Traditional methods for selecting models in experimental data analysis are susceptible to researcher bias, hindering exploration of alternative explanations and potentially leading to overfitting. The Finite Informati...Traditional methods for selecting models in experimental data analysis are susceptible to researcher bias, hindering exploration of alternative explanations and potentially leading to overfitting. The Finite Information Quantity (FIQ) approach offers a novel solution by acknowledging the inherent limitations in information processing capacity of physical systems. This framework facilitates the development of objective criteria for model selection (comparative uncertainty) and paves the way for a more comprehensive understanding of phenomena through exploring diverse explanations. This work presents a detailed comparison of the FIQ approach with ten established model selection methods, highlighting the advantages and limitations of each. We demonstrate the potential of FIQ to enhance the objectivity and robustness of scientific inquiry through three practical examples: selecting appropriate models for measuring fundamental constants, sound velocity, and underwater electrical discharges. Further research is warranted to explore the full applicability of FIQ across various scientific disciplines.展开更多
Persistent low temperatures in autumn and winter have a huge impact on crops,and greenhouses rely on solar radiation and heating equipment to meet the required indoor temperature.But the energy cost of frequent operat...Persistent low temperatures in autumn and winter have a huge impact on crops,and greenhouses rely on solar radiation and heating equipment to meet the required indoor temperature.But the energy cost of frequent operation of the actuators is exceptionally high.The relationship between greenhouse environmental control accuracy and energy consumption is one of the key issues faced in greenhouse research.In this study,a non-linear model predictive control method with an improved objective function was proposed.The improved objective function used tolerance intervals and boundary constraints to optimize the objective evaluation.The nonlinear model predictive control(NMPC)controller design was based on the wavelet neural network(WNN)data-driven model and applied the interior point method to solve the optimal solution of the objective function control,thus balancing the contradiction between energy consumption and control precision.The simulation results showed that the improved NMPC method reduced energy consumption by 21.02%and 9.54%compared with the model predictive control and regular NMPC,which proved the method achieved good results in a low-temperature environment.This research can provide an important reference for the field as it offers a more efficient approach to managing greenhouse climates,potentially leading to substantial energy savings and enhanced sustainability in agricultural practices.展开更多
An effective model(image to wrinkle, ITW) for garment fitting evaluation is presented. The proposed model is to improve the accuracy of garment fitting evaluation based on dressing image. The ITW model is an objective...An effective model(image to wrinkle, ITW) for garment fitting evaluation is presented. The proposed model is to improve the accuracy of garment fitting evaluation based on dressing image. The ITW model is an objective evaluation model of fitting based on the wrinkle index of dressing image. The ITW model consists of two main steps, the gray curve-fitting(GCF) threshold segmentation algorithm and Canny edge detection algorithm. In the ITW model, three types of wrinkle trends are defined. And the network dressing image is evaluated and simulated by three quantitative indexes: wrinkle number, wrinkle regularity and wrinkle unevenness. Finally, the fitness of three kinds of dress effects(tight, fit and loose) is quantified by objective fitting evaluation model.展开更多
LIDAR point cloud-based 3D object detection aims to sense the surrounding environment by anchoring objects with the Bounding Box(BBox).However,under the three-dimensional space of autonomous driving scenes,the previou...LIDAR point cloud-based 3D object detection aims to sense the surrounding environment by anchoring objects with the Bounding Box(BBox).However,under the three-dimensional space of autonomous driving scenes,the previous object detection methods,due to the pre-processing of the original LIDAR point cloud into voxels or pillars,lose the coordinate information of the original point cloud,slow detection speed,and gain inaccurate bounding box positioning.To address the issues above,this study proposes a new two-stage network structure to extract point cloud features directly by PointNet++,which effectively preserves the original point cloud coordinate information.To improve the detection accuracy,a shell-based modeling method is proposed.It roughly determines which spherical shell the coordinates belong to.Then,the results are refined to ground truth,thereby narrowing the localization range and improving the detection accuracy.To improve the recall of 3D object detection with bounding boxes,this paper designs a self-attention module for 3D object detection with a skip connection structure.Some of these features are highlighted by weighting them on the feature dimensions.After training,it makes the feature weights that are favorable for object detection get larger.Thus,the extracted features are more adapted to the object detection task.Extensive comparison experiments and ablation experiments conducted on the KITTI dataset verify the effectiveness of our proposed method in improving recall and precision.展开更多
Artificial Intelligence(AI)and Computer Vision(CV)advancements have led to many useful methodologies in recent years,particularly to help visually-challenged people.Object detection includes a variety of challenges,fo...Artificial Intelligence(AI)and Computer Vision(CV)advancements have led to many useful methodologies in recent years,particularly to help visually-challenged people.Object detection includes a variety of challenges,for example,handlingmultiple class images,images that get augmented when captured by a camera and so on.The test images include all these variants as well.These detection models alert them about their surroundings when they want to walk independently.This study compares four CNN-based pre-trainedmodels:ResidualNetwork(ResNet-50),Inception v3,DenseConvolutional Network(DenseNet-121),and SqueezeNet,predominantly used in image recognition applications.Based on the analysis performed on these test images,the study infers that Inception V3 outperformed other pre-trained models in terms of accuracy and speed.To further improve the performance of the Inception v3 model,the thermal exchange optimization(TEO)algorithm is applied to tune the hyperparameters(number of epochs,batch size,and learning rate)showing the novelty of the work.Better accuracy was achieved owing to the inclusion of an auxiliary classifier as a regularizer,hyperparameter optimizer,and factorization approach.Additionally,Inception V3 can handle images of different sizes.This makes Inception V3 the optimum model for assisting visually challenged people in real-world communication when integrated with Internet of Things(IoT)-based devices.展开更多
