Hidden terminal problem in spectrum sensing is one of the most challenging problems in cognitive radio network(CRN).To tackle this problem,we propose a novel Cooperative Interference Game scheme in this paper.The sche...Hidden terminal problem in spectrum sensing is one of the most challenging problems in cognitive radio network(CRN).To tackle this problem,we propose a novel Cooperative Interference Game scheme in this paper.The scheme adopted full duplex(FD)mode to sense over multiple sub-bands in an iterative manner without extra sensing devices.The implementation algorithm of the proposed scheme is consisted of three modules:the formulation of the maximum transmit power limitation of second user(SU);the self-interference cancellation coefficient;and the optimal location of SU for an optimized low collision probability.Monte Carlo simulation proved that compared with cooperative spectrum sensing,the proposed scheme significantly improves the performance of spectrum detection and mitigates hidden terminal problem to a large extent with less energy consumption.展开更多
This paper proposes a grouping decision algorithm for random access networks with the carrier sense multiple access (CSMA) mechanism, which can balance the traffic load and solve the hidden terminal issue. Considering...This paper proposes a grouping decision algorithm for random access networks with the carrier sense multiple access (CSMA) mechanism, which can balance the traffic load and solve the hidden terminal issue. Considering the arrival characteristics of terminals and quality of service (QoS) requirements, the traffic load is evaluated based on the effective bandwidth theory. Additionally, a probability matrix of hidden terminals is constructed to take into account the dynamic nature of hidden terminal relations. In the grouping process, an income function is established with a view to the benefits of decreasing the probability of hidden terminal collisions and load balancing. Then, we introduce the grey wolf optimization (GWO) algorithm to implement the grouping decision. Simulation results demonstrate that the grouping algorithm can effectively alleviate the performance degradation and facilitate the management of network resources.展开更多
The warehouse environment parameter monitoring system is designed to avoid the networking and high cost of traditional monitoring system.A sensor error correction model which combines particle swarm optimization(PSO)w...The warehouse environment parameter monitoring system is designed to avoid the networking and high cost of traditional monitoring system.A sensor error correction model which combines particle swarm optimization(PSO)with back propagation(BP)neural network algorithm is established to reduce nonlinear characteristics and improve test accuracy of the system.Simulation and experiments indicate that the PSO-BP neural network algorithm has advantages of fast convergence rate and high diagnostic accuracy.The monitoring system can provide higher measurement precision,lower power consume,stable network data communication and fault diagnoses function.The system has been applied to monitoring environment parameter of warehouse,special vehicles and ships,etc.展开更多
Using directional antennas in Wireless Ad hoc Networks (WANETs) offers great potential of reducing the radio interference, and improving the communication throughput. Directional antennas, however, introduces new prob...Using directional antennas in Wireless Ad hoc Networks (WANETs) offers great potential of reducing the radio interference, and improving the communication throughput. Directional antennas, however, introduces new problems in the wireless Media Access Control (MAC), that is, the deafness and new hidden terminal problem, which may cause severe performance degradation. To solve the problems, we propose an effective Circular RTR Directional MAC (CRDMAC) protocol for WANETs by using a sub-transmission channel and Ready to Receive (RTR) packets, which modifies the IEEE 802.11 Distributed Coordinated Function (DCF). The sub-channel avoids collisions to other ongoing transmission, and the RTR packets notify the neighbor nodes that the mutual transmission has been finished. We evaluate the CRDMAC protocol through simulations and the results show that the proposed protocol outperforms existing DMAC (directional MAC) protocol and the CRCM (Circular RTS and CTS MAC) protocol in terms of throughput and packet drop rate.展开更多
In order to resolve the hidden and exposed terminal problems and improve the probability of concurrent packet transmissions for multihop Mobile Ad Hoc Networks (MANETs), a novel slotted Asyrmaetric Dual-Channel Medi...In order to resolve the hidden and exposed terminal problems and improve the probability of concurrent packet transmissions for multihop Mobile Ad Hoc Networks (MANETs), a novel slotted Asyrmaetric Dual-Channel Medium Access Control (ADC-MAC) protocol is proposed. It exploits sirmltaneous reservation with less collisions and conision-flee data packet transmissions, and achieves optimal transmission balance on the Control Channel (CCH) and Data Channel (DCH) by adjusting the relationship between Reservation Slot (RS) on the CCH and the data packet Transmission Slot (TS) on the DCH. Transmission interferences can be avoided by only observing CCH for the transmission time of a data packet. The proposed RS and contention micro-slot backoff mechanisms also greatly improve channel access efficiency. Simulation results show that compared to IFEE 802. 11 DCF and -Mc protocols, the proposed protocol can achieve a throughput gain of 88% in singlehop networks and 151% in nltihop networks at the same total data rate.展开更多
基金supported by National High-Tech R&D Program(863 Program 2014AA01A707, 2015AA01A705 )
文摘Hidden terminal problem in spectrum sensing is one of the most challenging problems in cognitive radio network(CRN).To tackle this problem,we propose a novel Cooperative Interference Game scheme in this paper.The scheme adopted full duplex(FD)mode to sense over multiple sub-bands in an iterative manner without extra sensing devices.The implementation algorithm of the proposed scheme is consisted of three modules:the formulation of the maximum transmit power limitation of second user(SU);the self-interference cancellation coefficient;and the optimal location of SU for an optimized low collision probability.Monte Carlo simulation proved that compared with cooperative spectrum sensing,the proposed scheme significantly improves the performance of spectrum detection and mitigates hidden terminal problem to a large extent with less energy consumption.
