacts with the NiO_x/perovskite interface to passivate under-coordinated cations(Ni^(≥3+)). Accordingly, the decorated cells achieved a power conversion efficiency of 23.38% and a fill factor of 85.5% without a complex surface treatment or NiO_X doping.展开更多
Interface emission from heterojunction is a shortcoming for electroluminescent devices.A buffer layer introduced in the heterojunctional interfaces is a potential solution for the challenge.However,the dynamics for ca...Interface emission from heterojunction is a shortcoming for electroluminescent devices.A buffer layer introduced in the heterojunctional interfaces is a potential solution for the challenge.However,the dynamics for carrier tunneling to control the interface emission is still a mystery.Herein,the low-refractive HfO_(2)with a proper energy band configuration is em-ployed as the buffer layer in achieving ZnO-microwire/HfO_(2)/GaN heterojunctional light-emitting diodes(LEDs).The optic-ally pumped lasing threshold and lifetime of the ZnO microwire are reduced with the introduced HfO_(2)layer.As a result,the interface emission is of blue-shift from visible wavelengths to 394 nm whereas the ultraviolet(UV)emission is en-hanced.To regulate the interface recombination between electrons in the conduction band of ZnO and holes in the valence band of GaN,the tunneling electrons with higher conduction band are employed to produce a higher tunneling current through regulation of thin HfO_(2)film causing blue shift and interface emission enhancement.Our results provide a method to control the tunneling electrons in heterojunction for high-performance LEDs.展开更多
Green energy generation is an indispensable task to concurrently resolve fossil fuel depletion and environmental issues to align with the global goals of achieving carbon neutrality.Photocatalysis,a process that trans...Green energy generation is an indispensable task to concurrently resolve fossil fuel depletion and environmental issues to align with the global goals of achieving carbon neutrality.Photocatalysis,a process that transforms solar energy into clean fuels through a photocatalyst,represents a felicitous direction toward sustainability.Eco-rich metal-free graphitic carbon nitride(g-C_(3)N_(4))is profiled as an attractive photocatalyst due to its fascinating properties,including excellent chemical and thermal stability,moderate band gap,visible light-active nature,and ease of fabrication.Nonetheless,the shortcomings of g-C_(3)N_(4)include fast charge recombination and limited surface-active sites,which adversely affect photocatalytic reactions.Among the modification strategies,point-to-face contact engineering of 2D g-C_(3)N_(4)with 0D nanomaterials represents an innovative and promising synergy owing to several intriguing attributes such as the high specific surface area,short effective charge-transfer pathways,and quantum confinement effects.This review introduces recent advances achieved in experimental and computational studies on the interfacial design of 0D nanostructures on 2D g-C_(3)N_(4)in the construction of point-to-face heterojunction interfaces.Notably,0D materials such as metals,metal oxides,metal sulfides,metal selenides,metal phosphides,and nonmetals on g-C_(3)N_(4)with different charge-transfer mechanisms are systematically discussed along with controllable synthesis strategies.The applications of 0D/2D g-C_(3)N_(4)-based photocatalysts are focused on solar-to-energy conversion via the hydrogen evolution reaction,the CO_(2)reduction reaction,and the N2 reduction reaction to evaluate the photocatalyst activity and elucidate reaction pathways.Finally,future perspectives for developing high-efficiency 0D/2D photocatalysts are proposed to explore potential emerging carbon nitride allotropes,large-scale production,machine learning integration,and multidisciplinary advances for technological breakthroughs.展开更多
The traditional CdS buffer layers in flexible CZTSSe solar cells lead to light absorption losses and environmental pollution problems. Therefore, the study of Cd-free buffer layer is very important for the realization...The traditional CdS buffer layers in flexible CZTSSe solar cells lead to light absorption losses and environmental pollution problems. Therefore, the study of Cd-free buffer layer is very important for the realization of environmentally friendly and efficient CZTSSe solar cells. The Zn1-xMgxO(ZnMgO) and Zn1-xSnxO(ZnSnO) alternate buffer layers are studied in this study using the simulation package solar cell capacitance simulator(SCAPS-1D) numerical simulation model, and the theoretical analysis is further verified by the results