AIM: To investigate the effects of areca on the contractile activity of isolated colonic muscle strips in rats and mechanism involved. METHODS: Each strip (LMPC, longitudinal muscle of proximal colon; CMPC, circular m...AIM: To investigate the effects of areca on the contractile activity of isolated colonic muscle strips in rats and mechanism involved. METHODS: Each strip (LMPC, longitudinal muscle of proximal colon; CMPC, circular muscle of proximal colon; LMDC, longitudinal muscle of distal colon; CMDC, circular muscle of distal colon.) was suspended in a tissue chamber containing 5 mL Krebs solution (37 degrees C), bubbled continuously with 950 mL.L(-1) O(2) and 50 mL.L(-1) CO(2). The mean contractile amplitude (A), the resting tension (T), and the contractile frequency (F) were simultaneously recorded on recorders. RESULTS: Areca dose dependently increased the mean contractile amplitude, the resting tension of proximal and distal colonic smooth muscle strips in rats (P【0.05). It also partly increased the contractile frequency of colonic smooth muscle strips in rats (P【0.05). The effects were partly inhibited by atropine (the resting tension of LMPC decreased from 0.44 +/- 0.12 to 0.17 +/- 0.03; the resting tension of LMDC decreased from 0.71 +/- 0.14 to 0.03 +/- 0.01; the mean contractile amplitude of LMPC increased from -45.8 +/- 7.2 to -30.5 +/- 2.9; the motility index of CMDC decreased from 86.6 +/- 17.3 to 32.8 +/- 9.3; P【0.05 vs areca), but the effects were not inhibited by hexamethonium (P】0.05). CONCLUSION: Areca stimulated the motility of isolated colonic smooth muscle strips in rats. The stimulation of areca might be relevant with M receptor partly.展开更多
基金the Natural Scientific Foundation of Shandong Province,No.Y2001C06
文摘AIM: To investigate the effects of areca on the contractile activity of isolated colonic muscle strips in rats and mechanism involved. METHODS: Each strip (LMPC, longitudinal muscle of proximal colon; CMPC, circular muscle of proximal colon; LMDC, longitudinal muscle of distal colon; CMDC, circular muscle of distal colon.) was suspended in a tissue chamber containing 5 mL Krebs solution (37 degrees C), bubbled continuously with 950 mL.L(-1) O(2) and 50 mL.L(-1) CO(2). The mean contractile amplitude (A), the resting tension (T), and the contractile frequency (F) were simultaneously recorded on recorders. RESULTS: Areca dose dependently increased the mean contractile amplitude, the resting tension of proximal and distal colonic smooth muscle strips in rats (P【0.05). It also partly increased the contractile frequency of colonic smooth muscle strips in rats (P【0.05). The effects were partly inhibited by atropine (the resting tension of LMPC decreased from 0.44 +/- 0.12 to 0.17 +/- 0.03; the resting tension of LMDC decreased from 0.71 +/- 0.14 to 0.03 +/- 0.01; the mean contractile amplitude of LMPC increased from -45.8 +/- 7.2 to -30.5 +/- 2.9; the motility index of CMDC decreased from 86.6 +/- 17.3 to 32.8 +/- 9.3; P【0.05 vs areca), but the effects were not inhibited by hexamethonium (P】0.05). CONCLUSION: Areca stimulated the motility of isolated colonic smooth muscle strips in rats. The stimulation of areca might be relevant with M receptor partly.