Building segmentation from high-resolution synthetic aperture radar (SAR) images has always been one of the important research issues. Due to the existence of speckle noise and multipath effect, the pixel values chang...Building segmentation from high-resolution synthetic aperture radar (SAR) images has always been one of the important research issues. Due to the existence of speckle noise and multipath effect, the pixel values change drastically, causing the large intensity differences in pixels of building areas. Moreover, the geometric structure of buildings can cause strong scattering spots, which brings difficulties to the segmentation and extraction of buildings. To solve of these problems, this paper presents a coherence-coefficient-based Markov random field (CCMRF) approach for building segmentation from high-resolution SAR images. The method introduces the coherence coefficient of interferometric synthetic aperture radar (InSAR) into the neighborhood energy based on traditional Markov random field (MRF), which makes interferometric and spatial contextual information more fully used in SAR image segmentation. According to the Hammersley-Clifford theorem, the problem of maximum a posteriori (MAP) for image segmentation is transformed into the solution of minimizing the sum of likelihood energy and neighborhood energy. Finally, the iterative condition model (ICM) is used to find the optimal solution. The experimental results demonstrate that the proposed method can segment SAR building effectively and obtain more accurate results than the traditional MRF method and K-means clustering.展开更多
In order to overcome the disadvantages of low accuracy rate, high complexity and poor robustness to image noise in many traditional algorithms of cloud image detection, this paper proposed a novel algorithm on the bas...In order to overcome the disadvantages of low accuracy rate, high complexity and poor robustness to image noise in many traditional algorithms of cloud image detection, this paper proposed a novel algorithm on the basis of Markov Random Field (MRF) modeling. This paper first defined algorithm model and derived the core factors affecting the performance of the algorithm, and then, the solving of this algorithm was obtained by the use of Belief Propagation (BP) algorithm and Iterated Conditional Modes (ICM) algorithm. Finally, experiments indicate that this algorithm for the cloud image detection has higher average accuracy rate which is about 98.76% and the average result can also reach 96.92% for different type of image noise.展开更多
A novel image auto-annotation method is presented based on probabilistic latent semantic analysis(PLSA) model and multiple Markov random fields(MRF).A PLSA model with asymmetric modalities is first constructed to esti...A novel image auto-annotation method is presented based on probabilistic latent semantic analysis(PLSA) model and multiple Markov random fields(MRF).A PLSA model with asymmetric modalities is first constructed to estimate the joint probability between images and semantic concepts,then a subgraph is extracted served as the corresponding structure of Markov random fields and inference over it is performed by the iterative conditional modes so as to capture the final annotation for the image.The novelty of our method mainly lies in two aspects:exploiting PLSA to estimate the joint probability between images and semantic concepts as well as multiple MRF to further explore the semantic context among keywords for accurate image annotation.To demonstrate the effectiveness of this approach,an experiment on the Corel5 k dataset is conducted and its results are compared favorably with the current state-of-the-art approaches.展开更多
This paper presented a method that incorporates Markov Random Field(MRF), watershed segmentation and merging techniques for performing image segmentation and edge detection tasks. MRF is used to obtain an initial esti...This paper presented a method that incorporates Markov Random Field(MRF), watershed segmentation and merging techniques for performing image segmentation and edge detection tasks. MRF is used to obtain an initial estimate of x regions in the image under process where in MRF model, gray level x , at pixel location i , in an image X , depends on the gray levels of neighboring pixels. The process needs an initial segmented result. An initial segmentation is got based on K means clustering technique and the minimum distance, then the region process in modeled by MRF to obtain an image contains different intensity regions. Starting from this we calculate the gradient values of that image and then employ a watershed technique. When using MRF method it obtains an image that has different intensity regions and has all the edge and region information, then it improves the segmentation result by superimpose closed and an accurate boundary of each region using watershed algorithm. After all pixels of the segmented regions have been processed, a map of primitive region with edges is generated. Finally, a merge process based on averaged mean values is employed. The final segmentation and edge detection result is one closed boundary per actual region in the image.展开更多