of the experiments. We simulate the performance of CZTSSe/ZnXO(X = Mg/Sn) heterojunction devices with different Mg/(Zn+Mg) and Sn/(Zn+Sn) ratios and analyze the intrinsic mechanism of the effect of conduction band offsets(CBO) on the device performance. The simulation results show that the CZTSSe/ZnXO(X = Mg/Sn) devices achieve optimal performance with a small “spike” band or “flat” band at Mg and Sn doping concentrations of 0.1 and 0.2, respectively. To investigate the potential of Zn_(0.9)Mg_(0.1O) and Zn_(0.8)Sn_(0.2)O as alternative buffer layers, carrier concentrations and thicknesses are analyzed. The simulation demonstrates that the Zn0.9Mg0.1O device with low carrier concentration has a high resistivity, serious carrier recombination, and a greater impact on performance from thickness variation. Numerical simulations and experimental results show the potential of the ZnSnO buffer layer as an alternative to toxic CdS, and the ZnMgO layer has the limitation as a substitute buffer layer. This paper provides the theoretical basis and experimental proof for further searching for a suitable flexible CZTSSe Cd-free buffer layer.展开更多
The efficient utilization of visible light catalysts for organic reactions necessitates not only the effective separation of photogenerated electrons and holes to participate in the reaction,but also their ability to ...The efficient utilization of visible light catalysts for organic reactions necessitates not only the effective separation of photogenerated electrons and holes to participate in the reaction,but also their ability to form key intermediates with reactant molecules.The present study successfully synthesized a crusiform-like mesoporous structure of nitrogen-doped carbon-coated Cu_(2)O/Cu(Cu_(2)O/Cu/N-C)with a Cu_(2)O/dual electron acceptor interface using etched HKUST-1 as the precursor.A series of theoretical and experimental studies have demonstrated that the Cu_(2)O/Cu/N-C interface in the photocatalytic homo-coupling of terminal alkynes not only effectively enhances the separation of photogenerated electron−hole pairs,but also facilitates the formation of the key intermediate[Cu_(2)O/Cu/N-C]-phenylacetylide and promotes the rearrangement of its internal charges.As a result,the homo-coupling reaction can be effectively facilitated.The primary reason for the functional role of Cu_(2)O/Cu/N-C interface lies in the downward bending of energy band from Cu_(2)O to N-doped C layers,induced by the different work functions of Cu_(2)O,Cu and N-doped C layers.Consequently,Cu_(2)O/Cu/N-C photocatalysts demonstrate exceptional photocatalytic activity in the homo-coupling reaction of terminal alkynes under blue-light irradiation and air atmosphere.The present study presents a novel research methodology for the development of highly efficient visible light catalysts to facilitate organic reactions in future applications.展开更多
Due to the rising need for clean and renewable energy,green materials including biochar are becoming increasingly popular in the field of energy storage and conversion.However,the lack of highly active and stable elec...Due to the rising need for clean and renewable energy,green materials including biochar are becoming increasingly popular in the field of energy storage and conversion.However,the lack of highly active and stable electrode materials hinders the development of stable energy supplies and efficient hydrogen production devices.Herein,we fabricated stable,conductive,and multifunctional chitosan microspheres by a facile emulsion crosslinking solution growth and hydrothermal sulphuration methods as multifunctional electrodes for overall water splitting driven by supercapacitors.This material possessed three-dimensional layered conductors with favorable heterojunction interface,ample hollow and porous structures.It presented remarkably enhanced electrochemical and catalytic activity for both supercapacitors and overall water electrolysis.The asymmetric supercapacitors based on chitosan biochar microsphere achieved high specific capacitance(260.9 F g^(−1) at 1 A g^(−1))and high energy density(81.5W h kg^(−1))at a power density of 978.4 W kg^(−1).The chitosan biochar microsphere as an electrode for electrolyze only required a low cell voltage of 1.49 V to reach a current density of 10 mA cm^(−2),and achieved excellent stability with 30 h continuous test at 20 mA cm^(−2).Then,we assembled a coupled energy storage device and hydrogen production system,the SCs as a backup power source availably guaranteed the continuous operation of overall water electrolysis.Our study provides valuable perspectives into the practical design of both integrated biochar-based electrode materials and coupled energy storage devices with energy conversion and storage in practical.展开更多
