期刊文献+
共找到518篇文章
< 1 2 26 >
每页显示 20 50 100
Automatic Pavement Crack Detection Based on Octave Convolution Neural Network with Hierarchical Feature Learning
1
作者 Minggang Xu Chong Li +1 位作者 Ying Chen Wu Wei 《Journal of Beijing Institute of Technology》 EI CAS 2024年第5期422-435,共14页
Automatic pavement crack detection plays an important role in ensuring road safety.In images of cracks,information about the cracks can be conveyed through high-frequency and low-fre-quency signals that focus on fine ... Automatic pavement crack detection plays an important role in ensuring road safety.In images of cracks,information about the cracks can be conveyed through high-frequency and low-fre-quency signals that focus on fine details and global structures,respectively.The output features obtained from different convolutional layers can be combined to represent information about both high-frequency and low-frequency signals.In this paper,we propose an encoder-decoder framework called octave hierarchical network(Octave-H),which is based on the U-Network(U-Net)architec-ture and utilizes an octave convolutional neural network and a hierarchical feature learning module for performing crack detection.The proposed octave convolution is capable of extracting multi-fre-quency feature maps,capturing both fine details and global cracks.We propose a hierarchical feature learning module that merges multi-frequency-scale feature maps with different levels(high and low)of octave convolutional layers.To verify the superiority of the proposed Octave-H,we employed the CrackForest dataset(CFD)and AigleRN databases to evaluate this method.The experimental results demonstrate that Octave-H outperforms other algorithms with satisfactory performance. 展开更多
关键词 automated pavement crack detection octave convolutional network hierarchical feature multiscale MULTIFREQUENCY
下载PDF
A Lightweight Convolutional Neural Network with Hierarchical Multi-Scale Feature Fusion for Image Classification
2
作者 Adama Dembele Ronald Waweru Mwangi Ananda Omutokoh Kube 《Journal of Computer and Communications》 2024年第2期173-200,共28页
Convolutional neural networks (CNNs) are widely used in image classification tasks, but their increasing model size and computation make them challenging to implement on embedded systems with constrained hardware reso... Convolutional neural networks (CNNs) are widely used in image classification tasks, but their increasing model size and computation make them challenging to implement on embedded systems with constrained hardware resources. To address this issue, the MobileNetV1 network was developed, which employs depthwise convolution to reduce network complexity. MobileNetV1 employs a stride of 2 in several convolutional layers to decrease the spatial resolution of feature maps, thereby lowering computational costs. However, this stride setting can lead to a loss of spatial information, particularly affecting the detection and representation of smaller objects or finer details in images. To maintain the trade-off between complexity and model performance, a lightweight convolutional neural network with hierarchical multi-scale feature fusion based on the MobileNetV1 network is proposed. The network consists of two main subnetworks. The first subnetwork uses a depthwise dilated separable convolution (DDSC) layer to learn imaging features with fewer parameters, which results in a lightweight and computationally inexpensive network. Furthermore, depthwise dilated convolution in DDSC layer effectively expands the field of view of filters, allowing them to incorporate a larger context. The second subnetwork is a hierarchical multi-scale feature fusion (HMFF) module that uses parallel multi-resolution branches architecture to process the input feature map in order to extract the multi-scale feature information of the input image. Experimental results on the CIFAR-10, Malaria, and KvasirV1 datasets demonstrate that the proposed method is efficient, reducing the network parameters and computational cost by 65.02% and 39.78%, respectively, while maintaining the network performance compared to the MobileNetV1 baseline. 展开更多
关键词 MobileNet Image Classification Lightweight Convolutional Neural Network Depthwise Dilated Separable Convolution hierarchical Multi-Scale feature Fusion
下载PDF
Neighborhood fusion-based hierarchical parallel feature pyramid network for object detection 被引量:3
3