Based on auditory peripheral simulation model, a new Sound Quality Objective Evaluation (SQOE) method is presented,which can be used to model and analyze the impacts of head, shoulder and other parts of human body on ...Based on auditory peripheral simulation model, a new Sound Quality Objective Evaluation (SQOE) method is presented,which can be used to model and analyze the impacts of head, shoulder and other parts of human body on sound wave trans-mission.This method employs the artificial head technique, in which the head related transfer function was taken into account tothe outer ear simulation phase.First, a bionic artificial head was designed as the outer ear model with considering the outersound field in view of theory and physical explanations.Then the auditory peripheral simulation model was built, which mimicsthe physiological functions of the human hearing, simulating the acoustic signal transfer process and conversion mechanismsfrom the free field to the peripheral auditory system.Finally, performance comparison was made between the proposed SQOEmethod and ArtemiS software, and the verifications of subjective and objective related analysis were made.Results show thatthe proposed method was economical, simple, and with good evaluation quality.展开更多
As two independent problems,scheduling for parts fabrication line and sequencing for mixed-model assembly line have been addressed respectively by many researchers.However,these two problems should be considered simul...As two independent problems,scheduling for parts fabrication line and sequencing for mixed-model assembly line have been addressed respectively by many researchers.However,these two problems should be considered simultaneously to improve the efficiency of the whole fabrication/assembly systems.By far,little research effort is devoted to sequencing problems for mixed-model fabrication/assembly systems.This paper is concerned about the sequencing problems in pull production systems which are composed of one mixed-model assembly line with limited intermediate buffers and two flexible parts fabrication flow lines with identical parallel machines and limited intermediate buffers.Two objectives are considered simultaneously:minimizing the total variation in parts consumption in the assembly line and minimizing the total makespan cost in the fabrication/assembly system.The integrated optimization framework,mathematical models and the method to construct the complete schedules for the fabrication lines according to the production sequences for the first stage in fabrication lines are presented.Since the above problems are non-deterministic polynomial-hard(NP-hard),a modified multi-objective genetic algorithm is proposed for solving the models,in which a method to generate the production sequences for the fabrication lines from the production sequences for the assembly line and a method to generate the initial population are put forward,new selection,crossover and mutation operators are designed,and Pareto ranking method and sharing function method are employed to evaluate the individuals' fitness.The feasibility and efficiency of the multi-objective genetic algorithm is shown by computational comparison with a multi-objective simulated annealing algorithm.The sequencing problems for mixed-model production systems can be solved effectively by the proposed modified multi-objective genetic algorithm.展开更多
Object detection finds wide application in various sectors,including autonomous driving,industry,and healthcare.Recent studies have highlighted the vulnerability of object detection models built using deep neural netw...Object detection finds wide application in various sectors,including autonomous driving,industry,and healthcare.Recent studies have highlighted the vulnerability of object detection models built using deep neural networks when confronted with carefully crafted adversarial examples.This not only reveals their shortcomings in defending against malicious attacks but also raises widespread concerns about the security of existing systems.Most existing adversarial attack strategies focus primarily on image classification problems,failing to fully exploit the unique characteristics of object detectionmodels,thus resulting in widespread deficiencies in their transferability.Furthermore,previous research has predominantly concentrated on the transferability issues of non-targeted attacks,whereas enhancing the transferability of targeted adversarial examples presents even greater challenges.Traditional attack techniques typically employ cross-entropy as a loss measure,iteratively adjusting adversarial examples to match target categories.However,their inherent limitations restrict their broad applicability and transferability across different models.To address the aforementioned challenges,this study proposes a novel targeted adversarial attack method aimed at enhancing the transferability of adversarial samples across object detection models.Within the framework of iterative attacks,we devise a new objective function designed to mitigate consistency issues arising from cumulative noise and to enhance the separation between target and non-target categories(logit margin).Secondly,a data augmentation framework incorporating random erasing and color transformations is introduced into targeted adversarial attacks.This enhances the diversity of gradients,preventing overfitting to white-box models.Lastly,perturbations are applied only within the specified object’s bounding box to reduce the perturbation range,enhancing attack stealthiness.Experiments were conducted on the Microsoft Common Objects in Context(MS COCO)dataset using You Only Look Once version 3(YOLOv3),You Only Look Once version 8(YOLOv8),Faster Region-based Convolutional Neural Networks(Faster R-CNN),and RetinaNet.The results demonstrate a significant advantage of the proposed method in black-box settings.Among these,the success rate of RetinaNet transfer attacks reached a maximum of 82.59%.展开更多