Promoting interfacial reaction kinetics is highly desirable for achieving high-performances of anode material in alkali-ion batteries.Herein,flower-like MoSe_(2)/MoO_(3-x)@r GO composites are fabricated by a facile so...Promoting interfacial reaction kinetics is highly desirable for achieving high-performances of anode material in alkali-ion batteries.Herein,flower-like MoSe_(2)/MoO_(3-x)@r GO composites are fabricated by a facile solvothermal method involving a thermal-treatment at 800°C.When evaluated as an anode material for potassium ion batteries,MoSe_(2)/MoO_(3-x)@r GO delivers 248.2 m A h g^(-1)after 50 cycles at 0.2 A g^(-1) with a capacity retention of 84.6%and 182.9 m A h g^(-1)after 150 cycles at 1.0 A g^(-1) with a capacity retention of almost 61.2%,superior to those of bare MoSe_(2)or MoSe_(2)@r GO composites.Analysis from electrochemical measurements,the amorphous MoO_(3-x)containing oxygen vacancies could not only effectively buffer the self-aggregation of MoSe_(2)nanosheets but also provides lots of accessible active sites for potassium ion storage.Additionally,the open channels in the amorphous MoO_(3-x) phase lead to easier ion hopping and smaller diffusion barriers.Furthermore,the built-in electric field at the interface would be beneficial for electron transfer and K-ion migration across the hetero-junction interface.Moreover,larger dielectric polarization induced by the high relative permittivity of amorphous MoO_(3-x) would reduce charge transfer resistance and enhance K-ion migration across electric double-layer.Our work provides new insight into the enhanced performance of anode material coated by an amorphous layer with large relative permittivity.展开更多
A magnetic field sensor based on nano-polysilicon thin films transistors(TFTs) with Hall probes is proposed.The magnetic field sensors are fabricated on <100> orientation high resistivity(ρ>500Ω·cm) si...A magnetic field sensor based on nano-polysilicon thin films transistors(TFTs) with Hall probes is proposed.The magnetic field sensors are fabricated on <100> orientation high resistivity(ρ>500Ω·cm) silicon substrates by using CMOS technology,which adopt nano-polysilicon thin films with thicknesses of 90 nm and heterojunction interfaces between the nano-polysilicon thin films and the high resistivity silicon substrates as the sensing layers.The experimental results show that when V_(DS) = 5.0 V,the magnetic sensitivities of magnetic field sensors based on nano-polysilicon TFTs with length-width ratios of 160μm/80μm,320μm/80μm and 480μm/80μm are 78 mV/T,55 mV/T and 34 mV/T,respectively.Under the same conditions,the magnetic sensitivity of the obtained magnetic field sensor is significantly improved in comparison with a Hall magnetic field sensor adopting silicon as the sensing layers.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62074037,61574038,51961165108,and 51972332)the Natural Science Foundation of Fujian Province,China(Grant No.2017J01503)+2 种基金the Education and Scientific Research Project of Fujian Province,China(Grant No.JAT190010)the Open Project Program of the State Key Laboratory of Photocatalysis on Energy and Environment,China(Grant No.SKLPEE-202011)Fuzhou University,China。
文摘Flexible Cu2ZnSn(S,Se)4(CZTSSe)solar cells show great potential applications due to low-cost,nontoxicity,and stability.The device performances under an especial open circuit voltage(VOC)are limited by the defect recombination of CZTSSe/CdS heterojunction interface.We improve the deposition technique to obtain compact CdS layers without any pinholes for flexible CZTSSe solar cells on Mo foils.The efficiency of the device is improved from 5.7%to 6.86%by highquality junction interface.Furthermore,aiming at the S loss of CdS film,the S source concentration in deposition process is investigated to passivate the defects and improve the CdS film quality.The flexible Mo-foil-based CZTSSe solar cells are obtained to possess a 9.05%efficiency with a VOC of 0.44 V at an optimized S source concentration of 0.68 mol/L.Systematic physical measurements indicate that the S source control can effectively suppress the interface recombination and reduce the VOCdeficit.For the CZTSSe device bending characteristics,the device efficiency is almost constant after1000 bends,manifesting that the CZTSSe device has an excellent mechanical flexibility.The effective improvement strategy of CdS deposition is expected to provide a new perspective for promoting the conversion efficiency of CZTSSe solar cells.
