This study examines vishing, a form of social engineering scam using voice communication to deceive individuals into revealing sensitive information or losing money. With the rise of smartphone usage, people are more ...This study examines vishing, a form of social engineering scam using voice communication to deceive individuals into revealing sensitive information or losing money. With the rise of smartphone usage, people are more susceptible to vishing attacks. The proposed Emoti-Shing model analyzes potential victims’ emotions using Hidden Markov Models to track vishing scams by examining the emotional content of phone call audio conversations. This approach aims to detect vishing scams using biological features of humans, specifically emotions, which cannot be easily masked or spoofed. Experimental results on 30 generated emotions indicate the potential for increased vishing scam detection through this approach.展开更多
The existing ontology mapping methods mainly consider the structure of the ontology and the mapping precision is lower to some extent. According to statistical theory, a method which is based on the hidden Markov mode...The existing ontology mapping methods mainly consider the structure of the ontology and the mapping precision is lower to some extent. According to statistical theory, a method which is based on the hidden Markov model is presented to establish ontology mapping. This method considers concepts as models, and attributes, relations, hierarchies, siblings and rules of the concepts as the states of the HMM, respectively. The models corresponding to the concepts are built by virtue of learning many training instances. On the basis of the best state sequence that is decided by the Viterbi algorithm and corresponding to the instance, mapping between the concepts can be established by maximum likelihood estimation. Experimental results show that this method can improve the precision of heterogeneous ontology mapping effectively.展开更多
A parameter estimation algorithm of the continuous hidden Markov model isintroduced and the rigorous proof of its convergence is also included. The algorithm uses theViterbi algorithm instead of K-means clustering use...A parameter estimation algorithm of the continuous hidden Markov model isintroduced and the rigorous proof of its convergence is also included. The algorithm uses theViterbi algorithm instead of K-means clustering used in the segmental K-means algorithm to determineoptimal state and branch sequences. Based on the optimal sequence, parameters are estimated withmaximum-likelihood as objective functions. Comparisons with the traditional Baum-Welch and segmentalK-means algorithms on various aspects, such as optimal objectives and fundamentals, are made. Allthree algorithms are applied to face recognition. Results indicate that the proposed algorithm canreduce training time with comparable recognition rate and it is least sensitive to the training set.So its average performance exceeds the other two.展开更多
An integrated framework is presented to represent and classify process data for on-line identifying abnormal operating conditions. It is based on pattern recognition principles and consists of a feature extraction ste...An integrated framework is presented to represent and classify process data for on-line identifying abnormal operating conditions. It is based on pattern recognition principles and consists of a feature extraction step, by which wavelet transform and principal component analysis are used to capture the inherent characteristics from process measurements, followed by a similarity assessment step using hidden Markov model (HMM) for pattern comparison. In most previous cases, a fixed-length moving window was employed to track dynamic data, and often failed to capture enough information for each fault and sometimes even deteriorated the diagnostic performance. A variable moving window, the length of which is modified with time, is introduced in this paper and case studies on the Tennessee Eastman process illustrate the potential of the proposed method.展开更多
Frame erasure concealment is studied to solve the problem of rapid speech quality reduction due to the loss of speech parameters during speech transmission. A large hidden Markov model is applied to model the immittan...Frame erasure concealment is studied to solve the problem of rapid speech quality reduction due to the loss of speech parameters during speech transmission. A large hidden Markov model is applied to model the immittance spectral frequency (ISF) parameters in AMR-WB codec to optimally estimate the lost ISFs based on the minimum mean square error (MMSE) rule. The estimated ISFs are weighted with the ones of their previous neighbors to smooth the speech, resulting in the actual concealed ISF vectors. They are used instead of the lost ISFs in the speech synthesis on the receiver. Comparison is made between the speech concealed by this algorithm and by Annex I of G. 722. 2 specification, and simulation shows that the proposed concealment algorithm can lead to better performance in terms of frequency-weighted spectral distortion and signal-to-noise ratio compared to the baseline method, with an increase of 2.41 dB in signal-to-noise ratio (SNR) and a reduction of 0. 885 dB in frequency-weighted spectral distortion.展开更多