Evolutionary algorithm is time-consuming because of the large number of evolutions and much times of finite element analysis, when it is used to optimize the wing structure of a certain high altitude long endurance un...Evolutionary algorithm is time-consuming because of the large number of evolutions and much times of finite element analysis, when it is used to optimize the wing structure of a certain high altitude long endurance unmanned aviation vehicle(UAV). In order to improve efficiency it is proposed to construct a model management framework to perform the multi-objective optimization design of wing structure. The sufficient accurate approximation models of objective and constraint functions in the wing structure optimization model are built when using the model management framework, therefore in the evolutionary algorithm a number of finite element analyses can he avoided and the satisfactory multi-objective optimization results of the wing structure of the high altitude long endurance UAV are obtained.展开更多
Virtual reality(VR) environment can provide immersive experience to viewers.Under the VR environment, providing a good quality of experience is extremely important.Therefore, in this paper, we present an image quality...Virtual reality(VR) environment can provide immersive experience to viewers.Under the VR environment, providing a good quality of experience is extremely important.Therefore, in this paper, we present an image quality assessment(IQA) study on omnidirectional images. We first build an omnidirectional IQA(OIQA) database, including 16 source images with their corresponding 320 distorted images. We add four commonly encountered distortions. These distortions are JPEG compression, JPEG2000 compression, Gaussian blur, and Gaussian noise. Then we conduct a subjective quality evaluation study in the VR environment based on the OIQA database. Considering that visual attention is more important in VR environment, head and eye movement data are also tracked and collected during the quality rating experiments. The 16 raw and their corresponding distorted images,subjective quality assessment scores, and the head-orientation data and eye-gaze data together constitute the OIQA database. Based on the OIQA database, we test some state-of-the-art full-reference IQA(FR-IQA) measures on equirectangular format or cubic formatomnidirectional images. The results show that applying FR-IQA metrics on cubic format omnidirectional images could improve their performance. The performance of some FR-IQA metrics combining the saliency weight of three different types are also tested based on our database. Some new phenomena different from traditional IQA are observed.展开更多
The principal-subordinate hierarchical multi-objective programming model of initial water rights allocation was developed based on the principle of coordinated and sustainable development of different regions and wate...The principal-subordinate hierarchical multi-objective programming model of initial water rights allocation was developed based on the principle of coordinated and sustainable development of different regions and water sectors within a basin. With the precondition of strictly controlling maximum emissions rights, initial water rights were allocated between the first and the second levels of the hierarchy in order to promote fair and coordinated development across different regions of the basin and coordinated and efficient water use across different water sectors, realize the maximum comprehensive benefits to the basin, promote the unity of quantity and quality of initial water rights allocation, and eliminate water conflict across different regions and water sectors. According to interactive decision-making theory, a principal-subordinate hierarchical interactive iterative algorithm based on the satisfaction degree was developed and used to solve the initial water rights allocation model. A case study verified the validity of the model.展开更多
We present a new definition (Evolving Solutions) for Multi-objective Optimization Problem (MOP) to answer the basic question (what's multi-objective optimal solution?) and advance an asynchronous evolutionary mode...We present a new definition (Evolving Solutions) for Multi-objective Optimization Problem (MOP) to answer the basic question (what's multi-objective optimal solution?) and advance an asynchronous evolutionary model (MINT Model) to solve MOPs. The new theory is based on our understanding of the natural evolution and the analysis of the difference between natural evolution and MOP, thus it is not only different from the Converting Optimization but also different from Pareto Optimization. Some tests prove that our new theory may conquer disadvantages of the upper two methods to some extent.展开更多
Automated operation and artificial intelligence technology have become essential for ensuring the safety, efficiency, and punctuality of railways, with applications such as ATO (Automatic Train Operation). In this stu...Automated operation and artificial intelligence technology have become essential for ensuring the safety, efficiency, and punctuality of railways, with applications such as ATO (Automatic Train Operation). In this study, the authors propose a method to efficiently simulate the kinematic characteristics of railroad vehicles depending on their speed zone. They utilized the function overloading function supported by a programming language and applied the fourth-order Lunge-Kutta method for dynamic simulation. By constructing an object model, the authors calculated vehicle characteristics and TPS and compared them with actual values, verifying that the developed model represents the real-life vehicle characteristics accurately. The study highlights potential improvements in automated driving and energy consumption optimization in the railway industry.展开更多
