This paper focuses on the quantitative expression of bacterial regrowth in water distribution system. Considering public health risks of bacterial regrowth,the experiment was performed on a distribution system of sele...This paper focuses on the quantitative expression of bacterial regrowth in water distribution system. Considering public health risks of bacterial regrowth,the experiment was performed on a distribution system of selected area.Physical,chemical,and microbiological parameters such as turbidity,temperature,residual chlorine and pH were measured over a three-month period and correlation analysis was carried out.Combined with principal components analysis(PCA) ,a logistic regression model is developed to predict and diagnose bacterial regrowth and locate the zones with high risks of microbiology in the distribution system.The model gives the probability of bacterial regrowth with the number of heterotrophic plate counts as the binary response variable and three new principal components variables as the explanatory variables.The veracity of the logistic regression model was 90%,which meets the precision requirement of the model.展开更多
The efficiency of chlorine and chloramines disinfection on biofilm development in a simulated drinking water distribution system was investigated by using heterotrophic bacterial spread plate technique. The experiment...The efficiency of chlorine and chloramines disinfection on biofilm development in a simulated drinking water distribution system was investigated by using heterotrophic bacterial spread plate technique. The experiments were carried out with four annular reactors (ARs) with stainless steel (SS) or copper (Cu) material slides. The results showed that there were fewer bacteria attached to Cu slides without a disinfectant compared with those attached to SS slides. When the water was disinfected with chloramines, the heterotrophic plate counts (HPCs) on the biofilm attached to the Cu slides were significantly lower (by 3.46 log CFU/cm2) than those attached to the SS slides. Likewise, the biofilm HPC numbers on the Cu slides were slightly lower (by 1.19 log CFU/cm2) than those on the SS slides disinfected with chlorine. In a quasi-steady state, the HPC levels on Cu slides can be reduced to 3.0 log CFU/cm2 with chlorine and to about 0.9 log CFU/cm2 with chloramines. The addition of chloramines resulted in a more efficient reduction of biofilm heterotrophic bacteria than did chlorine. We concluded that the chlorine and chloramines levels usually employed in water distribution system were not sufficient to prevent the growth and development of microbial biofilm. The combination of copper pipe slides and chloramines as the disinfectant was the most efficient combination to bring about diminished bacterial levels.展开更多
Understanding the spatial and temporal dynamics of microbial communities in drinking water systems is vital to securing the microbial safety of drinking water.The objective of this study was to comprehensively charact...Understanding the spatial and temporal dynamics of microbial communities in drinking water systems is vital to securing the microbial safety of drinking water.The objective of this study was to comprehensively characterize the dynamics of microbial biomass and bacterial communities at each step of a full-scale drinking water treatment plant in Beijing,China.Both bulk water and biofilm samples on granular activated carbon(GAC) were collected over 9 months.The proportion of cultivable cells decreased during the treatment processes,and this proportion was higher in warm season than cool season,suggesting that treatment processes and water temperature probably had considerable impact on the R2 A cultivability of total bacteria.16 s rRNA gene based 454 pyrosequencing analysis of the bacterial community revealed that Proteobacteria predominated in all samples.The GAC biofilm harbored a distinct population with a much higher relative abundance of Acidobactena than water samples.Principle coordinate analysis and one-way analysis of similarity indicated that the dynamics of the microbial communities in bulk water and biofilm samples were better explained by the treatment processes rather than by sampling time,and distinctive changes of the microbial communities in water occurred after GAC filtration.Furthermore,20 distinct OTUs contributing most to the dissimilarity among samples of different sampling locations and 6 persistent OTUs present in the entire treatment process flow were identified.Overall,our findings demonstrate the significant effects that treatment processes have on the microbial biomass and community fluctuation and provide implications for further targeted investigation on particular bacteria populations.展开更多
基金Supported by National Natural Science Foundation of China(No.50878140)Project of Water Pollution Control and Repair(No.2008ZX07317-005)
文摘This paper focuses on the quantitative expression of bacterial regrowth in water distribution system. Considering public health risks of bacterial regrowth,the experiment was performed on a distribution system of selected area.Physical,chemical,and microbiological parameters such as turbidity,temperature,residual chlorine and pH were measured over a three-month period and correlation analysis was carried out.Combined with principal components analysis(PCA) ,a logistic regression model is developed to predict and diagnose bacterial regrowth and locate the zones with high risks of microbiology in the distribution system.The model gives the probability of bacterial regrowth with the number of heterotrophic plate counts as the binary response variable and three new principal components variables as the explanatory variables.The veracity of the logistic regression model was 90%,which meets the precision requirement of the model.
基金supported by the National Natural Science Foundation of China (No. 50878164)the National Key Technologies Supporting Program of China during the 11th Five-Year Plan Period (Nos. 2006BAJ08B02 and 2006BAJ08B06)the Program for Young Excellent Talents in Tongji University (No. 2007KJ016), China
文摘The efficiency of chlorine and chloramines disinfection on biofilm development in a simulated drinking water distribution system was investigated by using heterotrophic bacterial spread plate technique. The experiments were carried out with four annular reactors (ARs) with stainless steel (SS) or copper (Cu) material slides. The results showed that there were fewer bacteria attached to Cu slides without a disinfectant compared with those attached to SS slides. When the water was disinfected with chloramines, the heterotrophic plate counts (HPCs) on the biofilm attached to the Cu slides were significantly lower (by 3.46 log CFU/cm2) than those attached to the SS slides. Likewise, the biofilm HPC numbers on the Cu slides were slightly lower (by 1.19 log CFU/cm2) than those on the SS slides disinfected with chlorine. In a quasi-steady state, the HPC levels on Cu slides can be reduced to 3.0 log CFU/cm2 with chlorine and to about 0.9 log CFU/cm2 with chloramines. The addition of chloramines resulted in a more efficient reduction of biofilm heterotrophic bacteria than did chlorine. We concluded that the chlorine and chloramines levels usually employed in water distribution system were not sufficient to prevent the growth and development of microbial biofilm. The combination of copper pipe slides and chloramines as the disinfectant was the most efficient combination to bring about diminished bacterial levels.
基金supported by the China Major Science and Technology Program for Water Pollution Control and Treatment(No.2012ZX07404-002)the Special Fund of State Key Joint Laboratory of Environment Simulation and Pollution Control(No.14K09ESPCT)
文摘Understanding the spatial and temporal dynamics of microbial communities in drinking water systems is vital to securing the microbial safety of drinking water.The objective of this study was to comprehensively characterize the dynamics of microbial biomass and bacterial communities at each step of a full-scale drinking water treatment plant in Beijing,China.Both bulk water and biofilm samples on granular activated carbon(GAC) were collected over 9 months.The proportion of cultivable cells decreased during the treatment processes,and this proportion was higher in warm season than cool season,suggesting that treatment processes and water temperature probably had considerable impact on the R2 A cultivability of total bacteria.16 s rRNA gene based 454 pyrosequencing analysis of the bacterial community revealed that Proteobacteria predominated in all samples.The GAC biofilm harbored a distinct population with a much higher relative abundance of Acidobactena than water samples.Principle coordinate analysis and one-way analysis of similarity indicated that the dynamics of the microbial communities in bulk water and biofilm samples were better explained by the treatment processes rather than by sampling time,and distinctive changes of the microbial communities in water occurred after GAC filtration.Furthermore,20 distinct OTUs contributing most to the dissimilarity among samples of different sampling locations and 6 persistent OTUs present in the entire treatment process flow were identified.Overall,our findings demonstrate the significant effects that treatment processes have on the microbial biomass and community fluctuation and provide implications for further targeted investigation on particular bacteria populations.