定义在单一空间分辨率上的树结构马尔可夫场(Tree-Structured Markov Random Field,TS-MRF)模型能够表达图像的分层结构信息,但难以描述图像的非平稳性.针对该问题,提出小波域的TS-MRF图像建模方法—WTS-MRF模型.按照图像分类层次树的...定义在单一空间分辨率上的树结构马尔可夫场(Tree-Structured Markov Random Field,TS-MRF)模型能够表达图像的分层结构信息,但难以描述图像的非平稳性.针对该问题,提出小波域的TS-MRF图像建模方法—WTS-MRF模型.按照图像分类层次树的结构形式,该模型将一系列的MRF嵌套定义在多分辨率的小波域中:每一个树节点对应于定义在不同分辨率上的一个MRF集合,并通过条件概率的形式将相邻分辨率上的MRF间的作用关系考虑进来;同时相同分辨率的父子节点对应的MRF通过区域约束嵌套定义.基于WTS-MRF模型,给出了一个监督图像分割的递归算法,通过给定的分类层次树表示先验信息,并通过训练数据给出叶子节点在各分辨率上的统计参数.它在尺度内和尺度间两个层次上进行递归:首先,在最低分辨率上执行尺度内递归,即采用ICM算法从树的根节点到叶子节点依次对MRF进行递归估计;然后执行尺度间递归,即在相邻的更高分辨率尺度上,通过直接投影的方式依次获取每一MRF的初始估计,并采用ICM算法递归优化;最后,原始分辨率的MRF估计完成,获取最终分割结果.两组实验从视觉效果和定量指标(整体分类正确率和Kappa系数)两个方面验证了算法的有效性.展开更多
针对彩色图像分割问题,研究Markov随机场(Markov random fields,MRF)模型内迭代条件模式(Iterative conditional mode,ICM)方法的标记推理策略.通过小波分解构造图像多尺度表达,针对顶层图像先验标记获取问题,改进原始谱聚类算法,通过...针对彩色图像分割问题,研究Markov随机场(Markov random fields,MRF)模型内迭代条件模式(Iterative conditional mode,ICM)方法的标记推理策略.通过小波分解构造图像多尺度表达,针对顶层图像先验标记获取问题,改进原始谱聚类算法,通过近邻传播自动确定图像的聚类参数,运用集成学习提高算法的稳定性和准确度.对其他各尺度图像,通过分析尺度关联下的区域特征变化,结合不同尺度间的特征相似性和同一尺度内空间邻域的一致性,提出一种立体结构描述下的尺度–空间映射法则.通过定量和定性的分割实验,结果表明本文算法具有良好的准确性、鲁棒性和普适性.展开更多
为充分利用高光谱遥感影像中丰富的光谱和空间信息,提出了一种基于多核支持向量机(multiple kernel support vector machine,MKSVM)和马尔科夫随机场(markov random field,MRF)的影像分类方法。该方法首先利用MKSVM分类器对影像进行分...为充分利用高光谱遥感影像中丰富的光谱和空间信息,提出了一种基于多核支持向量机(multiple kernel support vector machine,MKSVM)和马尔科夫随机场(markov random field,MRF)的影像分类方法。该方法首先利用MKSVM分类器对影像进行分类处理,再利用MRF对初始分类结果进行空间结构规则化,得到最终分类结果。通过对AVIRIS高光谱影像的分类实验表明,该方法有效地消除了分类结果中同质区域内的"噪声",分类精度提高了3%左右。展开更多
各种干扰的存在使得高分辨率合成孔径雷达(synthetic aperture radar,SAR)图像道路网的提取变得异常困难。马尔可夫随机场(Markov random field,MRF)模型能够充分利用道路图像的上下文特征以及先验知识,在道路网提取中得到广泛应用,但...各种干扰的存在使得高分辨率合成孔径雷达(synthetic aperture radar,SAR)图像道路网的提取变得异常困难。马尔可夫随机场(Markov random field,MRF)模型能够充分利用道路图像的上下文特征以及先验知识,在道路网提取中得到广泛应用,但存在求解过程偏慢及参数设置偏多问题。首先根据道路空间几何特征关系对提取出的线基元进行预连接,以此减少虚假连接给MRF迭代求解带来的运算量;然后建立MRF道路网改进模型对道路网进行快速标记。使用1m机载高分辨率SAR图像进行实验,结果验证了该方法的有效性。展开更多
文摘Building segmentation from high-resolution synthetic aperture radar (SAR) images has always been one of the important research issues. Due to the existence of speckle noise and multipath effect, the pixel values change drastically, causing the large intensity differences in pixels of building areas. Moreover, the geometric structure of buildings can cause strong scattering spots, which brings difficulties to the segmentation and extraction of buildings. To solve of these problems, this paper presents a coherence-coefficient-based Markov random field (CCMRF) approach for building segmentation from high-resolution SAR images. The method introduces the coherence coefficient of interferometric synthetic aperture radar (InSAR) into the neighborhood energy based on traditional Markov random field (MRF), which makes interferometric and spatial contextual information more fully used in SAR image segmentation. According to the Hammersley-Clifford theorem, the problem of maximum a posteriori (MAP) for image segmentation is transformed into the solution of minimizing the sum of likelihood energy and neighborhood energy. Finally, the iterative condition model (ICM) is used to find the optimal solution. The experimental results demonstrate that the proposed method can segment SAR building effectively and obtain more accurate results than the traditional MRF method and K-means clustering.
基金Supported by the National Natural Science Foundation of China (No. 61172047)
文摘In order to overcome the disadvantages of low accuracy rate, high complexity and poor robustness to image noise in many traditional algorithms of cloud image detection, this paper proposed a novel algorithm on the basis of Markov Random Field (MRF) modeling. This paper first defined algorithm model and derived the core factors affecting the performance of the algorithm, and then, the solving of this algorithm was obtained by the use of Belief Propagation (BP) algorithm and Iterated Conditional Modes (ICM) algorithm. Finally, experiments indicate that this algorithm for the cloud image detection has higher average accuracy rate which is about 98.76% and the average result can also reach 96.92% for different type of image noise.