基金financially supported by the National Natural Science Foundation of China(No.51878273)the Natural Science Foundation of Hebei Province(No.E2019502199)。
文摘Achieving efficient degradation of organic pollutants via activation of sulfite is meaningful but challenging.Herein,we have constructed a heterogeneous catalyst system involving Co_(3)O_(4) and TiO_(2) nanoparticles to form the p-n heterojunction(Co_(3)O_(4)/TiO_(2)) to degrade acetaminophen(ACE) through photocatalytic activation of sulfite.Specifically,X-ray photoelectron spectroscopy analysis and theoretical calculations provide compelling evidence of electron transfer from Co_(3)O_(4) to TiO_(2) at the heterointerface.The interfacial electron redistribution of Co_(3)O_(4)/TiO_(2) tunes the adsorption energy of HSO_(3)^(-)/SO_(3)^(2-) in sulfite activation process for enhanced the catalytic activity.Owing to its unique heterointerface,the degradation efficiency of ACE reached 96.78%within 10 min.The predominant active radicals were identified as ·OH,h^(+),and SO_(x)^(·-) through radical quenching experiments and electron spin resonance capture.Besides,the possible degradation pathway was deduced by monitoring the generated intermediate products.Thereafter,the enhanced roles of well-engineered compositing interface in photocatalytic activation of sulfite for complete degradation of ACE were unveiled that it can improve light absorption ability,facilitate the generation of active species,and optimize reactive pathways.Considering that sulfite is a waste from flue gas desulfurization process,the photocatalytic activation of sulfite system will open up new avenues of beneficial use of air pollutants for the removal of pharmaceutical wastewater.
基金supported by the National Key Research and Development Project from the Ministry of Science and Technology of China (No. 2021YFB3800103)National Natural Science Foundation of China (22209068)+1 种基金General Program of Basic Research in Shenzhen (JCYJ20220530112801004)the Major Program of Guangdong Basic and Applied Research Foundation (Nos. 2019B1515120083, 2019B121205001 and 2019B030302009)。
文摘Inorganic hole transport materials, particularly NiO_X, have shown considerable promise in boosting the efficiency and stability of perovskite solar cells. However, a major barrier to commercialization of NiO_X-based perovskite solar cells with positive-intrinsic-negative architectures is their direct contact with the absorbing layer, which can lead to losses of photovoltage and fill factor. Furthermore, highly positive under-coordinated Ni cations degrade the perovskite at the interface. Here, we address these issues with the use of an ionic compound(QAPyBF_(4)) as an additive to passivate defects throughout the perovskite layer and improve carrier conduction and interactions with under-coordinated Ni cations. Specifically,the highly electronegative inorganic anion [BF_(4)]~- interacts with the NiO_x/perovskite interface to passivate under-coordinated cations(Ni^(≥3+)). Accordingly, the decorated cells achieved a power conversion efficiency of 23.38% and a fill factor of 85.5% without a complex surface treatment or NiO_X doping.
基金Ths work was supported by NSFC(11734005.62075041,61821002)Na tional Key Research and Development Program of China(2018YFA0209101,2017YFA0700500).
文摘Interface emission from heterojunction is a shortcoming for electroluminescent devices.A buffer layer introduced in the heterojunctional interfaces is a potential solution for the challenge.However,the dynamics for carrier tunneling to control the interface emission is still a mystery.Herein,the low-refractive HfO_(2)with a proper energy band configuration is em-ployed as the buffer layer in achieving ZnO-microwire/HfO_(2)/GaN heterojunctional light-emitting diodes(LEDs).The optic-ally pumped lasing threshold and lifetime of the ZnO microwire are reduced with the introduced HfO_(2)layer.As a result,the interface emission is of blue-shift from visible wavelengths to 394 nm whereas the ultraviolet(UV)emission is en-hanced.To regulate the interface recombination between electrons in the conduction band of ZnO and holes in the valence band of GaN,the tunneling electrons with higher conduction band are employed to produce a higher tunneling current through regulation of thin HfO_(2)film causing blue shift and interface emission enhancement.Our results provide a method to control the tunneling electrons in heterojunction for high-performance LEDs.
