As a supplementary of [Xu L. Front. Electr. Electron. Eng. China, 2010, 5(3): 281-328], this paper outlines current status of efforts made on Bayesian Ying- Yang (BYY) harmony learning, plus gene analysis appli- ...As a supplementary of [Xu L. Front. Electr. Electron. Eng. China, 2010, 5(3): 281-328], this paper outlines current status of efforts made on Bayesian Ying- Yang (BYY) harmony learning, plus gene analysis appli- cations. At the beginning, a bird's-eye view is provided via Gaussian mixture in comparison with typical learn- ing algorithms and model selection criteria. Particularly, semi-supervised learning is covered simply via choosing a scalar parameter. Then, essential topics and demand- ing issues about BYY system design and BYY harmony learning are systematically outlined, with a modern per- spective on Yin-Yang viewpoint discussed, another Yang factorization addressed, and coordinations across and within Ying-Yang summarized. The BYY system acts as a unified framework to accommodate unsupervised, su- pervised, and semi-supervised learning all in one formu- lation, while the best harmony learning provides novelty and strength to automatic model selection. Also, mathe- matical formulation of harmony functional has been ad- dressed as a unified scheme for measuring the proximity to be considered in a BYY system, and used as the best choice among others. Moreover, efforts are made on a number of learning tasks, including a mode-switching factor analysis proposed as a semi-blind learning frame- work for several types of independent factor analysis, a hidden Markov model (HMM) gated temporal fac- tor analysis suggested for modeling piecewise stationary temporal dependence, and a two-level hierarchical Gaus- sian mixture extended to cover semi-supervised learning, as well as a manifold learning modified to facilitate au- tomatic model selection. Finally, studies are applied to the problems of gene analysis, such as genome-wide asso- ciation, exome sequencing analysis, and gene transcrip- tional regulation.展开更多
文摘As a supplementary of [Xu L. Front. Electr. Electron. Eng. China, 2010, 5(3): 281-328], this paper outlines current status of efforts made on Bayesian Ying- Yang (BYY) harmony learning, plus gene analysis appli- cations. At the beginning, a bird's-eye view is provided via Gaussian mixture in comparison with typical learn- ing algorithms and model selection criteria. Particularly, semi-supervised learning is covered simply via choosing a scalar parameter. Then, essential topics and demand- ing issues about BYY system design and BYY harmony learning are systematically outlined, with a modern per- spective on Yin-Yang viewpoint discussed, another Yang factorization addressed, and coordinations across and within Ying-Yang summarized. The BYY system acts as a unified framework to accommodate unsupervised, su- pervised, and semi-supervised learning all in one formu- lation, while the best harmony learning provides novelty and strength to automatic model selection. Also, mathe- matical formulation of harmony functional has been ad- dressed as a unified scheme for measuring the proximity to be considered in a BYY system, and used as the best choice among others. Moreover, efforts are made on a number of learning tasks, including a mode-switching factor analysis proposed as a semi-blind learning frame- work for several types of independent factor analysis, a hidden Markov model (HMM) gated temporal fac- tor analysis suggested for modeling piecewise stationary temporal dependence, and a two-level hierarchical Gaus- sian mixture extended to cover semi-supervised learning, as well as a manifold learning modified to facilitate au- tomatic model selection. Finally, studies are applied to the problems of gene analysis, such as genome-wide asso- ciation, exome sequencing analysis, and gene transcrip- tional regulation.