期刊文献+
共找到91篇文章
< 1 2 5 >
每页显示 20 50 100
Risk Identification based on Hidden Semi-Markov Model in Smart Distribution Network
1
作者 Fangyuan Chang Wanxing Sheng +2 位作者 Tianshu Zhang Yu Zhang Xiaohui Song 《Energy and Power Engineering》 2013年第4期954-957,共4页
The smart distribution system is the critical part of the smart grid, which also plays an important role in the safe and reliable operation of the power grid. The self-healing function of smart distribution network wi... The smart distribution system is the critical part of the smart grid, which also plays an important role in the safe and reliable operation of the power grid. The self-healing function of smart distribution network will effectively improve the security, reliability and efficiency, reduce the system losses, and promote the development of sustainable energy of the power grid. The risk identification process is the most fundamental and crucial part of risk analysis in the smart distribution network. The risk control strategies will carry out on fully recognizing and understanding of the risk events and the causes. On condition that the risk incidents and their reason are identified, the corresponding qualitative / quantitative risk assessment will be performed based on the influences and ultimately to develop effective control measures. This paper presents the concept and methodology on the risk identification by means of Hidden Semi-Markov Model (HSMM) based on the research of the relationship between the operating characteristics/indexes and the risk state, which provides the theoretical and practical support for the risk assessment and risk control technology. 展开更多
关键词 RISK IDENTIFICATION hidden semi-markov modelS SMART DISTRIBUTION NETWORK
下载PDF
基于KPCA-HSMM设备退化状态识别与故障预测方法研究 被引量:28
2
作者 曾庆虎 邱静 +1 位作者 刘冠军 谭晓栋 《仪器仪表学报》 EI CAS CSCD 北大核心 2009年第7期1341-1346,共6页
为消除多通道观测信息冗余,压缩高维故障特征,提出基于KPCA多通道特征信息融合的HSMM设备退化状态识别与故障预测新方法。首先,对采集的单通道振动信号进行小波相关滤波处理,构造单通道振动信号的小波相关特征尺度熵向量,然后,利用KPCA... 为消除多通道观测信息冗余,压缩高维故障特征,提出基于KPCA多通道特征信息融合的HSMM设备退化状态识别与故障预测新方法。首先,对采集的单通道振动信号进行小波相关滤波处理,构造单通道振动信号的小波相关特征尺度熵向量,然后,利用KPCA方法对多通道的小波相关特征尺度熵向量进行冗余消除和特征融合,得到多通道的融合小波相关特征尺度熵向量,并以此向量作为HSMM的输入进行训练,建立基于HSMM的设备运行状态分类器与故障预测模型,从而实现设备退化状态识别与故障预测。将其应用到滚动轴承的退化状态识别与故障预测中,验证了该方法的有效性。 展开更多
