in this paper, a fast hidden-line removal method for 3D buildings , which is based on thesubtraction of a convex polygon from another one in linear time, is presented. Also, the facetscontaining holes are quickly divi...in this paper, a fast hidden-line removal method for 3D buildings , which is based on thesubtraction of a convex polygon from another one in linear time, is presented. Also, the facetscontaining holes are quickly divided into a lot of convex polygons, say, triangles and convexquadrilaterals. The algorithm for the polygon division runs in O( (k+1) (n-3)) , where n is thetotal number of the vertices of the merged loop of the facet, and k is the number of the concavevertices of the merged one.展开更多
Selective harmonic elimination(SHE) in multilevel inverters is an intricate optimization problem that involves a set of nonlinear transcendental equations which have multiple local minima. A new advanced objective fun...Selective harmonic elimination(SHE) in multilevel inverters is an intricate optimization problem that involves a set of nonlinear transcendental equations which have multiple local minima. A new advanced objective function with proper weighting is proposed and also its efficiency is compared with the objective function which is more similar to the proposed one. To enhance the ability of the SHE in eliminating high number of selected harmonics, at each level of the output voltage, one slot is created. The SHE problem is solved by imperialist competitive algorithm(ICA). The conventional SHE methods cannot eliminate the selected harmonics and satisfy the fundamental component in some ranges of modulation indexes. So, to surmount the SHE defect, a DC-DC converter is applied. Theoretical results are substantiated by simulations and experimental results for a 9-level multilevel inverter. The obtained results illustrate that the proposed method successfully minimizes a large number of identified harmonics which consequences very low total harmonic distortion of output voltage.展开更多
In microarray-based cancer classification, gene selection is an important issue owing to the large number of variables and small number of samples as well as its non-linearity. It is difficult to get satisfying result...In microarray-based cancer classification, gene selection is an important issue owing to the large number of variables and small number of samples as well as its non-linearity. It is difficult to get satisfying results by using conventional linear sta- tistical methods. Recursive feature elimination based on support vector machine (SVM RFE) is an effective algorithm for gene selection and cancer classification, which are integrated into a consistent framework. In this paper, we propose a new method to select parameters of the aforementioned algorithm implemented with Gaussian kernel SVMs as better alternatives to the common practice of selecting the apparently best parameters by using a genetic algorithm to search for a couple of optimal parameter. Fast implementation issues for this method are also discussed for pragmatic reasons. The proposed method was tested on two repre- sentative hereditary breast cancer and acute leukaemia datasets. The experimental results indicate that the proposed method per- forms well in selecting genes and achieves high classification accuracies with these genes.展开更多
With respect to the gamma spectrum, the energy resolution improves with increase in energy. The counts of full energy peak change with energy, and this approximately complies with the Gaussian distribution. This study...With respect to the gamma spectrum, the energy resolution improves with increase in energy. The counts of full energy peak change with energy, and this approximately complies with the Gaussian distribution. This study mainly examines a method to deconvolve the LaBr_3:Ce gamma spectrum with a detector response matrix constructing algorithm based on energy resolution calibration.In the algorithm, the full width at half maximum(FWHM)of full energy peak was calculated by the cubic spline interpolation algorithm and calibrated by a square root of a quadratic function that changes with the energy. Additionally, the detector response matrix was constructed to deconvolve the gamma spectrum. Furthermore, an improved SNIP algorithm was proposed to eliminate the background. In the experiment, several independent peaks of ^(152)Eu,^(137)Cs, and ^(60)Co sources were detected by a LaBr_3:Ce scintillator that were selected to calibrate the energy resolution. The Boosted Gold algorithm was applied to deconvolve the gamma spectrum. The results showed that the peak position difference between the experiment and the deconvolution was within ± 2 channels and the relative error of peak area was approximately within 0.96–6.74%. Finally, a ^(133) Ba spectrum was deconvolved to verify the efficiency and accuracy of the algorithm in unfolding the overlapped peaks.展开更多
In the process of eliminating variables in a symbolic polynomial system,the extraneous factors are referred to the unwanted parameters of resulting polynomial.This paper aims at reducing the number of these factors vi...In the process of eliminating variables in a symbolic polynomial system,the extraneous factors are referred to the unwanted parameters of resulting polynomial.This paper aims at reducing the number of these factors via optimizing the size of Dixon matrix.An optimal configuration of Dixon matrix would lead to the enhancement of the process of computing the resultant which uses for solving polynomial systems.To do so,an optimization algorithm along with a number of new polynomials is introduced to replace the polynomials and implement a complexity analysis.Moreover,the monomial multipliers are optimally positioned to multiply each of the polynomials.Furthermore,through practical implementation and considering standard and mechanical examples the efficiency of the method is evaluated.展开更多