In the calibration of hydrological models, evaluation criteria are explicitly and quantitatively defined as single-or multi-objective functions when utilizing automatic calibration approaches.In most previous studies,...In the calibration of hydrological models, evaluation criteria are explicitly and quantitatively defined as single-or multi-objective functions when utilizing automatic calibration approaches.In most previous studies, there is a general opinion that no single-objective function can represent all important characteristics of even one specific hydrological variable(e.g., streamflow).Thus hydrologists must turn to multi-objective calibration.In this study, we demonstrated that an optimized single-objective function can compromise multi-response modes(i.e., multi-objective functions) of the hydrograph, which is defined as summation of a power function of the absolute error between observed and simulated streamflow with the exponent of power function optimized for specific watersheds.The new objective function was applied to 196 model parameter estimation experiment(MOPEX) watersheds across the eastern United States using the semi-distributed Xinanjiang hydrological model.The optimized exponent value for each watershed was obtained by targeting four popular objective functions focusing on peak flows, low flows, water balance, and flashiness, respectively.Results showed that the optimized single-objective function can achieve a better hydrograph simulation compared to the traditional single-objective function Nash-Sutcliffe efficiency coefficient for most watersheds, and balance high flow part and low flow part of the hydrograph without substantial differences compared to multi-objective calibration.The proposed optimal single-objective function can be practically adopted in the hydrological modeling if the optimal exponent value could be determined a priori according to hydrological/climatic/landscape characteristics in a specific watershed.展开更多
An important decision for policy makers is selecting strategic petroleum reserve sites. However, policy makers may not choose the most suitable and efficient locations for strategic petroleum reserve(SPR) due to the...An important decision for policy makers is selecting strategic petroleum reserve sites. However, policy makers may not choose the most suitable and efficient locations for strategic petroleum reserve(SPR) due to the complexity in the choice of sites. This paper proposes a multi-objective programming model to determine the optimal locations for China's SPR storage sites. This model considers not only the minimum response time but also the minimum transportation cost based on a series of reasonable assumptions and constraint conditions. The factors influencing SPR sites are identified to determine potential demand points and candidate storage sites. Estimation and suggestions are made for the selection of China's future SPR storage sites based on the results of this model. When the number of petroleum storage sites is less than or equals 25 and the maximum capacity of storage sites is restricted to 10 million tonnes, the model's result best fit for the current layout scheme selected thirteen storage sites in four scenarios. Considering the current status of SPR in China,Tianjin, Qingdao, Dalian, Daqing and Zhanjiang, Chengdu,Xi'an, and Yueyang are suggested to be the candidate locations for the third phase of the construction plan. The locations of petroleum storage sites suggested in this work could be used as a reference for decision makers.展开更多
In this paper, the sugarcane and sugar industry in Thailand is studied. The government determines the sugarcane prices which is based on the two main factors: 1) weight and 2) commercial cane sugar (standard value equ...In this paper, the sugarcane and sugar industry in Thailand is studied. The government determines the sugarcane prices which is based on the two main factors: 1) weight and 2) commercial cane sugar (standard value equal 10 C.C.S.). Usually, the C.C.S. will increase with time and the weight will decrease. The main purpose of this research is to find the optimal harvest time to maximize revenue and minimize gathering cost. The mathematical model is first formulated under the regulations of the Office of the Cane and Sugar Board (OCSB). The -constraints method is then applied to solve the multi-objective mathematical model. The optimal harvest times in the four regions of Thailand (Northern, Central, Eastern, North-Eastern) for crop years 2012/ 13, 2013/14 and 2014/15 are obtained for comparison.展开更多
Structural development defects essentially refer to code structure that violates object-oriented design principles. They make program maintenance challenging and deteriorate software quality over time. Various detecti...Structural development defects essentially refer to code structure that violates object-oriented design principles. They make program maintenance challenging and deteriorate software quality over time. Various detection approaches, ranging from traditional heuristic algorithms to machine learning methods, are used to identify these defects. Ensemble learning methods have strengthened the detection of these defects. However, existing approaches do not simultaneously exploit the capabilities of extracting relevant features from pre-trained models and the performance of neural networks for the classification task. Therefore, our goal has been to design a model that combines a pre-trained model to extract relevant features from code excerpts through transfer learning and a bagging method with a base estimator, a dense neural network, for defect classification. To achieve this, we composed multiple samples of the same size with replacements from the imbalanced dataset MLCQ1. For all the samples, we used the CodeT5-small variant to extract features and trained a bagging method with the neural network Roberta Classification Head to classify defects based on these features. We then compared this model to RandomForest, one of the ensemble methods that yields good results. Our experiments showed that the number of base estimators to use for bagging depends on the defect to be detected. Next, we observed that it was not necessary to use a data balancing technique with our model when the imbalance rate was 23%. Finally, for blob detection, RandomForest had a median MCC value of 0.36 compared to 0.12 for our method. However, our method was predominant in Long Method detection with a median MCC value of 0.53 compared to 0.42 for RandomForest. These results suggest that the performance of ensemble methods in detecting structural development defects is dependent on specific defects.展开更多
Active shape models (ASM), consisting of a shape model and a local gray-level appearance model, can be used to locate the objects in images. In original ASM scheme, the model of object′s gray-level variations is base...Active shape models (ASM), consisting of a shape model and a local gray-level appearance model, can be used to locate the objects in images. In original ASM scheme, the model of object′s gray-level variations is based on the assumption of one-dimensional sampling and searching method. In this work a new way to model the gray-level appearance of the objects is explored, using a two-dimensional sampling and searching technique in a rectangular area around each landmark of object shape. The ASM based on this improvement is compared with the original ASM on an identical medical image set for task of spine localization. Experiments demonstrate that the method produces significantly fast, effective, accurate results for spine localization in medical images.展开更多