关键词 故障预测 状态识别 小波相关特征尺度熵 信息融合 KPCA 隐半马尔可夫模型(hsmm)
下载PDF
基于G-AHSMM的设备剩余寿命预测研究 被引量:2
3
作者 张青山 张思岩 +1 位作者 肖萌 徐伟 《沈阳工业大学学报(社会科学版)》 2022年第2期151-158,共8页
伴随大数据技术和智能制造的快速发展,生产设备的预知维修及多台设备的联合维修决策已成为工业制造业企业备受关注和亟待解决的现实问题。而服役设备剩余寿命的精准预测,又是预知维修决策和联合维修决策的前提。对已有设备寿命预测方法... 伴随大数据技术和智能制造的快速发展,生产设备的预知维修及多台设备的联合维修决策已成为工业制造业企业备受关注和亟待解决的现实问题。而服役设备剩余寿命的精准预测,又是预知维修决策和联合维修决策的前提。对已有设备寿命预测方法进行比较分析,将隐半马尔可夫模型加以拓展,结合伽马分布,构建设备状态监测数据驱动的剩余寿命预测模型G-AHSMM,给出求解方法,并基于某涡轮发动机的状态监测数据进行验证分析。结果表明:预测模型不仅规避了以往“状态观测值之间相互独立”的不实假设,而且相比传统HSMM具有更高的现实拟合性、求解简捷性和预测精准性,可作为企业预测服役设备剩余寿命的有效工具。 展开更多
关键词 智能制造 设备寿命 剩余寿命预测 隐半马尔可夫模型 伽马分布 前向后向算法 状态识别
下载PDF
基于DD-HSMM的设备运行状态识别与故障预测方法 被引量:17
4
作者 王宁 孙树栋 +1 位作者 李淑敏 蔡志强 《计算机集成制造系统》 EI CSCD 北大核心 2012年第8期1861-1868,共8页
针对设备运行状态识别与故障预测问题,提出一种基于时变转移概率的隐半Markov模型。该模型将设备历史运行信息融入Markov状态转移概率矩阵的估计过程中,使Markov状态转移概率矩阵具有时变特性。基于改进前向后向算法研究了相应的隐半Mar... 针对设备运行状态识别与故障预测问题,提出一种基于时变转移概率的隐半Markov模型。该模型将设备历史运行信息融入Markov状态转移概率矩阵的估计过程中,使Markov状态转移概率矩阵具有时变特性。基于改进前向后向算法研究了相应的隐半Markov模型参数估计方法,使其能够不断综合利用历史运行信息进行自我更新,以更加符合设备真实运行的过程。同时以该模型为基础,利用故障率方法建立了对设备剩余使用寿命进行预测的基本步骤。通过某滚动轴承运行状态识别实例演示了该模型的建模过程,证明了基于该模型的设备状态识别与预测方法比传统隐半Markov模型方法更为有效。 展开更多
关键词 时变转移概率 隐半markov模型 故障率 状态识别 剩余有效寿命
下载PDF
基于KPCA-HSMM设备退化状态识别方法的研究 被引量:5
5
作者 曾庆虎 邱静 +1 位作者 刘冠军 苗强 《兵工学报》 EI CAS CSCD 北大核心 2009年第6期740-745,共6页
为消除多通道观测信息冗余,压缩高维故障特征,提出了基于核主元分析(KPCA)多通道特征信息融合的隐半马尔可夫模型(HSMM)设备退化状态识别的新方法。首先,对采集的单通道振动信号进行小波相关滤波处理,构造单通道振动信号的小波相关特征... 为消除多通道观测信息冗余,压缩高维故障特征,提出了基于核主元分析(KPCA)多通道特征信息融合的隐半马尔可夫模型(HSMM)设备退化状态识别的新方法。首先,对采集的单通道振动信号进行小波相关滤波处理,构造单通道振动信号的小波相关特征尺度熵向量;然后,利用KPCA方法对多通道的小波相关特征尺度熵向量进行冗余消除和特征融合,得到多通道的融合小波相关特征尺度熵向量;并以此融合特征向量作为HSMM的输入进行训练,建立基于HSMM的设备运行状态分类器,从而实现设备退化状态的识别。实验结果表明,该方法能有效的识别设备的退化状态,从而为多通道特征信息融合设备退化状态识别开辟新的途径。 展开更多
关键词 信息处理技术 信息融合 核主元分析 小波相关特征尺度熵 隐半马尔可夫模型 状态识别 退化状态
下载PDF
基于动态PSO-HSMM的海底油气管道寿命预测 被引量:4
6
作者 张新生 裘瑾 《消防科学与技术》 CAS 北大核心 2019年第11期1628-1632,共5页
由于海底油气管道退化状态的不可观测性,为防止出现管道泄漏等风险事故,提出基于PSO-HSMM的海底管道剩余寿命预测方法。此模型将海底油气管道全寿命周期数据依据其健康退化状态划分为3个阶段,将动态粒子群算法应用于优化传统隐半马尔可... 由于海底油气管道退化状态的不可观测性,为防止出现管道泄漏等风险事故,提出基于PSO-HSMM的海底管道剩余寿命预测方法。此模型将海底油气管道全寿命周期数据依据其健康退化状态划分为3个阶段,将动态粒子群算法应用于优化传统隐半马尔可夫模型。利用油气管道全寿命数据建立隐半马尔可夫模型;将动态粒子群算法引入隐半马尔可夫模型进行动态优化,并利用"前向-后向"算法对优化模型进行参数估计;通过某海底油气管道的全寿命周期数据对优化模型和传统模型进行检验。结果表明,基于PSO-HSMM的油气管道剩余寿命预测模型在传统模型的基础上提高了分类预测精度,为海底油气管道风险研究提供了新的方法。 展开更多