In order to overcome defects of the classical hidden Markov model (HMM), Markov family model (MFM), a new statistical model was proposed. Markov family model was applied to speech recognition and natural language proc...In order to overcome defects of the classical hidden Markov model (HMM), Markov family model (MFM), a new statistical model was proposed. Markov family model was applied to speech recognition and natural language processing. The speaker independently continuous speech recognition experiments and the part-of-speech tagging experiments show that Markov family model has higher performance than hidden Markov model. The precision is enhanced from 94.642% to 96.214% in the part-of-speech tagging experiments, and the work rate is reduced by 11.9% in the speech recognition experiments with respect to HMM baseline system.展开更多
This paper presents an anomaly detection approach to detect intrusions into computer systems. In this approach, a hierarchical hidden Markov model (HHMM) is used to represent a temporal profile of normal behavior in...This paper presents an anomaly detection approach to detect intrusions into computer systems. In this approach, a hierarchical hidden Markov model (HHMM) is used to represent a temporal profile of normal behavior in a computer system. The HHMM of the norm profile is learned from historic data of the system's normal behavior. The observed behavior of the system is analyzed to infer the probability that the HHMM of the norm profile supports the observed behavior. A low probability of support indicates an anomalous behavior that may result from intrusive activities. The model was implemented and tested on the UNIX system call sequences collected by the University of New Mexico group. The testing results showed that the model can clearly identify the anomaly activities and has a better performance than hidden Markov model.展开更多
Aiming at solving the problems of machine-learning in fault diagnosis, a diagnosis approach is proposed based on hidden Markov model (HMM) and support vector machine (SVM). HMM usually describes intra-class measur...Aiming at solving the problems of machine-learning in fault diagnosis, a diagnosis approach is proposed based on hidden Markov model (HMM) and support vector machine (SVM). HMM usually describes intra-class measure well and is good at dealing with continuous dynamic signals. SVM expresses inter-class difference effectively and has perfect classify ability. This approach is built on the merit of HMM and SVM. Then, the experiment is made in the transmission system of a helicopter. With the features extracted from vibration signals in gearbox, this HMM-SVM based diagnostic approach is trained and used to monitor and diagnose the gearbox's faults. The result shows that this method is better than HMM-based and SVM-based diagnosing methods in higher diagnostic accuracy with small training samples.展开更多
Epilepsy is one of the most prevalent neurological disorders affecting 70 million people worldwide.The present work is focused on designing an efficient algorithm for automatic seizure detection by using electroenceph...Epilepsy is one of the most prevalent neurological disorders affecting 70 million people worldwide.The present work is focused on designing an efficient algorithm for automatic seizure detection by using electroencephalogram(EEG) as a noninvasive procedure to record neuronal activities in the brain.EEG signals' underlying dynamics are extracted to differentiate healthy and seizure EEG signals.Shannon entropy,collision entropy,transfer entropy,conditional probability,and Hjorth parameter features are extracted from subbands of tunable Q wavelet transform.Efficient decomposition level for different feature vector is selected using the Kruskal-Wallis test to achieve good classification.Different features are combined using the discriminant correlation analysis fusion technique to form a single fused feature vector.The accuracy of the proposed approach is higher for Q=2 and J=10.Transfer entropy is observed to be significant for different class combinations.Proposed approach achieved 100% accuracy in classifying healthy-seizure EEG signal using simple and robust features and hidden Markov model with less computation time.The proposed approach efficiency is evaluated in classifying seizure and non-seizure surface EEG signals.The system has achieved 96.87% accuracy in classifying surface seizure and nonseizure EEG segments using efficient features extracted from different J level.展开更多