This paper observes approaches to algebraic analysis of GOST 28147-89 encryption algorithm (also known as simply GOST), which is the basis of most secure information systems in Russia. The general idea of algebraic an...This paper observes approaches to algebraic analysis of GOST 28147-89 encryption algorithm (also known as simply GOST), which is the basis of most secure information systems in Russia. The general idea of algebraic analysis is based on the representation of initial encryption algorithm as a system of multivariate quadratic equations, which define relations between a secret key and a cipher text. Extended linearization method is evaluated as a method for solving the nonlinear sys- tem of equations.展开更多
This paper presents a unique voltage-raising topology for a single-phase seven-level inverter with triple output voltage gain using single input source and two switched capacitors.The output voltage has been boosted u...This paper presents a unique voltage-raising topology for a single-phase seven-level inverter with triple output voltage gain using single input source and two switched capacitors.The output voltage has been boosted up to three times the value of input voltage by configuring the switched capacitors in series and parallel combinations which eliminates the use of additional step-up converters and transformers.The selective harmonic elimination(SHE)approach is used to remove the lower-order harmonics.The optimal switching angles for SHE is determined using the genetic algorithm.These switching angles are com-bined with a level-shifted pulse width modulation(PWM)technique for pulse generation,resulting in reduced total harmonic distortion(THD).A detailed com-parison has been made against other relevant seven-level inverter topologies in terms of the number of switches,drivers,diodes,capacitors,and boosting facil-ities to emphasize the benefits of the proposed model.The proposed topology is simulated using MATLAB/SIMULINK and an experimental prototype has been developed to validate the results.The Digital Signal Processing(DSP)TMS320F2812 board is used to generate the switching pulses for the proposed technique and the experimental results concur with the simulated model outputs.展开更多
An improved optimization algorithm combining the differential evolution algorithm and the whale algorithm is proposed for the problem of not being able to get rid of the local optimum in the economic load distribution...An improved optimization algorithm combining the differential evolution algorithm and the whale algorithm is proposed for the problem of not being able to get rid of the local optimum in the economic load distribution algorithm. The algorithm adopts a nonlinear convergence strategy, a crossover strategy of differential evolution and the introduction of an elimination mechanism, which balances the global search and local exploitation ability of the algorithm and improves the accuracy of the solved optimal solution. The 13-unit and 40-unit systems are selected for economic load distribution calculation, and the experimental results show that the proposed improved algorithm is superior in distributing the economic load of the power system and can effectively reduce the economic cost.展开更多
Inverters are power electronic devices that change over DC to sinusoidal AC quantity. Be that as it may, in down to earth, these devices produce non-sinusoidal yield which contains harmonics, so as to blend a close si...Inverters are power electronic devices that change over DC to sinusoidal AC quantity. Be that as it may, in down to earth, these devices produce non-sinusoidal yield which contains harmonics, so as to blend a close sinusoidal component and to lessen the harmonic distortion multilevel inverters developed. Mathematical methods, which were developed, are derivative based and need initial considerations. To overcome this, evolutionary algorithms, which are derivative free and accurate, were developed for obtaining multi levels of output voltage. The proposed work uses two evolutionary algorithms, namely, Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) algorithm. These algorithms are used to generate the switching angles by satisfying the non linear transcendental equations that govern the low order harmonic components. A seven level cascaded full bridge inverter is designed using MATLAB/Simulink and the results validate the results for switching angles. The Total Harmonic Distortion (THD) value obtained for GA and PSO is 11.81% and 10.84% respectively. The solution obtained from GA algorithm was implemented in hardware using dsPIC controller to validate the simulation results. The THD value obtained for cascaded seven-level multilevel inverter in the hardware prototype is 25.9%.展开更多
In this paper introduce new idea for image compression based on the two levels DWT. The low-frequency sub-band is minimized by using DCT with the Minimize-Matrix-Size-Algorithm, which is converting the AC-coefficients...In this paper introduce new idea for image compression based on the two levels DWT. The low-frequency sub-band is minimized by using DCT with the Minimize-Matrix-Size-Algorithm, which is converting the AC-coefficients into array contains stream of real values, and then store the DC-coefficients are stored in a column called DC-Column. DC-Column is transformed by one-dimensional DCT to be converted into T-Matrix, then T-Matrix compressed by RLE and arithmetic coding. While the high frequency sub-bands are compressed by the technique;Eliminate Zeros and Store Data (EZSD). This technique eliminates each 8 × 8 sub-matrix contains zeros from the high frequencies sub-bands, in another hands store nonzero data in an array. The results of our compression algorithm compared with JPEG2000 by using four different gray level images.展开更多
文摘in this paper, a fast hidden-line removal method for 3D buildings , which is based on thesubtraction of a convex polygon from another one in linear time, is presented. Also, the facetscontaining holes are quickly divided into a lot of convex polygons, say, triangles and convexquadrilaterals. The algorithm for the polygon division runs in O( (k+1) (n-3)) , where n is thetotal number of the vertices of the merged loop of the facet, and k is the number of the concavevertices of the merged one.