关键词 海底管道 动态粒子群算法 隐半马尔可夫模型 参数估计 剩余寿命预测
下载PDF
基于HSMM-SVM的液压机故障诊断方法研究 被引量:1
7
作者 何彦虎 《湖州职业技术学院学报》 2019年第4期57-62,共6页
为提高液压机故障诊断的准确率,针对液压机故障诊断与性能评估困难、模型难以建立、智能化故障诊断装置缺乏的现状,文章提出了HSMM与SVM的混合算法。通过分析不同模式下的分类精度、响应速度与稳定性,来揭示特征数据提取与算法设计的内... 为提高液压机故障诊断的准确率,针对液压机故障诊断与性能评估困难、模型难以建立、智能化故障诊断装置缺乏的现状,文章提出了HSMM与SVM的混合算法。通过分析不同模式下的分类精度、响应速度与稳定性,来揭示特征数据提取与算法设计的内在联系,以此构建故障诊断的HSMM-SVM模型,并验证该模型对故障诊断的准确度,以及对信息缺失数据的鲁棒性。并以某液压机的故障诊断为例,验证了在HSMM、SVM、HSMM-SVM下的故障分类精度,说明HSMM-SVM对故障分类的有效性与适用性更好。 展开更多
关键词 液压机 故障诊断 hsmm-SVM 马尔科夫
下载PDF
基于TV-HSMM的海底管道寿命预测
8
作者 张新生 裘瑾 《材料保护》 CAS CSCD 北大核心 2019年第11期77-84,90,共9页
由于海底油气管道的退化状态具有动态不可监测性,为避免穿孔泄露导致管道安全事故,提出了基于TV-HSMM的海底管道腐蚀预测方法。首先,利用海底管道全寿命周期数据建立隐半马尔科夫模型;接着,为适应油气管道实际退化过程,通过与时变矩阵... 由于海底油气管道的退化状态具有动态不可监测性,为避免穿孔泄露导致管道安全事故,提出了基于TV-HSMM的海底管道腐蚀预测方法。首先,利用海底管道全寿命周期数据建立隐半马尔科夫模型;接着,为适应油气管道实际退化过程,通过与时变矩阵结合的方法改善其状态驻留时间为固定值这一问题;然后,根据油气管道典型退化趋势,将其退化过程划分为3个阶段,并赋予不同的参数值计算得到3种时变转移矩阵;最后,利用某油气管道的全寿命周期数据训练基于时变状态的隐半马尔科夫模型和原模型,预测其剩余寿命。结果表明:改进后基于时变矩阵的隐半马尔科夫模型在原隐半马尔科夫模型的基础上提高了精度,其预测出的油气管道剩余寿命与实际寿命的相对误差显著缩小,为海底油气管道安全平稳运行提供了更好的保障。 展开更多
关键词 海底油气管道 剩余寿命预测 时变性 隐半马尔科夫模型 状态转移矩阵
下载PDF
基于灰色EM-SHSMM的缺失数据下设备健康预测研究 被引量:5
9
作者 吴健飞 刘勤明 +1 位作者 吕文元 叶春明 《计算机应用研究》 CSCD 北大核心 2018年第11期3255-3258,共4页
设备健康预测问题的研究大多在全样本数据下进行,而在缺失样本数据下的研究却很少。针对缺失样本数据下设备健康预测问题,提出了集成分段隐半马尔可夫模型(SHSMM)与GM(1,1,λ)的联合优化模型。基于SHSMM的模型架构,利用EM算法推导出SHSM... 设备健康预测问题的研究大多在全样本数据下进行,而在缺失样本数据下的研究却很少。针对缺失样本数据下设备健康预测问题,提出了集成分段隐半马尔可夫模型(SHSMM)与GM(1,1,λ)的联合优化模型。基于SHSMM的模型架构,利用EM算法推导出SHSMM中的参数估计式,再基于GM(1,1,λ),提出灰色启发式算法填补样本中的缺失数据,在预测过程中进行设备健康预测。最后,通过案例分析对模型进行评价和验证。结果表明,提出的设备健康预测方法能有效解决缺失数据的问题。 展开更多
关键词 寿命预测 状态识别 分段隐半马尔可夫模型 最大期望算法 灰色启发式算法
下载PDF
HDP-HSMM的磨削声发射砂轮钝化状态识别 被引量:5
10
作者 钟利民 李丽娟 +3 位作者 杨京 梁彬 程建春 刘翔雄 《应用声学》 CSCD 北大核心 2019年第2期151-158,共8页
在高精度金属材料磨削加工中,刀具即砂轮的状态对加工效率和加工质量具有重要的影响。钝化程度较高的砂轮不适于加工精密工件,需提前预警并修整更换砂轮。该文提出一种通过磨削声发射信号来检测砂轮钝化状态的方法。首先,对于采集到的... 在高精度金属材料磨削加工中,刀具即砂轮的状态对加工效率和加工质量具有重要的影响。钝化程度较高的砂轮不适于加工精密工件,需提前预警并修整更换砂轮。该文提出一种通过磨削声发射信号来检测砂轮钝化状态的方法。首先,对于采集到的信号进行小波软阈值降噪。然后,将其分割成多个有重叠的帧,并提取每帧信号的8个特征组成声发射数据集。最后,通过分层Dirichlet过程-隐半马尔可夫模型来建立声发射数据集和不同的砂轮钝化状态之间的非线性关系,旨在识别砂轮钝化状态。结果表明,上述检测方法能有效识别砂轮的不同钝化状态并能对整个加工过程中的砂轮钝化程度进行自动划分,其在测试数据集上的准确率达到93.7%,可以为实际工业应用提供理论指导。 展开更多