Translation software has become an important tool for communication between different languages.People’s requirements for translation are higher and higher,mainly reflected in people’s desire for barrier free cultur...Translation software has become an important tool for communication between different languages.People’s requirements for translation are higher and higher,mainly reflected in people’s desire for barrier free cultural exchange.With a large corpus,the performance of statistical machine translation based on words and phrases is limited due to the small size of modeling units.Previous statistical methods rely primarily on the size of corpus and number of its statistical results to avoid ambiguity in translation,ignoring context.To support the ongoing improvement of translation methods built upon deep learning,we propose a translation algorithm based on the Hidden Markov Model to improve the use of context in the process of translation.During translation,our Hidden Markov Model prediction chain selects a number of phrases with the highest result probability to form a sentence.The collection of all of the generated sentences forms a topic sequence.Using probabilities and article sequences determined from the training set,our method again applies the Hidden Markov Model to form the final translation to improve the context relevance in the process of translation.This algorithm improves the accuracy of translation,avoids the combination of invalid words,and enhances the readability and meaning of the resulting translation.展开更多
With the increasing availability of precipitation radar data from space,enhancement of the resolution of spaceborne precipitation observations is important,particularly for hazard prediction and climate modeling at lo...With the increasing availability of precipitation radar data from space,enhancement of the resolution of spaceborne precipitation observations is important,particularly for hazard prediction and climate modeling at local scales relevant to extreme precipitation intensities and gradients.In this paper,the statistical characteristics of radar precipitation reflectivity data are studied and modeled using a hidden Markov tree(HMT)in the wavelet domain.Then,a high-resolution interpolation algorithm is proposed for spaceborne radar reflectivity using the HMT model as prior information.Owing to the small and transient storm elements embedded in the larger and slowly varying elements,the radar precipitation data exhibit distinct multiscale statistical properties,including a non-Gaussian structure and scale-to-scale dependency.An HMT model can capture well the statistical properties of radar precipitation,where the wavelet coefficients in each sub-band are characterized as a Gaussian mixture model(GMM),and the wavelet coefficients from the coarse scale to fine scale are described using a multiscale Markov process.The state probabilities of the GMM are determined using the expectation maximization method,and other parameters,for instance,the variance decay parameters in the HMT model are learned and estimated from high-resolution ground radar reflectivity images.Using the prior model,the wavelet coefficients at finer scales are estimated using local Wiener filtering.The interpolation algorithm is validated using data from the precipitation radar onboard the Tropical Rainfall Measurement Mission satellite,and the reconstructed results are found to be able to enhance the spatial resolution while optimally reproducing the local extremes and gradients.展开更多
In recent years, the accuracy of speech recognition (SR) has been one of the most active areas of research. Despite that SR systems are working reasonably well in quiet conditions, they still suffer severe performance...In recent years, the accuracy of speech recognition (SR) has been one of the most active areas of research. Despite that SR systems are working reasonably well in quiet conditions, they still suffer severe performance degradation in noisy conditions or distorted channels. It is necessary to search for more robust feature extraction methods to gain better performance in adverse conditions. This paper investigates the performance of conventional and new hybrid speech feature extraction algorithms of Mel Frequency Cepstrum Coefficient (MFCC), Linear Prediction Coding Coefficient (LPCC), perceptual linear production (PLP), and RASTA-PLP in noisy conditions through using multivariate Hidden Markov Model (HMM) classifier. The behavior of the proposal system is evaluated using TIDIGIT human voice dataset corpora, recorded from 208 different adult speakers in both training and testing process. The theoretical basis for speech processing and classifier procedures were presented, and the recognition results were obtained based on word recognition rate.展开更多
The vibration signals of an aeroengine are a very important information source for fault diagnosis and condition monitoring. Considering the nonstationarity and low repeatability of the vibration signals, it is necess...The vibration signals of an aeroengine are a very important information source for fault diagnosis and condition monitoring. Considering the nonstationarity and low repeatability of the vibration signals, it is necessary to find a corresponding method for feature extraction and fault recognition. In this paper, based on Independent Component Analysis (ICA) and the Discrete Hidden Markov Model (DHMM), a new fault diagnosis approach named ICA-DHMM is proposed. In this method, ICA separates the source signals from the mixed vibration signals and then extracts features from them, DHMM works as a classifier to recognize the conditions of the aeroengine. Compared with the DHMM, which use the amplitude spectrum of mixed signals as feature parameters, experimental results show this method has higher diagnosis accuracy.展开更多
In this letter, we briefly describe a program of self adapting hidden Markov model (SA HMM) and its application in multiple sequences alignment. Program consists of two stage optimisation algorithm.