基金supported by the Science and Technology Development Plan Project of Jilin Province under Grant YDZJ202401383ZYTS.
文摘This paper proposes a grouping decision algorithm for random access networks with the carrier sense multiple access (CSMA) mechanism, which can balance the traffic load and solve the hidden terminal issue. Considering the arrival characteristics of terminals and quality of service (QoS) requirements, the traffic load is evaluated based on the effective bandwidth theory. Additionally, a probability matrix of hidden terminals is constructed to take into account the dynamic nature of hidden terminal relations. In the grouping process, an income function is established with a view to the benefits of decreasing the probability of hidden terminal collisions and load balancing. Then, we introduce the grey wolf optimization (GWO) algorithm to implement the grouping decision. Simulation results demonstrate that the grouping algorithm can effectively alleviate the performance degradation and facilitate the management of network resources.
文摘The warehouse environment parameter monitoring system is designed to avoid the networking and high cost of traditional monitoring system.A sensor error correction model which combines particle swarm optimization(PSO)with back propagation(BP)neural network algorithm is established to reduce nonlinear characteristics and improve test accuracy of the system.Simulation and experiments indicate that the PSO-BP neural network algorithm has advantages of fast convergence rate and high diagnostic accuracy.The monitoring system can provide higher measurement precision,lower power consume,stable network data communication and fault diagnoses function.The system has been applied to monitoring environment parameter of warehouse,special vehicles and ships,etc.
基金supported by the Grant-in-Aid for Scientific Research of Japan Society for Promotion of Science(JSPS)Collaboration Research Grant of National Institute of Informatics (NII) ,Japan
文摘Using directional antennas in Wireless Ad hoc Networks (WANETs) offers great potential of reducing the radio interference, and improving the communication throughput. Directional antennas, however, introduces new problems in the wireless Media Access Control (MAC), that is, the deafness and new hidden terminal problem, which may cause severe performance degradation. To solve the problems, we propose an effective Circular RTR Directional MAC (CRDMAC) protocol for WANETs by using a sub-transmission channel and Ready to Receive (RTR) packets, which modifies the IEEE 802.11 Distributed Coordinated Function (DCF). The sub-channel avoids collisions to other ongoing transmission, and the RTR packets notify the neighbor nodes that the mutual transmission has been finished. We evaluate the CRDMAC protocol through simulations and the results show that the proposed protocol outperforms existing DMAC (directional MAC) protocol and the CRCM (Circular RTS and CTS MAC) protocol in terms of throughput and packet drop rate.
基金Acknowledgements This work was supported partially by the National Natural Science Foundation of China under Gants No. 60872011, No. 61171074 the National S&T Major Project of China under Gant No. 2010ZX03003-003-03+1 种基金 the Program for New Century Excellent Talents in University the Fundamental Research Funds for the Central Universities.
文摘In order to resolve the hidden and exposed terminal problems and improve the probability of concurrent packet transmissions for multihop Mobile Ad Hoc Networks (MANETs), a novel slotted Asyrmaetric Dual-Channel Medium Access Control (ADC-MAC) protocol is proposed. It exploits sirmltaneous reservation with less collisions and conision-flee data packet transmissions, and achieves optimal transmission balance on the Control Channel (CCH) and Data Channel (DCH) by adjusting the relationship between Reservation Slot (RS) on the CCH and the data packet Transmission Slot (TS) on the DCH. Transmission interferences can be avoided by only observing CCH for the transmission time of a data packet. The proposed RS and contention micro-slot backoff mechanisms also greatly improve channel access efficiency. Simulation results show that compared to IFEE 802. 11 DCF and -Mc protocols, the proposed protocol can achieve a throughput gain of 88% in singlehop networks and 151% in nltihop networks at the same total data rate.