关键词 砂轮钝化 分层Dirichlet过程-隐半马尔可夫模型 磨削声发射 小波阈值降噪
下载PDF
基于Erlang-HSMM的设备剩余寿命预测研究 被引量:4
11
作者 李永朋 刘勤明 +1 位作者 叶春明 李冠林 《计算机应用研究》 CSCD 北大核心 2021年第2期426-429,443,共5页
对于关键复杂设备进行健康诊断和设备剩余寿命预测,提出了一种基于爱尔朗分布和隐半马尔可夫模型的联合剩余寿命预测模型(Erlang-HSMM,E-HSMM)。首先,提出了改进的前后向算法、维特比算法和BaumWelch算法,有效地降低了模型的计算复杂度... 对于关键复杂设备进行健康诊断和设备剩余寿命预测,提出了一种基于爱尔朗分布和隐半马尔可夫模型的联合剩余寿命预测模型(Erlang-HSMM,E-HSMM)。首先,提出了改进的前后向算法、维特比算法和BaumWelch算法,有效地降低了模型的计算复杂度;其次,基于爱尔朗分布改进设备的健康状态逗留时间,将状态逗留时间分为已遍历和未遍历两个部分,提出新的健康状态逗留时间的概率分布;最后,针对状态监测数据,利用失效率理论构建设备剩余寿命预测模型。通过美国Caterpillar公司液压泵的状态监测实际数据进行评价与验证,实验结果表明,E-HSMM模型对设备的状态诊断和剩余寿命预测更加符合实际状况,比传统的隐半马尔可夫模型(HSMM)更有效。 展开更多
关键词 隐半马尔可夫模型 爱尔朗分布 故障诊断 寿命预测 失效率函数
下载PDF
基于动态EM-SHSMM的异常数据下设备健康预测研究 被引量:3
12
作者 吴健飞 刘勤明 《计算机应用研究》 CSCD 北大核心 2019年第7期2003-2006,共4页
针对设备退化过程中异常数据下的剩余有效寿命预测问题,提出了一种基于动态的期望最大化算法(EM)-分段隐半马尔可夫模型(SHSMM)预测方法。基于SHSMM的理论框架,采用期望最大化参数自适应估计算法估计模型中的未知参数;基于WGM(1,1)模型... 针对设备退化过程中异常数据下的剩余有效寿命预测问题,提出了一种基于动态的期望最大化算法(EM)-分段隐半马尔可夫模型(SHSMM)预测方法。基于SHSMM的理论框架,采用期望最大化参数自适应估计算法估计模型中的未知参数;基于WGM(1,1)模型,提出动态前向后向灰色填充算法处理样本中的异常数据,并利用健康预测过程预测设备的剩余有效寿命;通过实例分析对模型进行评价和验证。结果表明,提出的设备健康预测方法能有效解决异常数据的问题。 展开更多
关键词 分段隐半马尔可夫模型 期望最大化自适应估计算法 动态前向后向灰色填充算法 寿命预测
下载PDF
A novel approach to equipment health management based on auto-regressive hidden semi-Markov model(AR-HSMM) 被引量:5
13
作者 DONG Ming 《Science in China(Series F)》 2008年第9期1291-1304,共14页
As a new maintenance method, CBM (condition based maintenance) is becoming more and more important for the health management of complicated and costly equipment. A prerequisite to widespread deployment of CBM techno... As a new maintenance method, CBM (condition based maintenance) is becoming more and more important for the health management of complicated and costly equipment. A prerequisite to widespread deployment of CBM technology and prac- tice in industry is effective diagnostics and prognostics. Recently, a pattern recog- nition technique called HMM (hidden Markov model) was widely used in many fields. However, due