作者 Mo Lingfei Hu Shuming 《Journal of Southeast University(English Edition)》 EI CAS 2020年第3期252-263,共12页
In order to improve the detection accuracy of small objects,a neighborhood fusion-based hierarchical parallel feature pyramid network(NFPN)is proposed.Unlike the layer-by-layer structure adopted in the feature pyramid... In order to improve the detection accuracy of small objects,a neighborhood fusion-based hierarchical parallel feature pyramid network(NFPN)is proposed.Unlike the layer-by-layer structure adopted in the feature pyramid network(FPN)and deconvolutional single shot detector(DSSD),where the bottom layer of the feature pyramid network relies on the top layer,NFPN builds the feature pyramid network with no connections between the upper and lower layers.That is,it only fuses shallow features on similar scales.NFPN is highly portable and can be embedded in many models to further boost performance.Extensive experiments on PASCAL VOC 2007,2012,and COCO datasets demonstrate that the NFPN-based SSD without intricate tricks can exceed the DSSD model in terms of detection accuracy and inference speed,especially for small objects,e.g.,4%to 5%higher mAP(mean average precision)than SSD,and 2%to 3%higher mAP than DSSD.On VOC 2007 test set,the NFPN-based SSD with 300×300 input reaches 79.4%mAP at 34.6 frame/s,and the mAP can raise to 82.9%after using the multi-scale testing strategy. 展开更多
关键词 computer vision deep convolutional neural network object detection hierarchical parallel feature pyramid network multi-scale feature fusion
下载PDF
Monocular 3D object detection with Pseudo-LiDAR confidence sampling and hierarchical geometric feature extraction in 6G network
4
作者 Jianlong Zhang Guangzu Fang +3 位作者 Bin Wang Xiaobo Zhou Qingqi Pei Chen Chen 《Digital Communications and Networks》 SCIE CSCD 2023年第4期827-835,共9页
The high bandwidth and low latency of 6G network technology enable the successful application of monocular 3D object detection on vehicle platforms.Monocular 3D-object-detection-based Pseudo-LiDAR is a low-cost,lowpow... The high bandwidth and low latency of 6G network technology enable the successful application of monocular 3D object detection on vehicle platforms.Monocular 3D-object-detection-based Pseudo-LiDAR is a low-cost,lowpower solution compared to LiDAR solutions in the field of autonomous driving.However,this technique has some problems,i.e.,(1)the poor quality of generated Pseudo-LiDAR point clouds resulting from the nonlinear error distribution of monocular depth estimation and(2)the weak representation capability of point cloud features due to the neglected global geometric structure features of point clouds existing in LiDAR-based 3D detection networks.Therefore,we proposed a Pseudo-LiDAR confidence sampling strategy and a hierarchical geometric feature extraction module for monocular 3D object detection.We first designed a point cloud confidence sampling strategy based on a 3D Gaussian distribution to assign small confidence to the points with great error in depth estimation and filter them out according to the confidence.Then,we present a hierarchical geometric feature extraction module by aggregating the local neighborhood features and a dual transformer to capture the global geometric features in the point cloud.Finally,our detection framework is based on Point-Voxel-RCNN(PV-RCNN)with high-quality Pseudo-LiDAR and enriched geometric features as input.From the experimental results,our method achieves satisfactory results in monocular 3D object detection. 展开更多
关键词 Monocular 3D object detection Pseudo-LiDAR Confidence sampling hierarchical geometric feature extraction
下载PDF
Content-Based Lace Image Retrieval System Using a Hierarchical Multifeature Scheme
5
作者 曹霞 李岳阳 +2 位作者 罗海驰 蒋高明 丛洪莲 《Journal of Donghua University(English Edition)》 EI CAS 2016年第4期562-565,568,共5页
An android-based lace image retrieval system based on content-based image retrieval (CBIR) technique is presented. This paper applies shape and texture features of lace image in our system and proposes a hierarchical ... An android-based lace image retrieval system based on content-based image retrieval (CBIR) technique is presented. This paper applies shape and texture features of lace image in our system and proposes a hierarchical multifeature scheme to facilitate coarseto-fine matching for efficient lace image retrieval in a large database. Experimental results demonstrate the feasibility and effectiveness of the proposed system meet the requirements of realtime. 展开更多