An object oriented data modelling in computer aided design (CAD) databases is focused. Starting with the discussion of data modelling requirements for CAD applications, appropriate data modelling features are introdu...An object oriented data modelling in computer aided design (CAD) databases is focused. Starting with the discussion of data modelling requirements for CAD applications, appropriate data modelling features are introduced herewith. A feasible approach to select the “best” data model for an application is to analyze the data which has to be stored in the database. A data model is appropriate for modelling a given task if the information of the application environment can be easily mapped to the data model. Thus, the involved data are analyzed and then object oriented data model appropriate for CAD applications are derived. Based on the reviewed object oriented techniques applied in CAD, object oriented data modelling in CAD is addressed in details. At last 3D geometrical data models and implementation of their data model using the object oriented method are presented.展开更多
文摘Traditional methods for selecting models in experimental data analysis are susceptible to researcher bias, hindering exploration of alternative explanations and potentially leading to overfitting. The Finite Information Quantity (FIQ) approach offers a novel solution by acknowledging the inherent limitations in information processing capacity of physical systems. This framework facilitates the development of objective criteria for model selection (comparative uncertainty) and paves the way for a more comprehensive understanding of phenomena through exploring diverse explanations. This work presents a detailed comparison of the FIQ approach with ten established model selection methods, highlighting the advantages and limitations of each. We demonstrate the potential of FIQ to enhance the objectivity and robustness of scientific inquiry through three practical examples: selecting appropriate models for measuring fundamental constants, sound velocity, and underwater electrical discharges. Further research is warranted to explore the full applicability of FIQ across various scientific disciplines.
基金supported by the National Natural Science Foundation of China(Grant.No.31901400)the Fundamental Research Funds for the Provincial Universities of Zhejiang(Grant.No.2023YW09).
文摘Persistent low temperatures in autumn and winter have a huge impact on crops,and greenhouses rely on solar radiation and heating equipment to meet the required indoor temperature.But the energy cost of frequent operation of the actuators is exceptionally high.The relationship between greenhouse environmental control accuracy and energy consumption is one of the key issues faced in greenhouse research.In this study,a non-linear model predictive control method with an improved objective function was proposed.The improved objective function used tolerance intervals and boundary constraints to optimize the objective evaluation.The nonlinear model predictive control(NMPC)controller design was based on the wavelet neural network(WNN)data-driven model and applied the interior point method to solve the optimal solution of the objective function control,thus balancing the contradiction between energy consumption and control precision.The simulation results showed that the improved NMPC method reduced energy consumption by 21.02%and 9.54%compared with the model predictive control and regular NMPC,which proved the method achieved good results in a low-temperature environment.This research can provide an important reference for the field as it offers a more efficient approach to managing greenhouse climates,potentially leading to substantial energy savings and enhanced sustainability in agricultural practices.
文摘An effective model(image to wrinkle, ITW) for garment fitting evaluation is presented. The proposed model is to improve the accuracy of garment fitting evaluation based on dressing image. The ITW model is an objective evaluation model of fitting based on the wrinkle index of dressing image. The ITW model consists of two main steps, the gray curve-fitting(GCF) threshold segmentation algorithm and Canny edge detection algorithm. In the ITW model, three types of wrinkle trends are defined. And the network dressing image is evaluated and simulated by three quantitative indexes: wrinkle number, wrinkle regularity and wrinkle unevenness. Finally, the fitness of three kinds of dress effects(tight, fit and loose) is quantified by objective fitting evaluation model.
基金This work was supported,in part,by the National Nature Science Foundation of China under grant numbers 62272236in part,by the Natural Science Foundation of Jiangsu Province under grant numbers BK20201136,BK20191401in part,by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)fund.
文摘LIDAR point cloud-based 3D object detection aims to sense the surrounding environment by anchoring objects with the Bounding Box(BBox).However,under the three-dimensional space of autonomous driving scenes,the previous object detection methods,due to the pre-processing of the original LIDAR point cloud into voxels or pillars,lose the coordinate information of the original point cloud,slow detection speed,and gain inaccurate bounding box positioning.To address the issues above,this study proposes a new two-stage network structure to extract point cloud features directly by PointNet++,which effectively preserves the original point cloud coordinate information.To improve the detection accuracy,a shell-based modeling method is proposed.It roughly determines which spherical shell the coordinates belong to.Then,the results are refined to ground truth,thereby narrowing the localization range and improving the detection accuracy.To improve the recall of 3D object detection with bounding boxes,this paper designs a self-attention module for 3D object detection with a skip connection structure.Some of these features are highlighted by weighting them on the feature dimensions.After training,it makes the feature weights that are favorable for object detection get larger.Thus,the extracted features are more adapted to the object detection task.Extensive comparison experiments and ablation experiments conducted on the KITTI dataset verify the effectiveness of our proposed method in improving recall and precision.
