This paper considers the asymptotic efficiency of the maximum likelihood estimator (MLE) for the Box-Cox transformation model with heteroscedastic disturbances. The MLE under the normality assumption (BC MLE) is a con...This paper considers the asymptotic efficiency of the maximum likelihood estimator (MLE) for the Box-Cox transformation model with heteroscedastic disturbances. The MLE under the normality assumption (BC MLE) is a consistent and asymptotically efficient estimator if the “small ” condition is satisfied and the number of parameters is finite. However, the BC MLE cannot be asymptotically efficient and its rate of convergence is slower than ordinal order when the number of parameters goes to infinity. Anew consistent estimator of order is proposed. One important implication of this study is that estimation methods should be carefully chosen when the model contains many parameters in actual empirical studies.展开更多
Medical research data are often skewed and heteroscedastic. It has therefore become practice to log-transform data in regression analysis, in order to stabilize the variance. Regression analysis on log-transformed dat...Medical research data are often skewed and heteroscedastic. It has therefore become practice to log-transform data in regression analysis, in order to stabilize the variance. Regression analysis on log-transformed data estimates the relative effect, whereas it is often the absolute effect of a predictor that is of interest. We propose a maximum likelihood (ML)-based approach to estimate a linear regression model on log-normal, heteroscedastic data. The new method was evaluated with a large simulation study. Log-normal observations were generated according to the simulation models and parameters were estimated using the new ML method, ordinary least-squares regression (LS) and weighed least-squares regression (WLS). All three methods produced unbiased estimates of parameters and expected response, and ML and WLS yielded smaller standard errors than LS. The approximate normality of the Wald statistic, used for tests of the ML estimates, in most situations produced correct type I error risk. Only ML and WLS produced correct confidence intervals for the estimated expected value. ML had the highest power for tests regarding β1.展开更多
文摘This paper considers the asymptotic efficiency of the maximum likelihood estimator (MLE) for the Box-Cox transformation model with heteroscedastic disturbances. The MLE under the normality assumption (BC MLE) is a consistent and asymptotically efficient estimator if the “small ” condition is satisfied and the number of parameters is finite. However, the BC MLE cannot be asymptotically efficient and its rate of convergence is slower than ordinal order when the number of parameters goes to infinity. Anew consistent estimator of order is proposed. One important implication of this study is that estimation methods should be carefully chosen when the model contains many parameters in actual empirical studies.
文摘Medical research data are often skewed and heteroscedastic. It has therefore become practice to log-transform data in regression analysis, in order to stabilize the variance. Regression analysis on log-transformed data estimates the relative effect, whereas it is often the absolute effect of a predictor that is of interest. We propose a maximum likelihood (ML)-based approach to estimate a linear regression model on log-normal, heteroscedastic data. The new method was evaluated with a large simulation study. Log-normal observations were generated according to the simulation models and parameters were estimated using the new ML method, ordinary least-squares regression (LS) and weighed least-squares regression (WLS). All three methods produced unbiased estimates of parameters and expected response, and ML and WLS yielded smaller standard errors than LS. The approximate normality of the Wald statistic, used for tests of the ML estimates, in most situations produced correct type I error risk. Only ML and WLS produced correct confidence intervals for the estimated expected value. ML had the highest power for tests regarding β1.