关键词 Retrieval retrieval matching hierarchical texture CBIR hierarchical registration facilitate preprocessing
下载PDF
A Feature Definition Hierarchy for Supporting Design Process
6
作者 孙正兴 张福炎 蔡士杰 《Journal of Southeast University(English Edition)》 EI CAS 1999年第1期55-62,共8页
The adaptability of features definition to applications is an essential condition for implementing feature based design. This paper makes attempt to present a hierarchical definition structure of features. The propos... The adaptability of features definition to applications is an essential condition for implementing feature based design. This paper makes attempt to present a hierarchical definition structure of features. The proposed scheme divides feature definition into application level, form level and geometric level, and provides links between different levels with feature semantics interpretation and enhanced geometric face adjacent graph. respectively. The results not only enable feature definition to abate from the specific dependence and become more extensive, but also provide a theoretical foundation for establishing the concurrent feature based design process model. 展开更多
关键词 design process feature based modeling feature definition hierarchical construction
下载PDF
Object Tracking Based on Hierarchical Convolutional Features
7
作者 Aili Wang Haiyang Liu +1 位作者 Yushi Chen Yuji Iwahori 《国际计算机前沿大会会议论文集》 2018年第1期61-61,共1页
下载PDF
Hierarchical Optimization Method for Federated Learning with Feature Alignment and Decision Fusion
8
作者 Ke Li Xiaofeng Wang Hu Wang 《Computers, Materials & Continua》 SCIE EI 2024年第10期1391-1407,共17页
In the realm of data privacy protection,federated learning aims to collaboratively train a global model.However,heterogeneous data between clients presents challenges,often resulting in slow convergence and inadequate... In the realm of data privacy protection,federated learning aims to collaboratively train a global model.However,heterogeneous data between clients presents challenges,often resulting in slow convergence and inadequate accuracy of the global model.Utilizing shared feature representations alongside customized classifiers for individual clients emerges as a promising personalized solution.Nonetheless,previous research has frequently neglected the integration of global knowledge into local representation learning and the synergy between global and local classifiers,thereby limiting model performance.To tackle these issues,this study proposes a hierarchical optimization method for federated learning with feature alignment and the fusion of classification decisions(FedFCD).FedFCD regularizes the relationship between global and local feature representations to achieve alignment and incorporates decision information from the global classifier,facilitating the late fusion of decision outputs from both global and local classifiers.Additionally,FedFCD employs a hierarchical optimization strategy to flexibly optimize model parameters.Through experiments on the Fashion-MNIST,CIFAR-10 and CIFAR-100 datasets,we demonstrate the effectiveness and superiority of FedFCD.For instance,on the CIFAR-100 dataset,FedFCD exhibited a significant improvement in average test accuracy by 6.83%compared to four outstanding personalized federated learning approaches.Furthermore,extended experiments confirm the robustness of FedFCD across various hyperparameter values. 展开更多
关键词 Federated learning data heterogeneity feature alignment decision fusion hierarchical optimization
下载PDF
Hierarchical Classification of Chinese Documents Based on N grams 被引量:1
9
作者 Zhou Shui geng 1, Guan Ji hong 2, He Yan xiang 2 1. State Key Laboratory of Software Engineering, Wuhan University, Wuhan 430072, China 2. School of Computer Science, Wuhan University, Wuhan 430072, China 《Wuhan University Journal of Natural Sciences》 CAS 2001年第Z1期416-422,共7页
We explore the techniques of utilizing N gram information to categorize Chinese text documents hierarchically so that the classifier can shake off the burden of large dictionaries and complex segmentation process... We explore the techniques of utilizing N gram information to categorize Chinese text documents hierarchically so that the classifier can shake off the burden of large dictionaries and complex segmentation processing, and subsequently be domain and time independent. A hierarchical Chinese text classifier is implemented. Experimental results show that hierarchically classifying Chinese text documents based N grams can achieve satisfactory performance and outperforms the other traditional Chinese text classifiers. 展开更多