to some unrealistic assumptions, diagnositic results from HMM were not so good, and it was difficult to use HMM directly for prognosis. By relaxing the unrealistic assumptions in HMM, this paper presents a novel approach to equip- ment health management based on auto-regressive hidden semi-Markov model (AR-HSMM). Compared with HMM, AR-HSMM has three advantages: 1) It allows explicitly modeling the time duration of the hidden states and therefore is capable of prognosis. 2) It can relax observations' independence assumption by accom- modating a link between consecutive observations. 3) It does not follow the unre- alistic Markov chain's memoryless assumption and therefore provides more pow- erful modeling and analysis capability for real problems. To facilitate the computa- tion in the proposed AR-HSMM-based diagnostics and prognostics, new forward- backward variables are defined and a modified forward-backward algorithm is de- veloped. The evaluation of the proposed methodology was carried out through a real world application case study: health diagnosis and prognosis of hydraulic pumps in Caterpillar Inc. The testing results show that the proposed new approach based on AR-HSMM is effective and can provide useful support for the decision- making in equipment health management. 展开更多
关键词 auto-regressive hidden semi-markov model DIAGNOSIS PROGNOSIS markov model
原文传递
基于情绪向量的隐半马尔可夫模型股市拐点预测方法
14
作者 姚宏亮 江永生 +1 位作者 杨静 俞奎 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2024年第10期1335-1340,共6页
股市的情绪化倾向是股票市场具有高度不确定性的主要原因,直接利用历史数据的股票趋势预测方法难以适应市场情绪的多变性,在实际应用中效果不理想。文章针对市场情绪的不稳定性导致股市拐点难以预测的问题,提出一种基于情绪向量的隐半... 股市的情绪化倾向是股票市场具有高度不确定性的主要原因,直接利用历史数据的股票趋势预测方法难以适应市场情绪的多变性,在实际应用中效果不理想。文章针对市场情绪的不稳定性导致股市拐点难以预测的问题,提出一种基于情绪向量的隐半马尔可夫模型股市拐点预测方法(hidden semi-Markov model stock turning point prediction method based on sentiment vector,SV-HSMM)。针对市场情绪不可观察性,选取与市场情绪相关的主要特征,使用马尔可夫毯融合成市场情绪;利用隐半马尔可夫模型建模市场环境,构建市场情绪、市场状态和状态持续时间之间的结构关系;引入情绪向量平滑情绪的多变性,并利用Kullback-Leibler(KL)距离量化情绪热度;利用隐半马尔可夫模型的动态推理实现股市拐点预测。结果表明情绪向量方法具有更好的预测效果。 展开更多
关键词 市场情绪 情绪向量 隐半马尔可夫模型(hsmm) Kullback-Leibler(KL)距离
下载PDF
基于小波相关特征尺度熵的HSMM设备退化状态识别与故障预测方法 被引量:16