A novel algorithm for Bayesian document segmentation is proposed based on the wavelet domain hidden Markov tree (HMT) model. Once the parameters of model are known, according to the sequential maximum a posterior prob...A novel algorithm for Bayesian document segmentation is proposed based on the wavelet domain hidden Markov tree (HMT) model. Once the parameters of model are known, according to the sequential maximum a posterior probability (SMAP) rule, firstly, the likelihood probability of HMT model for each pattern is computed from fine to coarse procedure. Then, the interscale state transition probability is solved using Expectation Maximum (EM) algorithm based on hybrid-quadtree and multiscale context information is fused from coarse to fine procedure. In order to get pixel-level segmentation, the redundant wavelet domain Gaussian mixture model (GMM) is employed to formulate pixel-level statistical property. The experiment results show that the proposed scheme is feasible and robust.展开更多
This paper investigates the feedback control of hidden Markov process(HMP) in the face of loss of some observation processes.The control action facilitates or impedes some particular transitions from an inferred cur...This paper investigates the feedback control of hidden Markov process(HMP) in the face of loss of some observation processes.The control action facilitates or impedes some particular transitions from an inferred current state in the attempt to maximize the probability that the HMP is driven to a desirable absorbing state.This control problem is motivated by the need for judicious resource allocation to win an air operation involving two opposing forces.The effectiveness of a receding horizon control scheme based on the inferred discrete state is examined.Tolerance to loss of sensors that help determine the state of the air operation is achieved through a decentralized scheme that estimates a continuous state from measurements of linear models with additive noise.The discrete state of the HMP is identified using three well-known detection schemes.The sub-optimal control policy based on the detected state is implemented on-line in a closed-loop,where the air operation is simulated as a stochastic process with SimEvents,and the measurement process is simulated for a range of single sensor loss rates.展开更多
A new feature extraction method based on 2D-hidden Markov model(HMM) is proposed. Meanwhile the time index and frequency index are introduced to represent the new features. The new feature extraction strategy is tes...A new feature extraction method based on 2D-hidden Markov model(HMM) is proposed. Meanwhile the time index and frequency index are introduced to represent the new features. The new feature extraction strategy is tested by the experimental data that collected from Bently rotor experiment system. The results show that this methodology is very effective to extract the feature of vibration signals in the rotor speed-up course and can be extended to other non-stationary signal analysis fields in the future.展开更多
Because performance parameters of gear have degradation,a method is proposed to recognize and analyze its faults using the hidden Markov model( HMM). In this method,firstly,the delayed correlation-envelope method is u...Because performance parameters of gear have degradation,a method is proposed to recognize and analyze its faults using the hidden Markov model( HMM). In this method,firstly,the delayed correlation-envelope method is used to extract features from vibration signals. Then,HMMs are trained respectively using data under normal condition,gear root crack condition and gear root breaking condition. Further,the trained HMMs are used in pattern recognition and model assessment. Finally,the results from standard HMM and the proposed method are compared, which shows that the proposed methodology is feasible and effective.展开更多
Hidden Maxkov models (HMMs) have been used to model burst error sources of wireless channels. This paper proposes a hybrid method of using genetic algorithm (GA) and simulated annealing (SA) to train HMM for dis...Hidden Maxkov models (HMMs) have been used to model burst error sources of wireless channels. This paper proposes a hybrid method of using genetic algorithm (GA) and simulated annealing (SA) to train HMM for discrete channel modelling. The proposed method is compared with pure GA, and experimental results show that the HMMs trained by the hybrid method can better describe the error sequences due to SA's ability of facilitating hill-climbing at the later stage of the search. The burst error statistics of the HMMs trained by the proposed method and the corresponding error sequences are also presented to validate the proposed method.展开更多