关键词 Chinese text classification N grams feature selection hierarchical classification
下载PDF
Mobile Robot Hierarchical Simultaneous Localization and Mapping Using Monocular Vision 被引量:1
10
作者 厉茂海 洪炳熔 罗荣华 《Journal of Shanghai Jiaotong university(Science)》 EI 2007年第6期765-772,共8页
A hierarchical mobile robot simultaneous localization and mapping (SLAM) method that allows us to obtain accurate maps was presented. The local map level is composed of a set of local metric feature maps that are guar... A hierarchical mobile robot simultaneous localization and mapping (SLAM) method that allows us to obtain accurate maps was presented. The local map level is composed of a set of local metric feature maps that are guaranteed to be statistically independent. The global level is a topological graph whose arcs are labeled with the relative location between local maps. An estimation of these relative locations is maintained with local map alignment algorithm, and more accurate estimation is calculated through a global minimization procedure using the loop closure constraint. The local map is built with Rao-Blackwellised particle filter (RBPF), where the particle filter is used to extending the path posterior by sampling new poses. The landmark position estimation and update is implemented through extended Kalman filter (EKF). Monocular vision mounted on the robot tracks the 3D natural point landmarks, which are structured with matching scale invariant feature transform (SIFT) feature pairs. The matching for multi-dimension SIFT features is implemented with a KD-tree in the time cost of O(lbN). Experiment results on Pioneer mobile robot in a real indoor environment show the superior performance of our proposed method. 展开更多
关键词 mobile robot hierarchical simultaneous localization and mapping (SLAM) Rao-Blackwellised particle filter (RBPF) MONOCULAR vision scale INVARIANT feature TRANSFORM
下载PDF
An Object-based Approach for Two-level Gully Feature Mapping Using High-resolution DEM and Imagery: A Case Study on Hilly Loess Plateau Region, China 被引量:12
11
作者 LIU Kai DING Hu +4 位作者 TANG Guoan ZHU A-Xing YANG Xin JIANG Sheng CAO Jianjun 《Chinese Geographical Science》 SCIE CSCD 2017年第3期415-430,共16页
Gully feature mapping is an indispensable prerequisite for the motioning and control of gully erosion which is a widespread natural hazard. The increasing availability of high-resolution Digital Elevation Model(DEM) a... Gully feature mapping is an indispensable prerequisite for the motioning and control of gully erosion which is a widespread natural hazard. The increasing availability of high-resolution Digital Elevation Model(DEM) and remote sensing imagery, combined with developed object-based methods enables automatic gully feature mapping. But still few studies have specifically focused on gully feature mapping on different scales. In this study, an object-based approach to two-level gully feature mapping, including gully-affected areas and bank gullies, was developed and tested on 1-m DEM and Worldview-3 imagery of a catchment in the Chinese Loess Plateau. The methodology includes a sequence of data preparation, image segmentation, metric calculation, and random forest based classification. The results of the two-level mapping were based on a random forest model after investigating the effects of feature selection and class-imbalance problem. Results show that the segmentation strategy adopted in this paper which considers the topographic information and optimal parameter combination can improve the segmentation results. The distribution of the gully-affected area is closely related to topographic information, however, the spectral features are more dominant for bank gully mapping. The highest overall accuracy of the gully-affected area mapping was 93.06% with four topographic features. The highest overall accuracy of bank gully mapping is 78.5% when all features are adopted. The proposed approach is a creditable option for hierarchical mapping of gully feature information, which is suitable for the application in hily Loess Plateau region. 展开更多
