Mg secondary batteries are promising scalable secondary batteries for next-generation energy storage.However,Mg-storage cathode materials are greatly demanded to construct high-performance Mg batteries.Electrochemical...Mg secondary batteries are promising scalable secondary batteries for next-generation energy storage.However,Mg-storage cathode materials are greatly demanded to construct high-performance Mg batteries.Electrochemical conversion reaction provides plenty of cathode options,and strategy for cathode selection and performance optimization is of special significance.In this work,Ni0.85Se with nanostructures of dispersive hexagonal nanosheets(D-Ni0.85Se)and flower-like assembled nanosheets(F-Ni0.85Se)is synthesized and investigated as Mg-storage cathodes.Compared with F-Ni0.85Se,D-Ni0.85Se delivers a higher specific capacity of 168 mAh g^-1 at 50 mA g^-1 as well as better rate performance,owing to its faster Mg^2+-diffusion and lower resistance.D-Ni0.85Se also exhibits a superior cycling stability over 500cycles.An investigation on mechanism indicates an evolution of Ni0.85Se towards NiSe with cycling,and the Mg-storage reaction occurs between NiSe and metallic Ni^0.The present work demonstrates that advanced conversion-type Mg battery cathode materials could be constructed by soft selenide anions,and the electrochemical properties could be manipulated by rational material morphology optimization.展开更多
Hexagonal boron nitride nanosheets (BNNSs) can work as a more efficient nucleating agent for two polyesters compared to graphene. Studies on the crystallization and dewetting processes of two polyesters, poly(butyl...Hexagonal boron nitride nanosheets (BNNSs) can work as a more efficient nucleating agent for two polyesters compared to graphene. Studies on the crystallization and dewetting processes of two polyesters, poly(butylene succinate) and poly(butylene adipate), on the two substrate surfaces prove that the interaction between BNNSs and the polyesters is stronger than that between graphene and the polyesters. This strong interaction induces the pre-ordered conformation of molten PBA which has been identified by the in situ FTIR spectra. Thus BNNSs possess higher nucleation property than graphene. Finally, a new polymer-substrate interaction induced nucleation mechanism was proposed to explain the nucleation efficiency difference between graphene and BNNSs.展开更多
Boron(B)and nitrogen(N)co-doped 3D hierarchical micro/meso porous carbon(BNPC)were successfully fabricated from cellulose nanofiber(CNF)/boron nitride nanosheets(BNNS)/zinc-methylimidazolate framework-8(ZIF-8)nanocomp...Boron(B)and nitrogen(N)co-doped 3D hierarchical micro/meso porous carbon(BNPC)were successfully fabricated from cellulose nanofiber(CNF)/boron nitride nanosheets(BNNS)/zinc-methylimidazolate framework-8(ZIF-8)nanocomposites prepared by 2D BNNS,ZIF-8 nanoparticles,and wheat straw based CNFs.Herein,CNF/ZIF-8 acts as versatile skeleton and imparts partial N dopant into porous carbon structure,while the introduced BNNS can help strengthen the hierarchical porous superstructure and endow abundant B/N co-dopants within BNPC matrix.The obtained BNPC electrode possesses a high specific surface area of 505.4 m2/g,high B/N co-doping content,and desirable hydrophilicity.Supercapacitors assembled with BNPC-2(B/N co-doped porous carbon with a CNF/BNNS mass ratio of 1꞉2)electrodes exhibited exceptional electrochemical performance,demonstrating high capacitance stability even after 5000 charge-discharge cycles.The devices exhibited outstanding energy density and power density,as well as the highest specific capacitance of 433.4 F/g at 1.0 A/g,when compared with other similar reports.This study proposes a facile and sustainable strategy for efficiently fabrication of rich B/N co-doped hierarchical micro/meso porous carbon electrodes from agricultural waste biomass for advanced supercapacitor performance.展开更多
基金financially supported by Intergovernmental International Science and Technology Innovation Cooperation Project(2019YFE010186)the Hubei Provincial Natural Science Foundation(2019CFB452 and 2019CFB620)the Fundamental Research Funds for the Central Universities。
