First,the hierarchical ZSM-5 zeolite was prepared by hydrothermal method using mesoporous template cetyltrimethylammonium bromide(CTAB).The physical and chemical properties of the hierarchical ZSM-5 zeolite were chara...First,the hierarchical ZSM-5 zeolite was prepared by hydrothermal method using mesoporous template cetyltrimethylammonium bromide(CTAB).The physical and chemical properties of the hierarchical ZSM-5 zeolite were characterized by X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FT-IR)and N2 adsorption-desorption and Scanning electron microscope(SEM).Then,the as-prepared hierarchical ZSM-5 zeolite and ion exchange resin were used as catalysts to evaluate the reaction performance of the synthesis of tributyl citrate.Compared with the ion exchange resin,the as-prepared ZSM-5 has a microporous and mesoporous composite structure and a large specific surface area,so that significantly improving the catalytic performance of synthesizing tributyl citrate and increasing the esterification rate of the reaction 8.7%.展开更多
Herein,we propose a novel approach to reduce the viscosity of heavy oil by functional hierarchical CTMS-ZSM-5-PTMS zeolites.CTMS-ZSM-5-PTMS zeolites synthesized by asymmetric modification and selective alkali etching ...Herein,we propose a novel approach to reduce the viscosity of heavy oil by functional hierarchical CTMS-ZSM-5-PTMS zeolites.CTMS-ZSM-5-PTMS zeolites synthesized by asymmetric modification and selective alkali etching can reduce the viscosity of heavy oil through adsorbing asphaltenes.This method can reduce the viscosity of heavy oil from hundreds of thousands mPa·s to about ten thousand mPa·s.The work provides an economical and environmentally friendly candidate for heavy oil viscosity reduction under low-temperature conditions.展开更多
Hierarchical ZSM-5 zeolite with radial mesopores is controllably synthesized using piperidine in a NaOH solution.The piperidine molecules enter the zeolite micropores and protect the zeolite framework from extensive d...Hierarchical ZSM-5 zeolite with radial mesopores is controllably synthesized using piperidine in a NaOH solution.The piperidine molecules enter the zeolite micropores and protect the zeolite framework from extensive desilication.The areas containing fewer aluminum atoms contain fewer piperidine protectant molecules and so they dissolve first.Small amounts of mesopores are then gradually generated in areas with more aluminum atoms and more piperidine protectant.In this manner,radial mesopores are formed in the ZSM-5 zeolite with a maximal preservation of the micropores and active sites.The optimal hierarchical ZSM-5 zeolite,prepared with a molar ratio of piperidine to zeolite of 0.03,had a mesopore surface area of 136 m·g and a solid yield of 80%.The incorporation of the radial mesopores results in micropores that are interconnected which shortened the average diffusion path length.Compared to the parent zeolite,the hierarchical ZSM-5 zeolite possesses more accessible acid sites and has a higher catalytic activity and a longer lifetime for the alkylation of benzene.展开更多
Single-crystalline hierarchical ZSM-5 zeolites with different particle sizes(namely 100,140,and 200 nm)were successfully prepared by adjusting the amount of tetrapropylammonium hydroxide(TPAOH),and investigated in n-h...Single-crystalline hierarchical ZSM-5 zeolites with different particle sizes(namely 100,140,and 200 nm)were successfully prepared by adjusting the amount of tetrapropylammonium hydroxide(TPAOH),and investigated in n-heptane catalytic cracking reaction.Diffusional measurements by zero-length column(ZLC)method showed that the apparent diffusivities of n-heptane decreased with the reduction of particle size,indicating the existence of surface barriers.Moreover,with the decrease of particle size,the additional diffusion path length increased,which meant the influence of surface barriers became more apparent.Despite the change of surface barriers,the intracrystalline diffusion still dominated the overall diffusion.Catalytic performance showed that the zeolite with smaller particle size had better stability.展开更多
Various metal-modified ZSM-5 zeolite adsorbents prepared by the impregnation method were applied to the removal of organic chlorides from model naphtha.The adsorption performance and regeneration stability were invest...Various metal-modified ZSM-5 zeolite adsorbents prepared by the impregnation method were applied to the removal of organic chlorides from model naphtha.The adsorption performance and regeneration stability were investigated by static adsorption experiments.The morphologies,structural features,and physicochemical properties of the adsorbents were characterized by X-ray diffraction,Brunauer-Emmett-Teller analysis,NH3 temperature-programmed desorption,scanning electron microscopy,transmission electron microscopy,and pyridine adsorption infrared spectroscopy.The Mg/ZSM-5 zeolite adsorbent possessed a relatively high specific surface area and good metal dispersion and exhibited the best dechlorination and regeneration performance.The characterization results revealed that introduction of the metal exerted a significant influence on the acidic properties of the catalyst surface.A decrease in the ratio of Brønsted acidic sites to Lewis acidic sites and an increase in the amount of moderately acidic sites were confirmed to be responsible for the excellent adsorption performance of the Mg-modified ZSM-5 zeolite.Furthermore,the Langmuir adsorption isotherm model was applied to study the adsorption equilibrium and thermodynamics of the Mg/ZSM-5 adsorbent under mild conditions.The results revealed that the removal of 1,2-dichloroethane by the Mg/ZSM-5 adsorbent was endothermic,spontaneous,disordered,and primarily involved physical adsorption.