关键词 object-based image analysis gully feature hierarchical mapping gully erosion Digital Elevation Model(DEM)
下载PDF
Long Text Classification Algorithm Using a Hybrid Model of Bidirectional Encoder Representation from Transformers-Hierarchical Attention Networks-Dilated Convolutions Network 被引量:1
12
作者 ZHAO Yuanyuan GAO Shining +1 位作者 LIU Yang GONG Xiaohui 《Journal of Donghua University(English Edition)》 CAS 2021年第4期341-350,共10页
Text format information is full of most of the resources of Internet,which puts forward higher and higher requirements for the accuracy of text classification.Therefore,in this manuscript,firstly,we design a hybrid mo... Text format information is full of most of the resources of Internet,which puts forward higher and higher requirements for the accuracy of text classification.Therefore,in this manuscript,firstly,we design a hybrid model of bidirectional encoder representation from transformers-hierarchical attention networks-dilated convolutions networks(BERT_HAN_DCN)which based on BERT pre-trained model with superior ability of extracting characteristic.The advantages of HAN model and DCN model are taken into account which can help gain abundant semantic information,fusing context semantic features and hierarchical characteristics.Secondly,the traditional softmax algorithm increases the learning difficulty of the same kind of samples,making it more difficult to distinguish similar features.Based on this,AM-softmax is introduced to replace the traditional softmax.Finally,the fused model is validated,which shows superior performance in the accuracy rate and F1-score of this hybrid model on two datasets and the experimental analysis shows the general single models such as HAN,DCN,based on BERT pre-trained model.Besides,the improved AM-softmax network model is superior to the general softmax network model. 展开更多
关键词 long text classification dilated convolution BERT fusing context semantic features hierarchical characteristics BERT_HAN_DCN AM-softmax
下载PDF
Flame Recognition in Video Images with Color and Dynamic Features of Flames 被引量:1
13
作者 Jiaqing Chen Xiaohui Mu +2 位作者 Yinglei Song Menghong Yu Bing Zhang 《Journal of Autonomous Intelligence》 2019年第1期30-45,共16页
Recently,video based flame detection has become an important approach for early detection of fire under complex circumstances.However,the detection accuracy of most existing methods remains unsatisfactory.In this pape... Recently,video based flame detection has become an important approach for early detection of fire under complex circumstances.However,the detection accuracy of most existing methods remains unsatisfactory.In this paper,we develop a new algorithm that can significantly improve the accuracy of flame detection in video images.The algorithm segments a video image and obtains areas that may contain flames by combining a two-step clustering based approach with the RGB color model.A few new dynamic and hierarchical features associated with the suspected regions,including the flicker frequency of flames,are then extracted and analyzed.The algorithm determines whether a suspected region contains flames or not by processing the color and dynamic features of the area altogether with a classifier,which can be a BP neural network,a k nearest neighbor classifier or a support vector machine.Testing results show that this algorithm is robust and efficient,and is able to significantly reduce the probability of false alarms. 展开更多
关键词 FIRE Detection RGB COLOR Model Dynamic featureS hierarchical featureS feature Fusion
下载PDF
Fast Image Retrieval of Textile Industrial Accessory Based on Multi-Feature Fusion
14
作者 沈文忠 杨杰 《Journal of Donghua University(English Edition)》 EI CAS 2004年第3期117-122,共6页
A hierarchical retrieval scheme of the accessory image database is proposed based on textile industrial accessory contour feature and region feature. At first smallest enclosed rectangle[1] feature (degree of accessor... A hierarchical retrieval scheme of the accessory image database is proposed based on textile industrial accessory contour feature and region feature. At first smallest enclosed rectangle[1] feature (degree of accessory coordination) is used to filter the image database to decouple the image search scope. After the accessory contour information and region information are extracted, the fusion multi-feature of the centroid distance Fourier descriptor and distance distribution histogram is adopted to finish image retrieval accurately. All the features above are invariable under translation, scaling and rotation. Results from the test on the image database including 1,000 accessory images demonstrate that the method is effective and practical with high accuracy and fast speed. 展开更多