With the emergence of the Internet of Things(IoT), there has been a proliferation of urban studies using big data. Yet, another type of urban research innovations that involve interdisciplinary thinking and methods re...With the emergence of the Internet of Things(IoT), there has been a proliferation of urban studies using big data. Yet, another type of urban research innovations that involve interdisciplinary thinking and methods remains underdeveloped. This paper represents an attempt to adopt a Hidden Markov Model(HMM) toolbox developed in Computer Science for the analysis of eye movement patterns in Psychology to answer urban mobility questions in Geography. The main idea is that both people’s eye movements and travel behavior follow the stop-travel-stop pattern, which can be summarized using HMM. Methodological challenges were addressed by adjusting the HMM to analyze territory-wide travel survey data in Hong Kong, China. By using the adjusted toolbox to identify the activitytravel patterns of working adults in Hong Kong, two distinctive groups of balanced(38.4%) and work-oriented(61.6%) lifestyles were identified. With some notable exceptions, working adults living in the urban core were having a more work-oriented lifestyle. Those with a balanced lifestyle were having a relatively compact zone of non-work activities around their homes but a relatively long commuting distance. Furthermore, working females tend to spend more time at home than their counterparts, regardless of their marital status and lifestyle. Overall, this interdisciplinary research demonstrates an attempt to integrate spatial, temporal, and sequential information for understanding people’s behavior in urban mobility research.展开更多
文摘This study examines vishing, a form of social engineering scam using voice communication to deceive individuals into revealing sensitive information or losing money. With the rise of smartphone usage, people are more susceptible to vishing attacks. The proposed Emoti-Shing model analyzes potential victims’ emotions using Hidden Markov Models to track vishing scams by examining the emotional content of phone call audio conversations. This approach aims to detect vishing scams using biological features of humans, specifically emotions, which cannot be easily masked or spoofed. Experimental results on 30 generated emotions indicate the potential for increased vishing scam detection through this approach.
基金The Weaponry Equipment Foundation of PLA Equipment Ministry (No51406020105JB8103)
文摘The existing ontology mapping methods mainly consider the structure of the ontology and the mapping precision is lower to some extent. According to statistical theory, a method which is based on the hidden Markov model is presented to establish ontology mapping. This method considers concepts as models, and attributes, relations, hierarchies, siblings and rules of the concepts as the states of the HMM, respectively. The models corresponding to the concepts are built by virtue of learning many training instances. On the basis of the best state sequence that is decided by the Viterbi algorithm and corresponding to the instance, mapping between the concepts can be established by maximum likelihood estimation. Experimental results show that this method can improve the precision of heterogeneous ontology mapping effectively.
文摘A parameter estimation algorithm of the continuous hidden Markov model isintroduced and the rigorous proof of its convergence is also included. The algorithm uses theViterbi algorithm instead of K-means clustering used in the segmental K-means algorithm to determineoptimal state and branch sequences. Based on the optimal sequence, parameters are estimated withmaximum-likelihood as objective functions. Comparisons with the traditional Baum-Welch and segmentalK-means algorithms on various aspects, such as optimal objectives and fundamentals, are made. Allthree algorithms are applied to face recognition. Results indicate that the proposed algorithm canreduce training time with comparable recognition rate and it is least sensitive to the training set.So its average performance exceeds the other two.
基金Supported by National High-Tech Program of China (No. 2001AA413110).
文摘An integrated framework is presented to represent and classify process data for on-line identifying abnormal operating conditions. It is based on pattern recognition principles and consists of a feature extraction step, by which wavelet transform and principal component analysis are used to capture the inherent characteristics from process measurements, followed by a similarity assessment step using hidden Markov model (HMM) for pattern comparison. In most previous cases, a fixed-length moving window was employed to track dynamic data, and often failed to capture enough information for each fault and sometimes even deteriorated the diagnostic performance. A variable moving window, the length of which is modified with time, is introduced in this paper and case studies on the Tennessee Eastman process illustrate the potential of the proposed method.
基金The Science Foundation of Southeast University(No.XJ0704268)the Natural Science Foundation of the Education Department of Anhui Province(No.KJ2007B088)
文摘Frame erasure concealment is studied to solve the problem of rapid speech quality reduction due to the loss of speech parameters during speech transmission. A large hidden Markov model is applied to model the immittance spectral frequency (ISF) parameters in AMR-WB codec to optimally estimate the lost ISFs based on the minimum mean square error (MMSE) rule. The estimated ISFs are weighted with the ones of their previous neighbors to smooth the speech, resulting in the actual concealed ISF vectors. They are used instead of the lost ISFs in the speech synthesis on the receiver. Comparison is made between the speech concealed by this algorithm and by Annex I of G. 722. 2 specification, and simulation shows that the proposed concealment algorithm can lead to better performance in terms of frequency-weighted spectral distortion and signal-to-noise ratio compared to the baseline method, with an increase of 2.41 dB in signal-to-noise ratio (SNR) and a reduction of 0. 885 dB in frequency-weighted spectral distortion.