基金Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2023R191)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code:(22UQU4310373DSR61)This study is supported via funding from Prince Sattam bin Abdulaziz University project number(PSAU/2023/R/1444).
文摘Artificial Intelligence(AI)and Computer Vision(CV)advancements have led to many useful methodologies in recent years,particularly to help visually-challenged people.Object detection includes a variety of challenges,for example,handlingmultiple class images,images that get augmented when captured by a camera and so on.The test images include all these variants as well.These detection models alert them about their surroundings when they want to walk independently.This study compares four CNN-based pre-trainedmodels:ResidualNetwork(ResNet-50),Inception v3,DenseConvolutional Network(DenseNet-121),and SqueezeNet,predominantly used in image recognition applications.Based on the analysis performed on these test images,the study infers that Inception V3 outperformed other pre-trained models in terms of accuracy and speed.To further improve the performance of the Inception v3 model,the thermal exchange optimization(TEO)algorithm is applied to tune the hyperparameters(number of epochs,batch size,and learning rate)showing the novelty of the work.Better accuracy was achieved owing to the inclusion of an auxiliary classifier as a regularizer,hyperparameter optimizer,and factorization approach.Additionally,Inception V3 can handle images of different sizes.This makes Inception V3 the optimum model for assisting visually challenged people in real-world communication when integrated with Internet of Things(IoT)-based devices.
文摘Based on auditory peripheral simulation model, a new Sound Quality Objective Evaluation (SQOE) method is presented,which can be used to model and analyze the impacts of head, shoulder and other parts of human body on sound wave trans-mission.This method employs the artificial head technique, in which the head related transfer function was taken into account tothe outer ear simulation phase.First, a bionic artificial head was designed as the outer ear model with considering the outersound field in view of theory and physical explanations.Then the auditory peripheral simulation model was built, which mimicsthe physiological functions of the human hearing, simulating the acoustic signal transfer process and conversion mechanismsfrom the free field to the peripheral auditory system.Finally, performance comparison was made between the proposed SQOEmethod and ArtemiS software, and the verifications of subjective and objective related analysis were made.Results show thatthe proposed method was economical, simple, and with good evaluation quality.
基金supported by National Natural Science Foundation of China (Grant No.50875101)National Hi-tech Research and Development Program of China (863 Program,Grant No.2007AA04Z186)
文摘As two independent problems,scheduling for parts fabrication line and sequencing for mixed-model assembly line have been addressed respectively by many researchers.However,these two problems should be considered simultaneously to improve the efficiency of the whole fabrication/assembly systems.By far,little research effort is devoted to sequencing problems for mixed-model fabrication/assembly systems.This paper is concerned about the sequencing problems in pull production systems which are composed of one mixed-model assembly line with limited intermediate buffers and two flexible parts fabrication flow lines with identical parallel machines and limited intermediate buffers.Two objectives are considered simultaneously:minimizing the total variation in parts consumption in the assembly line and minimizing the total makespan cost in the fabrication/assembly system.The integrated optimization framework,mathematical models and the method to construct the complete schedules for the fabrication lines according to the production sequences for the first stage in fabrication lines are presented.Since the above problems are non-deterministic polynomial-hard(NP-hard),a modified multi-objective genetic algorithm is proposed for solving the models,in which a method to generate the production sequences for the fabrication lines from the production sequences for the assembly line and a method to generate the initial population are put forward,new selection,crossover and mutation operators are designed,and Pareto ranking method and sharing function method are employed to evaluate the individuals' fitness.The feasibility and efficiency of the multi-objective genetic algorithm is shown by computational comparison with a multi-objective simulated annealing algorithm.The sequencing problems for mixed-model production systems can be solved effectively by the proposed modified multi-objective genetic algorithm.
文摘Object detection finds wide application in various sectors,including autonomous driving,industry,and healthcare.Recent studies have highlighted the vulnerability of object detection models built using deep neural networks when confronted with carefully crafted adversarial examples.This not only reveals their shortcomings in defending against malicious attacks but also raises widespread concerns about the security of existing systems.Most existing adversarial attack strategies focus primarily on image classification problems,failing to fully exploit the unique characteristics of object detectionmodels,thus resulting in widespread deficiencies in their transferability.Furthermore,previous research has predominantly concentrated on the transferability issues of non-targeted attacks,whereas enhancing the transferability of targeted adversarial examples presents even greater challenges.Traditional attack techniques typically employ cross-entropy as a loss measure,iteratively adjusting adversarial examples to match target categories.However,their inherent limitations restrict their broad applicability and transferability across different models.To address the aforementioned challenges,this study proposes a novel targeted adversarial attack method aimed at enhancing the transferability of adversarial samples across object detection models.Within the framework of iterative attacks,we devise a new objective function designed to mitigate consistency issues arising from cumulative noise and to enhance the separation between target and non-target categories(logit margin).Secondly,a data augmentation framework incorporating random erasing and color transformations is introduced into targeted adversarial attacks.This enhances the diversity of gradients,preventing overfitting to white-box models.Lastly,perturbations are applied only within the specified object’s bounding box to reduce the perturbation range,enhancing attack stealthiness.Experiments were conducted on the Microsoft Common Objects in Context(MS COCO)dataset using You Only Look Once version 3(YOLOv3),You Only Look Once version 8(YOLOv8),Faster Region-based Convolutional Neural Networks(Faster R-CNN),and RetinaNet.The results demonstrate a significant advantage of the proposed method in black-box settings.Among these,the success rate of RetinaNet transfer attacks reached a maximum of 82.59%.