基金Supported by the National Basic Research Priorities Program(No.2013CB329502)the National High-tech R&D Program of China(No.2012AA011003)+1 种基金National Natural Science Foundation of China(No.61035003,61072085,60933004,60903141)the National Scienceand Technology Support Program of China(No.2012BA107B02)
文摘A novel image auto-annotation method is presented based on probabilistic latent semantic analysis(PLSA) model and multiple Markov random fields(MRF).A PLSA model with asymmetric modalities is first constructed to estimate the joint probability between images and semantic concepts,then a subgraph is extracted served as the corresponding structure of Markov random fields and inference over it is performed by the iterative conditional modes so as to capture the final annotation for the image.The novelty of our method mainly lies in two aspects:exploiting PLSA to estimate the joint probability between images and semantic concepts as well as multiple MRF to further explore the semantic context among keywords for accurate image annotation.To demonstrate the effectiveness of this approach,an experiment on the Corel5 k dataset is conducted and its results are compared favorably with the current state-of-the-art approaches.
文摘This paper presented a method that incorporates Markov Random Field(MRF), watershed segmentation and merging techniques for performing image segmentation and edge detection tasks. MRF is used to obtain an initial estimate of x regions in the image under process where in MRF model, gray level x , at pixel location i , in an image X , depends on the gray levels of neighboring pixels. The process needs an initial segmented result. An initial segmentation is got based on K means clustering technique and the minimum distance, then the region process in modeled by MRF to obtain an image contains different intensity regions. Starting from this we calculate the gradient values of that image and then employ a watershed technique. When using MRF method it obtains an image that has different intensity regions and has all the edge and region information, then it improves the segmentation result by superimpose closed and an accurate boundary of each region using watershed algorithm. After all pixels of the segmented regions have been processed, a map of primitive region with edges is generated. Finally, a merge process based on averaged mean values is employed. The final segmentation and edge detection result is one closed boundary per actual region in the image.
文摘定义在单一空间分辨率上的树结构马尔可夫场(Tree-Structured Markov Random Field,TS-MRF)模型能够表达图像的分层结构信息,但难以描述图像的非平稳性.针对该问题,提出小波域的TS-MRF图像建模方法—WTS-MRF模型.按照图像分类层次树的结构形式,该模型将一系列的MRF嵌套定义在多分辨率的小波域中:每一个树节点对应于定义在不同分辨率上的一个MRF集合,并通过条件概率的形式将相邻分辨率上的MRF间的作用关系考虑进来;同时相同分辨率的父子节点对应的MRF通过区域约束嵌套定义.基于WTS-MRF模型,给出了一个监督图像分割的递归算法,通过给定的分类层次树表示先验信息,并通过训练数据给出叶子节点在各分辨率上的统计参数.它在尺度内和尺度间两个层次上进行递归:首先,在最低分辨率上执行尺度内递归,即采用ICM算法从树的根节点到叶子节点依次对MRF进行递归估计;然后执行尺度间递归,即在相邻的更高分辨率尺度上,通过直接投影的方式依次获取每一MRF的初始估计,并采用ICM算法递归优化;最后,原始分辨率的MRF估计完成,获取最终分割结果.两组实验从视觉效果和定量指标(整体分类正确率和Kappa系数)两个方面验证了算法的有效性.
文摘针对彩色图像分割问题,研究Markov随机场(Markov random fields,MRF)模型内迭代条件模式(Iterative conditional mode,ICM)方法的标记推理策略.通过小波分解构造图像多尺度表达,针对顶层图像先验标记获取问题,改进原始谱聚类算法,通过近邻传播自动确定图像的聚类参数,运用集成学习提高算法的稳定性和准确度.对其他各尺度图像,通过分析尺度关联下的区域特征变化,结合不同尺度间的特征相似性和同一尺度内空间邻域的一致性,提出一种立体结构描述下的尺度–空间映射法则.通过定量和定性的分割实验,结果表明本文算法具有良好的准确性、鲁棒性和普适性.
文摘为充分利用高光谱遥感影像中丰富的光谱和空间信息,提出了一种基于多核支持向量机(multiple kernel support vector machine,MKSVM)和马尔科夫随机场(markov random field,MRF)的影像分类方法。该方法首先利用MKSVM分类器对影像进行分类处理,再利用MRF对初始分类结果进行空间结构规则化,得到最终分类结果。通过对AVIRIS高光谱影像的分类实验表明,该方法有效地消除了分类结果中同质区域内的"噪声",分类精度提高了3%左右。
文摘各种干扰的存在使得高分辨率合成孔径雷达(synthetic aperture radar,SAR)图像道路网的提取变得异常困难。马尔可夫随机场(Markov random field,MRF)模型能够充分利用道路图像的上下文特征以及先验知识,在道路网提取中得到广泛应用,但存在求解过程偏慢及参数设置偏多问题。首先根据道路空间几何特征关系对提取出的线基元进行预连接,以此减少虚假连接给MRF迭代求解带来的运算量;然后建立MRF道路网改进模型对道路网进行快速标记。使用1m机载高分辨率SAR图像进行实验,结果验证了该方法的有效性。