基金Project(60763001)supported by the National Natural Science Foundation of ChinaProjects(2009GZS0027,2010GZS0072)supported by the Natural Science Foundation of Jiangxi Province,China
文摘In order to overcome defects of the classical hidden Markov model (HMM), Markov family model (MFM), a new statistical model was proposed. Markov family model was applied to speech recognition and natural language processing. The speaker independently continuous speech recognition experiments and the part-of-speech tagging experiments show that Markov family model has higher performance than hidden Markov model. The precision is enhanced from 94.642% to 96.214% in the part-of-speech tagging experiments, and the work rate is reduced by 11.9% in the speech recognition experiments with respect to HMM baseline system.
基金Supported by the Science and Technology Development Project Foundation of Tianjin (033800611, 05YFGZGX24200)
文摘This paper presents an anomaly detection approach to detect intrusions into computer systems. In this approach, a hierarchical hidden Markov model (HHMM) is used to represent a temporal profile of normal behavior in a computer system. The HHMM of the norm profile is learned from historic data of the system's normal behavior. The observed behavior of the system is analyzed to infer the probability that the HHMM of the norm profile supports the observed behavior. A low probability of support indicates an anomalous behavior that may result from intrusive activities. The model was implemented and tested on the UNIX system call sequences collected by the University of New Mexico group. The testing results showed that the model can clearly identify the anomaly activities and has a better performance than hidden Markov model.
基金This project is supported by National Natural Science Foundation of China(No.50375153).
文摘Aiming at solving the problems of machine-learning in fault diagnosis, a diagnosis approach is proposed based on hidden Markov model (HMM) and support vector machine (SVM). HMM usually describes intra-class measure well and is good at dealing with continuous dynamic signals. SVM expresses inter-class difference effectively and has perfect classify ability. This approach is built on the merit of HMM and SVM. Then, the experiment is made in the transmission system of a helicopter. With the features extracted from vibration signals in gearbox, this HMM-SVM based diagnostic approach is trained and used to monitor and diagnose the gearbox's faults. The result shows that this method is better than HMM-based and SVM-based diagnosing methods in higher diagnostic accuracy with small training samples.
文摘Epilepsy is one of the most prevalent neurological disorders affecting 70 million people worldwide.The present work is focused on designing an efficient algorithm for automatic seizure detection by using electroencephalogram(EEG) as a noninvasive procedure to record neuronal activities in the brain.EEG signals' underlying dynamics are extracted to differentiate healthy and seizure EEG signals.Shannon entropy,collision entropy,transfer entropy,conditional probability,and Hjorth parameter features are extracted from subbands of tunable Q wavelet transform.Efficient decomposition level for different feature vector is selected using the Kruskal-Wallis test to achieve good classification.Different features are combined using the discriminant correlation analysis fusion technique to form a single fused feature vector.The accuracy of the proposed approach is higher for Q=2 and J=10.Transfer entropy is observed to be significant for different class combinations.Proposed approach achieved 100% accuracy in classifying healthy-seizure EEG signal using simple and robust features and hidden Markov model with less computation time.The proposed approach efficiency is evaluated in classifying seizure and non-seizure surface EEG signals.The system has achieved 96.87% accuracy in classifying surface seizure and nonseizure EEG segments using efficient features extracted from different J level.
基金support provided from the Cooperative Education Fund of China Ministry of Education(201702113002 and 201801193119)Hunan Natural Science Foundation(2018JJ2138)Degree and Graduate Education Reform Project of Hunan Province(JG2018B096)are greatly appreciated by the authors.