文摘Evolutionary algorithm is time-consuming because of the large number of evolutions and much times of finite element analysis, when it is used to optimize the wing structure of a certain high altitude long endurance unmanned aviation vehicle(UAV). In order to improve efficiency it is proposed to construct a model management framework to perform the multi-objective optimization design of wing structure. The sufficient accurate approximation models of objective and constraint functions in the wing structure optimization model are built when using the model management framework, therefore in the evolutionary algorithm a number of finite element analyses can he avoided and the satisfactory multi-objective optimization results of the wing structure of the high altitude long endurance UAV are obtained.
文摘Virtual reality(VR) environment can provide immersive experience to viewers.Under the VR environment, providing a good quality of experience is extremely important.Therefore, in this paper, we present an image quality assessment(IQA) study on omnidirectional images. We first build an omnidirectional IQA(OIQA) database, including 16 source images with their corresponding 320 distorted images. We add four commonly encountered distortions. These distortions are JPEG compression, JPEG2000 compression, Gaussian blur, and Gaussian noise. Then we conduct a subjective quality evaluation study in the VR environment based on the OIQA database. Considering that visual attention is more important in VR environment, head and eye movement data are also tracked and collected during the quality rating experiments. The 16 raw and their corresponding distorted images,subjective quality assessment scores, and the head-orientation data and eye-gaze data together constitute the OIQA database. Based on the OIQA database, we test some state-of-the-art full-reference IQA(FR-IQA) measures on equirectangular format or cubic formatomnidirectional images. The results show that applying FR-IQA metrics on cubic format omnidirectional images could improve their performance. The performance of some FR-IQA metrics combining the saliency weight of three different types are also tested based on our database. Some new phenomena different from traditional IQA are observed.
基金supported by the Public Welfare Industry Special Fund Project of the Ministry of Water Resources of China (Grant No. 200701028)the Humanities and Social Science Foundation Program of Hohai University (Grant No. 2008421411)
文摘The principal-subordinate hierarchical multi-objective programming model of initial water rights allocation was developed based on the principle of coordinated and sustainable development of different regions and water sectors within a basin. With the precondition of strictly controlling maximum emissions rights, initial water rights were allocated between the first and the second levels of the hierarchy in order to promote fair and coordinated development across different regions of the basin and coordinated and efficient water use across different water sectors, realize the maximum comprehensive benefits to the basin, promote the unity of quantity and quality of initial water rights allocation, and eliminate water conflict across different regions and water sectors. According to interactive decision-making theory, a principal-subordinate hierarchical interactive iterative algorithm based on the satisfaction degree was developed and used to solve the initial water rights allocation model. A case study verified the validity of the model.
基金Supported by the National Natural Science Foundation of China(70071042,60073043,60133010)
文摘We present a new definition (Evolving Solutions) for Multi-objective Optimization Problem (MOP) to answer the basic question (what's multi-objective optimal solution?) and advance an asynchronous evolutionary model (MINT Model) to solve MOPs. The new theory is based on our understanding of the natural evolution and the analysis of the difference between natural evolution and MOP, thus it is not only different from the Converting Optimization but also different from Pareto Optimization. Some tests prove that our new theory may conquer disadvantages of the upper two methods to some extent.
文摘Automated operation and artificial intelligence technology have become essential for ensuring the safety, efficiency, and punctuality of railways, with applications such as ATO (Automatic Train Operation). In this study, the authors propose a method to efficiently simulate the kinematic characteristics of railroad vehicles depending on their speed zone. They utilized the function overloading function supported by a programming language and applied the fourth-order Lunge-Kutta method for dynamic simulation. By constructing an object model, the authors calculated vehicle characteristics and TPS and compared them with actual values, verifying that the developed model represents the real-life vehicle characteristics accurately. The study highlights potential improvements in automated driving and energy consumption optimization in the railway industry.
基金Under the auspices of National Key Research and Development Program of China(No.2016YFC0402701)National Natural Science Foundation of China(No.51825902)
文摘In the calibration of hydrological models, evaluation criteria are explicitly and quantitatively defined as single-or multi-objective functions when utilizing automatic calibration approaches.In most previous studies, there is a general opinion that no single-objective function can represent all important characteristics of even one specific hydrological variable(e.g., streamflow).Thus hydrologists must turn to multi-objective calibration.In this study, we demonstrated that an optimized single-objective function can compromise multi-response modes(i.e., multi-objective functions) of the hydrograph, which is defined as summation of a power function of the absolute error between observed and simulated streamflow with the exponent of power function optimized for specific watersheds.The new objective function was applied to 196 model parameter estimation experiment(MOPEX) watersheds across the eastern United States using the semi-distributed Xinanjiang hydrological model.The optimized exponent value for each watershed was obtained by targeting four popular objective functions focusing on peak flows, low flows, water balance, and flashiness, respectively.Results showed that the optimized single-objective function can achieve a better hydrograph simulation compared to the traditional single-objective function Nash-Sutcliffe efficiency coefficient for most watersheds, and balance high flow part and low flow part of the hydrograph without substantial differences compared to multi-objective calibration.The proposed optimal single-objective function can be practically adopted in the hydrological modeling if the optimal exponent value could be determined a priori according to hydrological/climatic/landscape characteristics in a specific watershed.