基金Ministry of Higher Education,Malaysia,Grant/Award Number:FRGS/1/2020/TK0/XMU/02/1Guangdong Basic and Applied Basic Research Foundation,Grant/Award Number:2021A1515111019+1 种基金Hengyuan International Sdn.Bhd.,Grant/Award Number:EENG/0003Xiamen University Malaysia,Grant/Award Numbers:IENG/0038,ICOE/0001,XMUMRF/2019-C3/IENG/0013,XMUMRF/2021-C8/IENG/0041。
文摘Green energy generation is an indispensable task to concurrently resolve fossil fuel depletion and environmental issues to align with the global goals of achieving carbon neutrality.Photocatalysis,a process that transforms solar energy into clean fuels through a photocatalyst,represents a felicitous direction toward sustainability.Eco-rich metal-free graphitic carbon nitride(g-C_(3)N_(4))is profiled as an attractive photocatalyst due to its fascinating properties,including excellent chemical and thermal stability,moderate band gap,visible light-active nature,and ease of fabrication.Nonetheless,the shortcomings of g-C_(3)N_(4)include fast charge recombination and limited surface-active sites,which adversely affect photocatalytic reactions.Among the modification strategies,point-to-face contact engineering of 2D g-C_(3)N_(4)with 0D nanomaterials represents an innovative and promising synergy owing to several intriguing attributes such as the high specific surface area,short effective charge-transfer pathways,and quantum confinement effects.This review introduces recent advances achieved in experimental and computational studies on the interfacial design of 0D nanostructures on 2D g-C_(3)N_(4)in the construction of point-to-face heterojunction interfaces.Notably,0D materials such as metals,metal oxides,metal sulfides,metal selenides,metal phosphides,and nonmetals on g-C_(3)N_(4)with different charge-transfer mechanisms are systematically discussed along with controllable synthesis strategies.The applications of 0D/2D g-C_(3)N_(4)-based photocatalysts are focused on solar-to-energy conversion via the hydrogen evolution reaction,the CO_(2)reduction reaction,and the N2 reduction reaction to evaluate the photocatalyst activity and elucidate reaction pathways.Finally,future perspectives for developing high-efficiency 0D/2D photocatalysts are proposed to explore potential emerging carbon nitride allotropes,large-scale production,machine learning integration,and multidisciplinary advances for technological breakthroughs.
基金supported by the National Natural Science Foundation of China (Grant Nos. 62074037 and 52002073)the Fund from the Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China (Grant No. 2021ZZ124)。
文摘The traditional CdS buffer layers in flexible CZTSSe solar cells lead to light absorption losses and environmental pollution problems. Therefore, the study of Cd-free buffer layer is very important for the realization of environmentally friendly and efficient CZTSSe solar cells. The Zn1-xMgxO(ZnMgO) and Zn1-xSnxO(ZnSnO) alternate buffer layers are studied in this study using the simulation package solar cell capacitance simulator(SCAPS-1D) numerical simulation model, and the theoretical analysis is further verified by the results of the experiments. We simulate the performance of CZTSSe/ZnXO(X = Mg/Sn) heterojunction devices with different Mg/(Zn+Mg) and Sn/(Zn+Sn) ratios and analyze the intrinsic mechanism of the effect of conduction band offsets(CBO) on the device performance. The simulation results show that the CZTSSe/ZnXO(X = Mg/Sn) devices achieve optimal performance with a small “spike” band or “flat” band at Mg and Sn doping concentrations of 0.1 and 0.2, respectively. To investigate the potential of Zn_(0.9)Mg_(0.1O) and Zn_(0.8)Sn_(0.2)O as alternative buffer layers, carrier concentrations and thicknesses are analyzed. The simulation demonstrates that the Zn0.9Mg0.1O device with low carrier concentration has a high resistivity, serious carrier recombination, and a greater impact on performance from thickness variation. Numerical simulations and experimental results show the potential of the ZnSnO buffer layer as an alternative to toxic CdS, and the ZnMgO layer has the limitation as a substitute buffer layer. This paper provides the theoretical basis and experimental proof for further searching for a suitable flexible CZTSSe Cd-free buffer layer.
基金supported by the Xuzhou Key Research and Development Program(Social Development)(No.KC23298)the National Natural Science Foundation of China(No.22271122)+1 种基金the Natural Science Foundation of Jiangsu Province(No.BK20211549)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX23_2903).
文摘The efficient utilization of visible light catalysts for organic reactions necessitates not only the effective separation of photogenerated electrons and holes to participate in the reaction,but also their ability to form key intermediates with reactant molecules.The present study successfully synthesized a crusiform-like mesoporous structure of nitrogen-doped carbon-coated Cu_(2)O/Cu(Cu_(2)O/Cu/N-C)with a Cu_(2)O/dual electron acceptor interface using etched HKUST-1 as the precursor.A series of theoretical and experimental studies have demonstrated that the Cu_(2)O/Cu/N-C interface in the photocatalytic homo-coupling of terminal alkynes not only effectively enhances the separation of photogenerated electron−hole pairs,but also facilitates the formation of the key intermediate[Cu_(2)O/Cu/N-C]-phenylacetylide and promotes the rearrangement of its internal charges.As a result,the homo-coupling reaction can be effectively facilitated.The primary reason for the functional role of Cu_(2)O/Cu/N-C interface lies in the downward bending of energy band from Cu_(2)O to N-doped C layers,induced by the different work functions of Cu_(2)O,Cu and N-doped C layers.Consequently,Cu_(2)O/Cu/N-C photocatalysts demonstrate exceptional photocatalytic activity in the homo-coupling reaction of terminal alkynes under blue-light irradiation and air atmosphere.The present study presents a novel research methodology for the development of highly efficient visible light catalysts to facilitate organic reactions in future applications.