文摘Translation software has become an important tool for communication between different languages.People’s requirements for translation are higher and higher,mainly reflected in people’s desire for barrier free cultural exchange.With a large corpus,the performance of statistical machine translation based on words and phrases is limited due to the small size of modeling units.Previous statistical methods rely primarily on the size of corpus and number of its statistical results to avoid ambiguity in translation,ignoring context.To support the ongoing improvement of translation methods built upon deep learning,we propose a translation algorithm based on the Hidden Markov Model to improve the use of context in the process of translation.During translation,our Hidden Markov Model prediction chain selects a number of phrases with the highest result probability to form a sentence.The collection of all of the generated sentences forms a topic sequence.Using probabilities and article sequences determined from the training set,our method again applies the Hidden Markov Model to form the final translation to improve the context relevance in the process of translation.This algorithm improves the accuracy of translation,avoids the combination of invalid words,and enhances the readability and meaning of the resulting translation.
基金This study was funded by the National Natural Science Foundation of China(Grant No.41975027)the Natural Science Foundation of Jiangsu Province(Grant No.BK20171457)the National Key R&D Program on Monitoring,Early Warning and Prevention of Major Natural Disasters(Grant No.2017YFC1501401).
文摘With the increasing availability of precipitation radar data from space,enhancement of the resolution of spaceborne precipitation observations is important,particularly for hazard prediction and climate modeling at local scales relevant to extreme precipitation intensities and gradients.In this paper,the statistical characteristics of radar precipitation reflectivity data are studied and modeled using a hidden Markov tree(HMT)in the wavelet domain.Then,a high-resolution interpolation algorithm is proposed for spaceborne radar reflectivity using the HMT model as prior information.Owing to the small and transient storm elements embedded in the larger and slowly varying elements,the radar precipitation data exhibit distinct multiscale statistical properties,including a non-Gaussian structure and scale-to-scale dependency.An HMT model can capture well the statistical properties of radar precipitation,where the wavelet coefficients in each sub-band are characterized as a Gaussian mixture model(GMM),and the wavelet coefficients from the coarse scale to fine scale are described using a multiscale Markov process.The state probabilities of the GMM are determined using the expectation maximization method,and other parameters,for instance,the variance decay parameters in the HMT model are learned and estimated from high-resolution ground radar reflectivity images.Using the prior model,the wavelet coefficients at finer scales are estimated using local Wiener filtering.The interpolation algorithm is validated using data from the precipitation radar onboard the Tropical Rainfall Measurement Mission satellite,and the reconstructed results are found to be able to enhance the spatial resolution while optimally reproducing the local extremes and gradients.
文摘In recent years, the accuracy of speech recognition (SR) has been one of the most active areas of research. Despite that SR systems are working reasonably well in quiet conditions, they still suffer severe performance degradation in noisy conditions or distorted channels. It is necessary to search for more robust feature extraction methods to gain better performance in adverse conditions. This paper investigates the performance of conventional and new hybrid speech feature extraction algorithms of Mel Frequency Cepstrum Coefficient (MFCC), Linear Prediction Coding Coefficient (LPCC), perceptual linear production (PLP), and RASTA-PLP in noisy conditions through using multivariate Hidden Markov Model (HMM) classifier. The behavior of the proposal system is evaluated using TIDIGIT human voice dataset corpora, recorded from 208 different adult speakers in both training and testing process. The theoretical basis for speech processing and classifier procedures were presented, and the recognition results were obtained based on word recognition rate.
基金supported by the National Natural Science Foundation of China under Grant No.60672184
文摘The vibration signals of an aeroengine are a very important information source for fault diagnosis and condition monitoring. Considering the nonstationarity and low repeatability of the vibration signals, it is necessary to find a corresponding method for feature extraction and fault recognition. In this paper, based on Independent Component Analysis (ICA) and the Discrete Hidden Markov Model (DHMM), a new fault diagnosis approach named ICA-DHMM is proposed. In this method, ICA separates the source signals from the mixed vibration signals and then extracts features from them, DHMM works as a classifier to recognize the conditions of the aeroengine. Compared with the DHMM, which use the amplitude spectrum of mixed signals as feature parameters, experimental results show this method has higher diagnosis accuracy.
文摘In this letter, we briefly describe a program of self adapting hidden Markov model (SA HMM) and its application in multiple sequences alignment. Program consists of two stage optimisation algorithm.