基金supported by the National Natural Science Foundation of China (Nos. 71273277/71373285/71303258)the Philosophy and Social Sciences Major Research Project of the Ministry of Education (No. 11JZD048)
文摘An important decision for policy makers is selecting strategic petroleum reserve sites. However, policy makers may not choose the most suitable and efficient locations for strategic petroleum reserve(SPR) due to the complexity in the choice of sites. This paper proposes a multi-objective programming model to determine the optimal locations for China's SPR storage sites. This model considers not only the minimum response time but also the minimum transportation cost based on a series of reasonable assumptions and constraint conditions. The factors influencing SPR sites are identified to determine potential demand points and candidate storage sites. Estimation and suggestions are made for the selection of China's future SPR storage sites based on the results of this model. When the number of petroleum storage sites is less than or equals 25 and the maximum capacity of storage sites is restricted to 10 million tonnes, the model's result best fit for the current layout scheme selected thirteen storage sites in four scenarios. Considering the current status of SPR in China,Tianjin, Qingdao, Dalian, Daqing and Zhanjiang, Chengdu,Xi'an, and Yueyang are suggested to be the candidate locations for the third phase of the construction plan. The locations of petroleum storage sites suggested in this work could be used as a reference for decision makers.
文摘In this paper, the sugarcane and sugar industry in Thailand is studied. The government determines the sugarcane prices which is based on the two main factors: 1) weight and 2) commercial cane sugar (standard value equal 10 C.C.S.). Usually, the C.C.S. will increase with time and the weight will decrease. The main purpose of this research is to find the optimal harvest time to maximize revenue and minimize gathering cost. The mathematical model is first formulated under the regulations of the Office of the Cane and Sugar Board (OCSB). The -constraints method is then applied to solve the multi-objective mathematical model. The optimal harvest times in the four regions of Thailand (Northern, Central, Eastern, North-Eastern) for crop years 2012/ 13, 2013/14 and 2014/15 are obtained for comparison.
文摘Structural development defects essentially refer to code structure that violates object-oriented design principles. They make program maintenance challenging and deteriorate software quality over time. Various detection approaches, ranging from traditional heuristic algorithms to machine learning methods, are used to identify these defects. Ensemble learning methods have strengthened the detection of these defects. However, existing approaches do not simultaneously exploit the capabilities of extracting relevant features from pre-trained models and the performance of neural networks for the classification task. Therefore, our goal has been to design a model that combines a pre-trained model to extract relevant features from code excerpts through transfer learning and a bagging method with a base estimator, a dense neural network, for defect classification. To achieve this, we composed multiple samples of the same size with replacements from the imbalanced dataset MLCQ1. For all the samples, we used the CodeT5-small variant to extract features and trained a bagging method with the neural network Roberta Classification Head to classify defects based on these features. We then compared this model to RandomForest, one of the ensemble methods that yields good results. Our experiments showed that the number of base estimators to use for bagging depends on the defect to be detected. Next, we observed that it was not necessary to use a data balancing technique with our model when the imbalance rate was 23%. Finally, for blob detection, RandomForest had a median MCC value of 0.36 compared to 0.12 for our method. However, our method was predominant in Long Method detection with a median MCC value of 0.53 compared to 0.42 for RandomForest. These results suggest that the performance of ensemble methods in detecting structural development defects is dependent on specific defects.
文摘Active shape models (ASM), consisting of a shape model and a local gray-level appearance model, can be used to locate the objects in images. In original ASM scheme, the model of object′s gray-level variations is based on the assumption of one-dimensional sampling and searching method. In this work a new way to model the gray-level appearance of the objects is explored, using a two-dimensional sampling and searching technique in a rectangular area around each landmark of object shape. The ASM based on this improvement is compared with the original ASM on an identical medical image set for task of spine localization. Experiments demonstrate that the method produces significantly fast, effective, accurate results for spine localization in medical images.
文摘An object oriented data modelling in computer aided design (CAD) databases is focused. Starting with the discussion of data modelling requirements for CAD applications, appropriate data modelling features are introduced herewith. A feasible approach to select the “best” data model for an application is to analyze the data which has to be stored in the database. A data model is appropriate for modelling a given task if the information of the application environment can be easily mapped to the data model. Thus, the involved data are analyzed and then object oriented data model appropriate for CAD applications are derived. Based on the reviewed object oriented techniques applied in CAD, object oriented data modelling in CAD is addressed in details. At last 3D geometrical data models and implementation of their data model using the object oriented method are presented.