文摘Selective harmonic elimination(SHE) in multilevel inverters is an intricate optimization problem that involves a set of nonlinear transcendental equations which have multiple local minima. A new advanced objective function with proper weighting is proposed and also its efficiency is compared with the objective function which is more similar to the proposed one. To enhance the ability of the SHE in eliminating high number of selected harmonics, at each level of the output voltage, one slot is created. The SHE problem is solved by imperialist competitive algorithm(ICA). The conventional SHE methods cannot eliminate the selected harmonics and satisfy the fundamental component in some ranges of modulation indexes. So, to surmount the SHE defect, a DC-DC converter is applied. Theoretical results are substantiated by simulations and experimental results for a 9-level multilevel inverter. The obtained results illustrate that the proposed method successfully minimizes a large number of identified harmonics which consequences very low total harmonic distortion of output voltage.
基金Project supported by the National Basic Research Program (973) of China (No. 2002CB312200) and the Center for Bioinformatics Pro-gram Grant of Harvard Center of Neurodegeneration and Repair,Harvard Medical School, Harvard University, Boston, USA
文摘In microarray-based cancer classification, gene selection is an important issue owing to the large number of variables and small number of samples as well as its non-linearity. It is difficult to get satisfying results by using conventional linear sta- tistical methods. Recursive feature elimination based on support vector machine (SVM RFE) is an effective algorithm for gene selection and cancer classification, which are integrated into a consistent framework. In this paper, we propose a new method to select parameters of the aforementioned algorithm implemented with Gaussian kernel SVMs as better alternatives to the common practice of selecting the apparently best parameters by using a genetic algorithm to search for a couple of optimal parameter. Fast implementation issues for this method are also discussed for pragmatic reasons. The proposed method was tested on two repre- sentative hereditary breast cancer and acute leukaemia datasets. The experimental results indicate that the proposed method per- forms well in selecting genes and achieves high classification accuracies with these genes.
基金supported by the National Natural Science Foundation of China(Nos.41374130 and 41604154)
文摘With respect to the gamma spectrum, the energy resolution improves with increase in energy. The counts of full energy peak change with energy, and this approximately complies with the Gaussian distribution. This study mainly examines a method to deconvolve the LaBr_3:Ce gamma spectrum with a detector response matrix constructing algorithm based on energy resolution calibration.In the algorithm, the full width at half maximum(FWHM)of full energy peak was calculated by the cubic spline interpolation algorithm and calibrated by a square root of a quadratic function that changes with the energy. Additionally, the detector response matrix was constructed to deconvolve the gamma spectrum. Furthermore, an improved SNIP algorithm was proposed to eliminate the background. In the experiment, several independent peaks of ^(152)Eu,^(137)Cs, and ^(60)Co sources were detected by a LaBr_3:Ce scintillator that were selected to calibrate the energy resolution. The Boosted Gold algorithm was applied to deconvolve the gamma spectrum. The results showed that the peak position difference between the experiment and the deconvolution was within ± 2 channels and the relative error of peak area was approximately within 0.96–6.74%. Finally, a ^(133) Ba spectrum was deconvolved to verify the efficiency and accuracy of the algorithm in unfolding the overlapped peaks.