关键词 content based retrieval smallest enclosed rectangle (SER) hierarchical retrieval Fourier descriptor feature fusion
下载PDF
A Multi-Detector Security Architecture with Local Feature-Level Fusion for Multimodal Biometrics
15
作者 Sorin Soviany Sorin Puscoci Cristina Soviany 《通讯和计算机(中英文版)》 2013年第9期1200-1218,共19页
关键词 生物特征识别 特征级融合 多探测器 安全架构 多模态 生物识别系统 识别模型 生物识别技术
下载PDF
Grasp Detection with Hierarchical Multi-Scale Feature Fusion and Inverted Shuffle Residual
16
作者 Wenjie Geng Zhiqiang Cao +3 位作者 Peiyu Guan Fengshui Jing Min Tan Junzhi Yu 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2024年第1期244-256,共13页
Grasp detection plays a critical role for robot manipulation.Mainstream pixel-wise grasp detection networks with encoder-decoder structure receive much attention due to good accuracy and efficiency.However,they usuall... Grasp detection plays a critical role for robot manipulation.Mainstream pixel-wise grasp detection networks with encoder-decoder structure receive much attention due to good accuracy and efficiency.However,they usually transmit the high-level feature in the encoder to the decoder,and low-level features are neglected.It is noted that low-level features contain abundant detail information,and how to fully exploit low-level features remains unsolved.Meanwhile,the channel information in high-level feature is also not well mined.Inevitably,the performance of grasp detection is degraded.To solve these problems,we propose a grasp detection network with hierarchical multi-scale feature fusion and inverted shuffle residual.Both low-level and high-level features in the encoder are firstly fused by the designed skip connections with attention module,and the fused information is then propagated to corresponding layers of the decoder for in-depth feature fusion.Such a hierarchical fusion guarantees the quality of grasp prediction.Furthermore,an inverted shuffle residual module is created,where the high-level feature from encoder is split in channel and the resultant split features are processed in their respective branches.By such differentiation processing,more high-dimensional channel information is kept,which enhances the representation ability of the network.Besides,an information enhancement module is added before the encoder to reinforce input information.The proposed method attains 98.9%and 97.8%in image-wise and object-wise accuracy on the Cornell grasping dataset,respectively,and the experimental results verify the effectiveness of the method. 展开更多
关键词 grasp detection hierarchical multi-scale feature fusion skip connections with attention inverted shuffle residual
原文传递
Two-level hierarchical feature learning for image classification 被引量:3
17
作者 Guang-hui SONG Xiao-gang JIN +1 位作者 Gen-lang CHEN Yan NIE 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2016年第9期897-906,共10页
In some image classification tasks, similarities among different categories are different and the samples are usually misclassified as highly similar categories. To distinguish highly similar categories, more specific... In some image classification tasks, similarities among different categories are different and the samples are usually misclassified as highly similar categories. To distinguish highly similar categories, more specific features are required so that the classifier can improve the classification performance. In this paper, we propose a novel two-level hierarchical feature learning framework based on the deep convolutional neural network(CNN), which is simple and effective. First, the deep feature extractors of different levels are trained using the transfer learning method that fine-tunes the pre-trained deep CNN model toward the new target dataset. Second, the general feature extracted from all the categories and the specific feature extracted from highly similar categories are fused into a feature vector. Then the final feature representation is fed into a linear classifier. Finally, experiments using the Caltech-256, Oxford Flower-102, and Tasmania Coral Point Count(CPC) datasets demonstrate that the expression ability of the deep features resulting from two-level hierarchical feature learning is powerful. Our proposed method effectively increases the classification accuracy in comparison with flat multiple classification methods. 展开更多