展开更多
Catalytic oxidation of benzene with N_(2)O to phenol over the hierarchical and microporous Fe/ZSM-5-based catalysts in a continuous fixedbed reactor was investigated.The spent catalyst was in-situ regenerated by an ox...Catalytic oxidation of benzene with N_(2)O to phenol over the hierarchical and microporous Fe/ZSM-5-based catalysts in a continuous fixedbed reactor was investigated.The spent catalyst was in-situ regenerated by an oxidative treatment using N_(2)O and in total 10 reaction-regeneration cycles were performed.A 100% N_(2)O conversion,93.3% phenol selectivity,and high initial phenol formation rate of 16.49±0.06mmol_(phenol gcatalyst)^(-1)h^(-1)at time on stream(TOS) of 5 min,and a good phenol productivity of 147.06 mmol_(phenol gcatalyst)^(-1)during catalyst lifetime of 1800 min were obtained on a fresh hierarchical Fe/ZSM-5-Hi2.8 catalyst.With the reaction-regeneration cycle,N_(2)O conversion is fully recovered within TOS of 3 h,moreover,the phenol productivity was decreased ca.2.2±0.8% after each cycle,leading to a total phenol productivity of ca.0.44 ton_(pheol kg_(catalyst)^(-1)estimated for 300 cycles.Catalyst characterizations imply that the coke is rapidly deposited on catalyst surface in the initial TOS of 3 h(0.28 mgc_(gcatalyst)^(-1)min^(-1)) and gradually becomes graphitic during the TOS of 30 h with a slow formation rate of 0.06 mgc g_(catalyst)^(-1)min^(-1).Among others(e.g.,the decrease of textural property and acidity),the nearly complete coverage of the active Fe-O-Al sites by coke accounts for the main catalyst deactivation.Besides these reversible deactivation characteristics related to coking,the irreversible catalyst deactivation is also observed with the reaction-regeneration cycle.The latter is reflected by a further decreased amount of the active Fe-O-Al sites,which agglomerate on catalyst surface with the cycle,likely associated with the hard coke residue that is not completely removed by the regeneration.展开更多
The hierarchically structured ZSM-5 monolith was prepared through transforming the skeletons of the macroporous silica gel into ZSM-5 by the steam-assisted conversion method. The morphology and monolithic shapes of ma...The hierarchically structured ZSM-5 monolith was prepared through transforming the skeletons of the macroporous silica gel into ZSM-5 by the steam-assisted conversion method. The morphology and monolithic shapes of macroporous silica gel were well preserved. The hierarchically structured ZSM-5 monolith exhibited the hierarchical porosity, with mesopores and macropores existing inside the macroporous silica gel, and micropores formed by the ZSM-5. The products have been characterized properly by using the XRD, SEM and N2 adsorption–desorption methods.展开更多
The ZSM-5 zeolite with an unusual snowflake-shaped morphology was hydrothermally synthesized for the first time,and compared with common ellipsoidal and boat-like shaped samples.These samples were characterized by N2 ...The ZSM-5 zeolite with an unusual snowflake-shaped morphology was hydrothermally synthesized for the first time,and compared with common ellipsoidal and boat-like shaped samples.These samples were characterized by N2 adsorption-desorption,X-ray fluorescence spectroscopy,scanning electron microscopy,X-ray diffraction,magic angle spinning nuclear magnetic resonance,temperature-programmed desorption of ammonia,and infrared spectroscopy of pyridine adsorption.The results suggest that the BET surface area and SiO2/Al2O3 ratio of these samples are similar,while the snowflake-shaped ZSM-5 zeolite possesses more of the(101) face,and distortion,dislocation,and asymmetry in the framework,resulting in a larger number of acid sites than the conventional samples.Catalysts for the methanol to olefin(MTO) reaction were prepared by loading Ca on the samples.The snowflake-shaped Ca/ZSM-5 zeolite exhibited excellent selectivity for total light olefin(72%) and propene(39%) in MTO.The catalytic performance influenced by the morphology can be mainly attributed to the snowflake-shaped ZSM-5 zeolite possessing distortion,dislocation,and asymmetry in the framework,and lower diffusion limitation than the conventional samples.展开更多