文摘Mg secondary batteries are promising scalable secondary batteries for next-generation energy storage.However,Mg-storage cathode materials are greatly demanded to construct high-performance Mg batteries.Electrochemical conversion reaction provides plenty of cathode options,and strategy for cathode selection and performance optimization is of special significance.In this work,Ni0.85Se with nanostructures of dispersive hexagonal nanosheets(D-Ni0.85Se)and flower-like assembled nanosheets(F-Ni0.85Se)is synthesized and investigated as Mg-storage cathodes.Compared with F-Ni0.85Se,D-Ni0.85Se delivers a higher specific capacity of 168 mAh g^-1 at 50 mA g^-1 as well as better rate performance,owing to its faster Mg^2+-diffusion and lower resistance.D-Ni0.85Se also exhibits a superior cycling stability over 500cycles.An investigation on mechanism indicates an evolution of Ni0.85Se towards NiSe with cycling,and the Mg-storage reaction occurs between NiSe and metallic Ni^0.The present work demonstrates that advanced conversion-type Mg battery cathode materials could be constructed by soft selenide anions,and the electrochemical properties could be manipulated by rational material morphology optimization.
基金financially supported by the National Basic Research Program of China(No.2014CB932202)the National Natural Science Foundation of China(Nos.51473085 and 21374054)the Sino-German Center for Research Promotion
文摘Hexagonal boron nitride nanosheets (BNNSs) can work as a more efficient nucleating agent for two polyesters compared to graphene. Studies on the crystallization and dewetting processes of two polyesters, poly(butylene succinate) and poly(butylene adipate), on the two substrate surfaces prove that the interaction between BNNSs and the polyesters is stronger than that between graphene and the polyesters. This strong interaction induces the pre-ordered conformation of molten PBA which has been identified by the in situ FTIR spectra. Thus BNNSs possess higher nucleation property than graphene. Finally, a new polymer-substrate interaction induced nucleation mechanism was proposed to explain the nucleation efficiency difference between graphene and BNNSs.
基金support from the Natural Science Foundation of China (No.32101470)Foundation of Tianjin Key Laboratory of Pulp&Paper of Tianjin University of Science&Technology (No.202003,No.202106)+3 种基金China Postdoctoral Science Foundation (No.2022M712379,No.2021M692401)National Key Research and Development Plan (No.2022YFC2900031)Foundation of Guangxi Key Laboratory of Clean Pulp&Papermaking and Pollution Control,College of Light Industry and Food Engineering,Guangxi University (No.2021KF37)the support from Zhejiang Jingxing Paper Co.Ltd.,and University of New Brunswick.
文摘Boron(B)and nitrogen(N)co-doped 3D hierarchical micro/meso porous carbon(BNPC)were successfully fabricated from cellulose nanofiber(CNF)/boron nitride nanosheets(BNNS)/zinc-methylimidazolate framework-8(ZIF-8)nanocomposites prepared by 2D BNNS,ZIF-8 nanoparticles,and wheat straw based CNFs.Herein,CNF/ZIF-8 acts as versatile skeleton and imparts partial N dopant into porous carbon structure,while the introduced BNNS can help strengthen the hierarchical porous superstructure and endow abundant B/N co-dopants within BNPC matrix.The obtained BNPC electrode possesses a high specific surface area of 505.4 m2/g,high B/N co-doping content,and desirable hydrophilicity.Supercapacitors assembled with BNPC-2(B/N co-doped porous carbon with a CNF/BNNS mass ratio of 1꞉2)electrodes exhibited exceptional electrochemical performance,demonstrating high capacitance stability even after 5000 charge-discharge cycles.The devices exhibited outstanding energy density and power density,as well as the highest specific capacitance of 433.4 F/g at 1.0 A/g,when compared with other similar reports.This study proposes a facile and sustainable strategy for efficiently fabrication of rich B/N co-doped hierarchical micro/meso porous carbon electrodes from agricultural waste biomass for advanced supercapacitor performance.