15
作者 曾庆虎 邱静 刘冠军 《仪器仪表学报》 EI CAS CSCD 北大核心 2008年第12期2559-2564,共6页
隐半马尔可夫模型(HSMM)是隐马尔可夫模型(HMM)的一种扩展模型,是在已定义的HMM结构上加入了时间组成部分,克服了因马尔可夫链的假设造成HMM建模所具有的局限性,与HMM相比具有更好的建模能力和分析能力,而且可以直接用于预测。基于振动... 隐半马尔可夫模型(HSMM)是隐马尔可夫模型(HMM)的一种扩展模型,是在已定义的HMM结构上加入了时间组成部分,克服了因马尔可夫链的假设造成HMM建模所具有的局限性,与HMM相比具有更好的建模能力和分析能力,而且可以直接用于预测。基于振动信号与语音信号的相似性,将HSMM引入机械设备退化状态识别与故障预测中,提出基于小波相关特征尺度熵(WCFSE)的HSMM设备退化状态识别与故障预测方法。首先将小波相关滤波法与信息熵理论相结合得到能敏感表征故障严重程度的WCFSE向量,并以此向量作为HSMM的输入进行训练,建立基于HSMM的设备运行状态分类器与故障预测模型,从而实现设备退化状态识别与故障预测。将其应用到滚动轴承的退化状态识别与故障预测中,验证了该方法的有效性。 展开更多
关键词 故障预测 状态识别 小波相关特征尺度熵 隐半马尔可夫模型(hsmm) 退化状态
下载PDF
基于小波特征尺度熵-隐半马尔可夫模型的设备退化状态识别方法及应用 被引量:7
16
作者 曾庆虎 邱静 +1 位作者 刘冠军 谭晓栋 《兵工学报》 EI CAS CSCD 北大核心 2008年第2期198-203,共6页
机械设备从正常到故障往往经历一系列退化状态,正确识别设备当前所处的退化状态,对预防设备进一步退化和故障的发生具有重要意义。提出了一种基于小波特征尺度熵-隐半马尔可夫模型(HSMM)的设备退化状态识别新方法。通过小波变换提取小... 机械设备从正常到故障往往经历一系列退化状态,正确识别设备当前所处的退化状态,对预防设备进一步退化和故障的发生具有重要意义。提出了一种基于小波特征尺度熵-隐半马尔可夫模型(HSMM)的设备退化状态识别新方法。通过小波变换提取小波特征尺度熵,然后构造信号的小波特征尺度熵向量,并以此作为HSMM的输入进行训练,建立基于HSMM的机械设备运行状态分类器,从而实现设备退化状态的识别。并且以滚动轴承为例,对正常和几种故障程度不同的滚动体运行状态进行了识别,实验结果表明该方法能有效的识别设备的退化状态。 展开更多
关键词 信息处理技术 小波特征尺度熵 隐半马尔可夫模型(hsmm) 状态识别 退化状态
下载PDF
基于HSMM的机械故障演化规律分析建模与预测 被引量:5
17
作者 曾庆虎 邱静 刘冠军 《机械强度》 CAS CSCD 北大核心 2010年第5期695-701,共7页
状态维修是工程实践中提出的一个主要问题,故障预测(prognostics)是实现状态维修的核心支撑技术。但是目前故障预测技术研究很少涉及故障演化规律分析与建模,这是进行故障预测研究的基础。文中在分析机械故障形成的一般过程、基本特性... 状态维修是工程实践中提出的一个主要问题,故障预测(prognostics)是实现状态维修的核心支撑技术。但是目前故障预测技术研究很少涉及故障演化规律分析与建模,这是进行故障预测研究的基础。文中在分析机械故障形成的一般过程、基本特性与演化规律的基础上,根据故障演变过程退化状态和HSMM(hidden semi-Markov model)的状态都是通过表现来感知的特点,利用HSMM对机械故障演化规律进行建模,并提出基于HSMM的机械故障预测方法,最后将其应用到滚动轴承的故障预测中,验证该方法的有效性。 展开更多
关键词 故障预测 机械故障 建模 演化规律 隐半马尔可夫模型(hiddensemi-markov model hsmm)
下载PDF
Object Tracking and Tracing:Hidden Semi-Markov Model Based Probabilistic Location Determination
18
作者 吴捷 王东 盛焕烨 《Journal of Shanghai Jiaotong university(Science)》 EI 2011年第4期466-473,共8页