文摘In the process of eliminating variables in a symbolic polynomial system,the extraneous factors are referred to the unwanted parameters of resulting polynomial.This paper aims at reducing the number of these factors via optimizing the size of Dixon matrix.An optimal configuration of Dixon matrix would lead to the enhancement of the process of computing the resultant which uses for solving polynomial systems.To do so,an optimization algorithm along with a number of new polynomials is introduced to replace the polynomials and implement a complexity analysis.Moreover,the monomial multipliers are optimally positioned to multiply each of the polynomials.Furthermore,through practical implementation and considering standard and mechanical examples the efficiency of the method is evaluated.
文摘This paper observes approaches to algebraic analysis of GOST 28147-89 encryption algorithm (also known as simply GOST), which is the basis of most secure information systems in Russia. The general idea of algebraic analysis is based on the representation of initial encryption algorithm as a system of multivariate quadratic equations, which define relations between a secret key and a cipher text. Extended linearization method is evaluated as a method for solving the nonlinear sys- tem of equations.
文摘This paper presents a unique voltage-raising topology for a single-phase seven-level inverter with triple output voltage gain using single input source and two switched capacitors.The output voltage has been boosted up to three times the value of input voltage by configuring the switched capacitors in series and parallel combinations which eliminates the use of additional step-up converters and transformers.The selective harmonic elimination(SHE)approach is used to remove the lower-order harmonics.The optimal switching angles for SHE is determined using the genetic algorithm.These switching angles are com-bined with a level-shifted pulse width modulation(PWM)technique for pulse generation,resulting in reduced total harmonic distortion(THD).A detailed com-parison has been made against other relevant seven-level inverter topologies in terms of the number of switches,drivers,diodes,capacitors,and boosting facil-ities to emphasize the benefits of the proposed model.The proposed topology is simulated using MATLAB/SIMULINK and an experimental prototype has been developed to validate the results.The Digital Signal Processing(DSP)TMS320F2812 board is used to generate the switching pulses for the proposed technique and the experimental results concur with the simulated model outputs.
文摘An improved optimization algorithm combining the differential evolution algorithm and the whale algorithm is proposed for the problem of not being able to get rid of the local optimum in the economic load distribution algorithm. The algorithm adopts a nonlinear convergence strategy, a crossover strategy of differential evolution and the introduction of an elimination mechanism, which balances the global search and local exploitation ability of the algorithm and improves the accuracy of the solved optimal solution. The 13-unit and 40-unit systems are selected for economic load distribution calculation, and the experimental results show that the proposed improved algorithm is superior in distributing the economic load of the power system and can effectively reduce the economic cost.
文摘Inverters are power electronic devices that change over DC to sinusoidal AC quantity. Be that as it may, in down to earth, these devices produce non-sinusoidal yield which contains harmonics, so as to blend a close sinusoidal component and to lessen the harmonic distortion multilevel inverters developed. Mathematical methods, which were developed, are derivative based and need initial considerations. To overcome this, evolutionary algorithms, which are derivative free and accurate, were developed for obtaining multi levels of output voltage. The proposed work uses two evolutionary algorithms, namely, Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) algorithm. These algorithms are used to generate the switching angles by satisfying the non linear transcendental equations that govern the low order harmonic components. A seven level cascaded full bridge inverter is designed using MATLAB/Simulink and the results validate the results for switching angles. The Total Harmonic Distortion (THD) value obtained for GA and PSO is 11.81% and 10.84% respectively. The solution obtained from GA algorithm was implemented in hardware using dsPIC controller to validate the simulation results. The THD value obtained for cascaded seven-level multilevel inverter in the hardware prototype is 25.9%.
文摘In this paper introduce new idea for image compression based on the two levels DWT. The low-frequency sub-band is minimized by using DCT with the Minimize-Matrix-Size-Algorithm, which is converting the AC-coefficients into array contains stream of real values, and then store the DC-coefficients are stored in a column called DC-Column. DC-Column is transformed by one-dimensional DCT to be converted into T-Matrix, then T-Matrix compressed by RLE and arithmetic coding. While the high frequency sub-bands are compressed by the technique;Eliminate Zeros and Store Data (EZSD). This technique eliminates each 8 × 8 sub-matrix contains zeros from the high frequencies sub-bands, in another hands store nonzero data in an array. The results of our compression algorithm compared with JPEG2000 by using four different gray level images.