基金Beijing Natural Science Foundation from Pan Chen.
文摘Due to the rising need for clean and renewable energy,green materials including biochar are becoming increasingly popular in the field of energy storage and conversion.However,the lack of highly active and stable electrode materials hinders the development of stable energy supplies and efficient hydrogen production devices.Herein,we fabricated stable,conductive,and multifunctional chitosan microspheres by a facile emulsion crosslinking solution growth and hydrothermal sulphuration methods as multifunctional electrodes for overall water splitting driven by supercapacitors.This material possessed three-dimensional layered conductors with favorable heterojunction interface,ample hollow and porous structures.It presented remarkably enhanced electrochemical and catalytic activity for both supercapacitors and overall water electrolysis.The asymmetric supercapacitors based on chitosan biochar microsphere achieved high specific capacitance(260.9 F g^(−1) at 1 A g^(−1))and high energy density(81.5W h kg^(−1))at a power density of 978.4 W kg^(−1).The chitosan biochar microsphere as an electrode for electrolyze only required a low cell voltage of 1.49 V to reach a current density of 10 mA cm^(−2),and achieved excellent stability with 30 h continuous test at 20 mA cm^(−2).Then,we assembled a coupled energy storage device and hydrogen production system,the SCs as a backup power source availably guaranteed the continuous operation of overall water electrolysis.Our study provides valuable perspectives into the practical design of both integrated biochar-based electrode materials and coupled energy storage devices with energy conversion and storage in practical.
基金the Natural Science Foundations of China(Nos.12174057,22179020)Natural Science Foundation of Fuccccjian Province(No.2021L3011)Fujian Natural Science Foundation for Distinguished Young Scholars(No.2020J06042)。
文摘Promoting interfacial reaction kinetics is highly desirable for achieving high-performances of anode material in alkali-ion batteries.Herein,flower-like MoSe_(2)/MoO_(3-x)@r GO composites are fabricated by a facile solvothermal method involving a thermal-treatment at 800°C.When evaluated as an anode material for potassium ion batteries,MoSe_(2)/MoO_(3-x)@r GO delivers 248.2 m A h g^(-1)after 50 cycles at 0.2 A g^(-1) with a capacity retention of 84.6%and 182.9 m A h g^(-1)after 150 cycles at 1.0 A g^(-1) with a capacity retention of almost 61.2%,superior to those of bare MoSe_(2)or MoSe_(2)@r GO composites.Analysis from electrochemical measurements,the amorphous MoO_(3-x)containing oxygen vacancies could not only effectively buffer the self-aggregation of MoSe_(2)nanosheets but also provides lots of accessible active sites for potassium ion storage.Additionally,the open channels in the amorphous MoO_(3-x) phase lead to easier ion hopping and smaller diffusion barriers.Furthermore,the built-in electric field at the interface would be beneficial for electron transfer and K-ion migration across the hetero-junction interface.Moreover,larger dielectric polarization induced by the high relative permittivity of amorphous MoO_(3-x) would reduce charge transfer resistance and enhance K-ion migration across electric double-layer.Our work provides new insight into the enhanced performance of anode material coated by an amorphous layer with large relative permittivity.
基金supported by the National Natural Science Foundation of China(No.61006057)the Foundation for University Young Key Teacher of Heilongjiang Province,China(No.1251G046)the Excellent Youth Foundation of Heilongjiang University,China(No.JCL201007)
文摘A magnetic field sensor based on nano-polysilicon thin films transistors(TFTs) with Hall probes is proposed.The magnetic field sensors are fabricated on <100> orientation high resistivity(ρ>500Ω·cm) silicon substrates by using CMOS technology,which adopt nano-polysilicon thin films with thicknesses of 90 nm and heterojunction interfaces between the nano-polysilicon thin films and the high resistivity silicon substrates as the sensing layers.The experimental results show that when V_(DS) = 5.0 V,the magnetic sensitivities of magnetic field sensors based on nano-polysilicon TFTs with length-width ratios of 160μm/80μm,320μm/80μm and 480μm/80μm are 78 mV/T,55 mV/T and 34 mV/T,respectively.Under the same conditions,the magnetic sensitivity of the obtained magnetic field sensor is significantly improved in comparison with a Hall magnetic field sensor adopting silicon as the sensing layers.