The enhancement of radio frequency identification(RFID) technology to track and trace objects has attracted a lot of attention from the healthcare and the supply chain industry.However,RFID systems do not always funct... The enhancement of radio frequency identification(RFID) technology to track and trace objects has attracted a lot of attention from the healthcare and the supply chain industry.However,RFID systems do not always function reliably under complex and variable deployment environment.In many cases,RFID systems provide only probabilistic observations of object states.Thus,an approach to predict,record and track real world object states based upon probabilistic RFID observations is required.Hidden Markov model(HMM) has been used in the field of probabilistic location determination.But the inherent duration probability density of a state in HMM is exponential,which may be inappropriate for modeling of object location transitions.Hence,in this paper,we put forward a hidden semi-Markov model(HSMM) based approach for probabilistic location determination. We evaluated its performance comparing with that of the HMM-based approach.The results show that the HSMM-based approach provides a more accurate determination of real world object states based on observation data. 展开更多
关键词 object tracking and tracing hidden semi-markov model(hsmm) probabilistic location determination radio frequency identification(RFID)
原文传递
基于HSMM的两阶段设备缺陷状态识别方法 被引量:3
19
作者 王宁 孙树栋 +1 位作者 蔡志强 李淑敏 《计算机应用研究》 CSCD 北大核心 2011年第12期4560-4563,共4页
针对传统马尔可夫模型(HMM)状态停留时间必须服从指数分布假设的不足,提出了一种基于隐半马尔可夫模型(HSMM)的两阶段设备缺陷状态识别方法。首先,通过分析HSMM模型的参数构成及基本特点,并结合两阶段设备的劣化过程特点提出合理的假设... 针对传统马尔可夫模型(HMM)状态停留时间必须服从指数分布假设的不足,提出了一种基于隐半马尔可夫模型(HSMM)的两阶段设备缺陷状态识别方法。首先,通过分析HSMM模型的参数构成及基本特点,并结合两阶段设备的劣化过程特点提出合理的假设条件,建立起用于描述两阶段设备运行状态的HSMM模型;其次,针对HSMM模型的参数估计问题,引入最大似然估计法,并提出了小样本条件下求解状态持续时间的方法;再次,基于建立的HSMM模型,给出了两阶段设备缺陷状态早期识别的计算公式及步骤,通过对状态停留时间的概率估计实现了对缺陷状态的早期识别;最后,通过计算机仿真方法模拟了HSMM模型的建模、参数估计及缺陷状态识别过程,从而验证了该方法的有效性和准确性。 展开更多
关键词 状态识别 延迟时间 隐半马尔可夫模型 两阶段设备
下载PDF
基于离散HSMM的故障预测模型 被引量:6
20
作者 桂林 武小悦 《计算机应用研究》 CSCD 北大核心 2008年第11期3320-3322,3327,共4页
提出了一种基于离散HSMM的故障预测模型,根据部分观测矢量预测系统下一时刻处于各个状态的概率。结合HSMM的前向—后向(FB)算法,给出了部分观测下HSMM的状态预测算法。将提出的模型应用于减速箱故障预测中,结果表明该方法可以有效地进... 提出了一种基于离散HSMM的故障预测模型,根据部分观测矢量预测系统下一时刻处于各个状态的概率。结合HSMM的前向—后向(FB)算法,给出了部分观测下HSMM的状态预测算法。将提出的模型应用于减速箱故障预测中,结果表明该方法可以有效地进行故障预测。 展开更多
关键词 隐半马欠可夫模型 故障预测 状态持续建模 前向—后向算法
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部