Hollow zeolite microspheres have recently attracted much attention for their applications in catalysis,microreactors and biomedicine.Herein,we present hierarchically structured zeolite ZSM-5 microspheres with unique,a...Hollow zeolite microspheres have recently attracted much attention for their applications in catalysis,microreactors and biomedicine.Herein,we present hierarchically structured zeolite ZSM-5 microspheres with unique,abundant macropores that allow more efficient use for catalysis.The hierarchically macroporous zeolite ZSM-5 microspheres are synthesized under the assistance of water/oil emulsions and using polystyrene nanospheres as templates.The zeolite microsphere is assembled by uniform hollow zeolite nanospheres.Their large inner cavities and thin zeolite shells lead to smaller diffusion channel and higher improved accessibility to active sites,contributing to high catalytic performance in the catalytic conversion of benzyl alcohol in mesitylene.Such novel zeolite microspheres with impressive performance will be applied to numerous other industrial catalytic reactions.展开更多
Steam pretreatment is a widely used method for modifying the acidity and structure of zeolites,thereby enhancing their catalytic properties.This study systematically investigated the effects of steam treatment on ZSM-...Steam pretreatment is a widely used method for modifying the acidity and structure of zeolites,thereby enhancing their catalytic properties.This study systematically investigated the effects of steam treatment on ZSM-5 zeolites at varying treatment temperatures and durations.The structural evolution of the catalysts was monitored using N2 adsorptiondesorption,X-ray diffraction,inductively coupled plasma optical emission spectroscopy,scanning electron microscopy,NH3 temperature-programmed desorption,in situ pyridine infrared spectroscopy,and thermogravimetric analysis.The characterization results revealed that mesopores were introduced into the ZSM-5 zeolite catalysts through dealumination induced using steam treatment at moderate temperatures(400 and 500℃).Moreover,compared with the parent catalyst,the steam-treated catalysts exhibited a lower amount of acid sites and relative crystallinity,while the n(Si)/n(Al)ratio increased.In the co-conversion of methanol and n-hexane in a fixed bed reactor at 400℃and 0.5 MPa(N2 atmosphere),with a weight hourly space velocity of 1 h−1 and a stoichiometric ratio of 1:1(CH3OH to n-hexane),the steam-treated catalysts displayed a prolonged catalyst lifetime.Particularly,the parent zeolite had a lifetime of 96 h,while the catalyst treated at 500℃for 12 h had a lifetime of up to 240 h.Additionally,the steam-treated catalysts maintained stable n-hexane conversion and improved aromatic selectivity.Notably,these treated catalysts exhibited a lower deactivation rate than the parent catalyst,and would be conducive to industrial scale-up production.展开更多
Various ZSM-5 zeolites modified with alkali metals (Li, Na, K, Rb, and Cs) were prepared using ion exchange. The catalysts were used to enhance the catalytic dehydration of lactic acid (LA) to acrylic acid (AA)....Various ZSM-5 zeolites modified with alkali metals (Li, Na, K, Rb, and Cs) were prepared using ion exchange. The catalysts were used to enhance the catalytic dehydration of lactic acid (LA) to acrylic acid (AA). The effects of cationic species on the structures and surface acid-base distributions of the ZSM-5 zeolites were investigated. The important factors that affect the catalytic performance were also identified. The modified ZSM-5 catalysts were characterized using X-ray diffraction, tempera- ture-programmed desorptions of NH3 and CO2, pyridine adsorption spectroscopy, and N2 adsorption to determine the crystal phase structures, surface acidities and basicities, nature of acid sites, specific surface areas, and pore volumes. The results show that the acid-base sites that are adjusted by alkali-metal species, particularly weak acid-base sites, are mainly responsible for the formation of AA. The KZSM-5 catalyst, in particular, significantly improved LA conversion and AA selectivity because of the synergistic effect of weak acid-base sites. The reaction was conducted at different reaction temperatures and liquid hourly space velocities (LHSVs) to understand the catalyst selectivity for AA and trends in byproduct formation. Approximately 98% LA conversion and 77% AA selectivity were achieved using the KZSM-5 catalyst under the optimum conditions (40 wt% LA aqueous solution, 365 ℃, and LHSV 2 h-1).展开更多
The hierarchical mesoporous Zn/ZSM-5 zeolite catalyst was prepared by NaOH treatment and Zn impregnation, and its application in the conversion of methanol to gasoline (MTG) was studied. N2 adsorption-desorption res...The hierarchical mesoporous Zn/ZSM-5 zeolite catalyst was prepared by NaOH treatment and Zn impregnation, and its application in the conversion of methanol to gasoline (MTG) was studied. N2 adsorption-desorption results showed that the mesopores with sizes of 2-20 nm in HZ5/0.3AT was formed by 0.3 M NaOH alkali treatment. The zeolite samples after modification were also characterized by XRF, AAS, XRD, SEM and NH3-TPD methods. Zn impregnated catalyst Zn/HZ5/0.3AT exhibited dramatic improvements in catalytic lifetime and liquid hydrocarbons yield. The selectivity of aromatic hydrocarbons was also improved after Zn impregnation. It is suggested that the mesopores of Zn/HZ5/0.3AT enhanced the synergetic effect of Zn species and acid sites and the capability to coke tolerance, which were confirmed by the results of catalytic test and TGA analysis, respectively.展开更多