关键词 Transfer learning feature learning Deep convolutional neural network hierarchical classification Spectral clustering
原文传递
A hierarchical clustering of features approach for vehicle tracking in traffic environments 被引量:1
18
作者 Anan Banharnsakun Supannee Tanathong 《International Journal of Intelligent Computing and Cybernetics》 EI 2016年第4期354-368,共15页
Purpose-Developing algorithms for automated detection and tracking of multiple objects is one challenge in the field of object tracking.Especially in a traffic video monitoring system,vehicle detection is an essential... Purpose-Developing algorithms for automated detection and tracking of multiple objects is one challenge in the field of object tracking.Especially in a traffic video monitoring system,vehicle detection is an essential and challenging task.In the previous studies,many vehicle detection methods have been presented.These proposed approaches mostly used either motion information or characteristic information to detect vehicles.Although these methods are effective in detecting vehicles,their detection accuracy still needs to be improved.Moreover,the headlights and windshields,which are used as the vehicle features for detection in these methods,are easily obscured in some traffic conditions.The paper aims to discuss these issues.Design/methodology/approach-First,each frame will be captured from a video sequence and then the background subtraction is performed by using the Mixture-of-Gaussians background model.Next,the Shi-Tomasi corner detection method is employed to extract the feature points from objects of interest in each foreground scene and the hierarchical clustering approach is then applied to cluster and form them into feature blocks.These feature blocks will be used to track the moving objects frame by frame.Findings-Using the proposed method,it is possible to detect the vehicles in both day-time and night-time scenarios with a 95 percent accuracy rate and can cope with irrelevant movement(waving trees),which has to be deemed as background.In addition,the proposed method is able to deal with different vehicle shapes such as cars,vans,and motorcycles.Originality/value-This paper presents a hierarchical clustering of features approach for multiple vehicles tracking in traffic environments to improve the capability of detection and tracking in case that the vehicle features are obscured in some traffic conditions. 展开更多
关键词 feature extraction hierarchical clustering Mixture-of-Gaussians Multiple object detection Shi-Tomasi corner detection Vehicle tracking Background model
原文传递
Hierarchical Geometric Constraint Model for Parametric Feature Based Modeling
19
作者 高曙明 彭群生 《Journal of Computer Science & Technology》 SCIE EI CSCD 1997年第3期193-201,共9页
A new geometric constraint model is described, which is hierarchical and suitable for parametric feature based modeling. In this model, different levels of geometric information are represented to support various stag... A new geometric constraint model is described, which is hierarchical and suitable for parametric feature based modeling. In this model, different levels of geometric information are represented to support various stages of a design process. An efficient approach to parametric featu-re based modeling is also presented, adopting the high level geometric constraint model. The low level geometric model such as B-reps can be derived automatically from the high level geometric constraint model, enabling designers to perform their task of detailed design. 展开更多
关键词 hierarchical geometric constraint model parametric design feature based modeling
原文传递
改进YOLOv4的遥感图像目标检测算法 被引量:2
20
作者 闵锋 况永刚 +2 位作者 毛一新 彭伟明 郝琳琳 《计算机工程与设计》 北大核心 2024年第2期396-404,共9页
为有效解决遥感图像目标检测算法在复杂背景下的检测效果不佳的问题,提出一种改进YOLOv4的目标检测算法。设计一种跨阶段残差结构,替换原主干网络的简单残差结构,降低模型参数量和计算负担;引入CBAM注意力机制,加强CSP模块间有效特征交... 为有效解决遥感图像目标检测算法在复杂背景下的检测效果不佳的问题,提出一种改进YOLOv4的目标检测算法。设计一种跨阶段残差结构,替换原主干网络的简单残差结构,降低模型参数量和计算负担;引入CBAM注意力机制,加强CSP模块间有效特征交互;使用跨阶段分层卷积模块重构特征融合阶段对深层特征图的处理方式,防止网络退化和梯度消失;采用Mish激活函数,增强融合网络对非线性特征的提取能力。在RSOD、DIOR数据集上的实验结果表明,改进YOLOv4算法的测试mAP相比原YOLOv4算法分别高出4.5%、7.3%,其检测速度分别达到48 fps、45 fps,在保证实时性的同时检测精度有较大提升。 展开更多
关键词 遥感图像 目标检测 跨阶段残差结构 特征交互 跨阶段分层卷积模块 激活函数 非线性特征
下载PDF
上一页 1 2 26 下一页 到第
使用帮助 返回顶部