文摘A novel algorithm for Bayesian document segmentation is proposed based on the wavelet domain hidden Markov tree (HMT) model. Once the parameters of model are known, according to the sequential maximum a posterior probability (SMAP) rule, firstly, the likelihood probability of HMT model for each pattern is computed from fine to coarse procedure. Then, the interscale state transition probability is solved using Expectation Maximum (EM) algorithm based on hybrid-quadtree and multiscale context information is fused from coarse to fine procedure. In order to get pixel-level segmentation, the redundant wavelet domain Gaussian mixture model (GMM) is employed to formulate pixel-level statistical property. The experiment results show that the proposed scheme is feasible and robust.
文摘This paper investigates the feedback control of hidden Markov process(HMP) in the face of loss of some observation processes.The control action facilitates or impedes some particular transitions from an inferred current state in the attempt to maximize the probability that the HMP is driven to a desirable absorbing state.This control problem is motivated by the need for judicious resource allocation to win an air operation involving two opposing forces.The effectiveness of a receding horizon control scheme based on the inferred discrete state is examined.Tolerance to loss of sensors that help determine the state of the air operation is achieved through a decentralized scheme that estimates a continuous state from measurements of linear models with additive noise.The discrete state of the HMP is identified using three well-known detection schemes.The sub-optimal control policy based on the detected state is implemented on-line in a closed-loop,where the air operation is simulated as a stochastic process with SimEvents,and the measurement process is simulated for a range of single sensor loss rates.
基金This project is supported by National Natural Science Foundation of China(No.50075079).
文摘A new feature extraction method based on 2D-hidden Markov model(HMM) is proposed. Meanwhile the time index and frequency index are introduced to represent the new features. The new feature extraction strategy is tested by the experimental data that collected from Bently rotor experiment system. The results show that this methodology is very effective to extract the feature of vibration signals in the rotor speed-up course and can be extended to other non-stationary signal analysis fields in the future.
文摘Because performance parameters of gear have degradation,a method is proposed to recognize and analyze its faults using the hidden Markov model( HMM). In this method,firstly,the delayed correlation-envelope method is used to extract features from vibration signals. Then,HMMs are trained respectively using data under normal condition,gear root crack condition and gear root breaking condition. Further,the trained HMMs are used in pattern recognition and model assessment. Finally,the results from standard HMM and the proposed method are compared, which shows that the proposed methodology is feasible and effective.
文摘Hidden Maxkov models (HMMs) have been used to model burst error sources of wireless channels. This paper proposes a hybrid method of using genetic algorithm (GA) and simulated annealing (SA) to train HMM for discrete channel modelling. The proposed method is compared with pure GA, and experimental results show that the HMMs trained by the hybrid method can better describe the error sequences due to SA's ability of facilitating hill-climbing at the later stage of the search. The burst error statistics of the HMMs trained by the proposed method and the corresponding error sequences are also presented to validate the proposed method.
文摘With the emergence of the Internet of Things(IoT), there has been a proliferation of urban studies using big data. Yet, another type of urban research innovations that involve interdisciplinary thinking and methods remains underdeveloped. This paper represents an attempt to adopt a Hidden Markov Model(HMM) toolbox developed in Computer Science for the analysis of eye movement patterns in Psychology to answer urban mobility questions in Geography. The main idea is that both people’s eye movements and travel behavior follow the stop-travel-stop pattern, which can be summarized using HMM. Methodological challenges were addressed by adjusting the HMM to analyze territory-wide travel survey data in Hong Kong, China. By using the adjusted toolbox to identify the activitytravel patterns of working adults in Hong Kong, two distinctive groups of balanced(38.4%) and work-oriented(61.6%) lifestyles were identified. With some notable exceptions, working adults living in the urban core were having a more work-oriented lifestyle. Those with a balanced lifestyle were having a relatively compact zone of non-work activities around their homes but a relatively long commuting distance. Furthermore, working females tend to spend more time at home than their counterparts, regardless of their marital status and lifestyle. Overall, this interdisciplinary research demonstrates an attempt to integrate spatial, temporal, and sequential information for understanding people’s behavior in urban mobility research.