Shape-selective catalysts for the disproportionation of toluene were prepared by the modification of the cylinder-shaped ZSM-5 zeolite extrudates with chemical liquid deposition with TEOS (tetraethyl orthosilicate)....Shape-selective catalysts for the disproportionation of toluene were prepared by the modification of the cylinder-shaped ZSM-5 zeolite extrudates with chemical liquid deposition with TEOS (tetraethyl orthosilicate).Various parameters for preparing catalysts were changed to investigate the suitable conditions.The resulting cata-lysts were tested in a pressured fixed bed reactor and characterized by SEM (scanning electron microscopy).The conversion of toluene and para-xylene selectivity were influenced remarkably by the n(SiO2)/n(Al2O3) ratio of ZSM-5 zeolite,the type and amount of deposition agent,acid and solvent used,and the time and cycle of deposition treatment.TEOS was proved to be a more efficient agent than the conventional polysiloxanes when the deposition amount was low.The catalyst prepared at the suitable conditions exhibited a high para-xylene selectivity of 91.1% with considerable high conversion of 25.6%.SEM analyses confirmed the formation of a layer of amorphous silica on the external surface of ZSM-5 zeolie crystals,which was responsible for the highly enhanced shape-selectivity.展开更多
The acidity and acid distribution of hierarchical porous ZSM-5 were tailored via phosphate modification. The catalytic results showed that both benzene conversion and selectivity of toluene and xylene increased with t...The acidity and acid distribution of hierarchical porous ZSM-5 were tailored via phosphate modification. The catalytic results showed that both benzene conversion and selectivity of toluene and xylene increased with the presence of appropriate amount of phosphorus. Meanwhile, side reactions such as methanol to olefins related with the formation of by-product ethylbenzene formation and isomerization of xylene to meta-xylene were suppressed efficiently. The acid strength and sites amount of Br?nsted acid of the catalyst were crucial for improving benzene conversion and yield of xylene, whereas passivation of external surface acid sites played an important role in breaking thermodynamic equilibrium distribution of xylene isomers.展开更多
Nanosized Ga-containing ZSM-5 zeolites were prepared via isomorphous substitution and impregnation followed by characterized using various techniques. The catalytic performance of the zeolites for the aromatization of...Nanosized Ga-containing ZSM-5 zeolites were prepared via isomorphous substitution and impregnation followed by characterized using various techniques. The catalytic performance of the zeolites for the aromatization of 1-hexene was investigated. The results indicate that isomorphous substitution promotes the incorporation of Ga heteroatoms into the framework along with the formation of extra-framework GaO;species([GaO;]a) that have stronger interactions with the negative potential of the framework. In addition, based on the Py-IR results and catalytic performance, the [GaO;]aspecies with stronger Lewis acid sites produced a better synergism with moderate Br?nsted acid sites and thus improved the selectivity to aromatic compounds. However, the impregnation results in the formation of Ga;O;phase and small amounts of GaO;species that are mainly located on the external surface([GaO;];), which contribute to weaker Lewis acid sites due to weaker interactions with the zeolite framework. During 1-hexene aromatization, the nanosized Ga isomorphously substituted ZSM-5 zeolite samples(Gax-NZ5) exhibited better catalytic performance compared to the impregnated samples, and the highest aromatic yield(i.e.,65.4 wt%) was achieved over the Ga4.2-NZ5 sample, which contained with the highest Ga content.展开更多
Methylation of benzene is an alternative low-cost route to produce xylenes, but selectivity to xylene remains low over conventional zeolitic catalysts. In this work, a combined dry-gel-conversion and steam-assisted- c...Methylation of benzene is an alternative low-cost route to produce xylenes, but selectivity to xylene remains low over conventional zeolitic catalysts. In this work, a combined dry-gel-conversion and steam-assisted- crystallization method is used to synthesize hierarchically porous zeolite ZSM-5 with varied Si/AI malar ratios. X-ray diffraction (XRD), N2 physisorption, NH3-temperature programmed desorption (TPD), scanning electronic microscopic (SEM) measurement and Fourier transform infrared (FT-IR) are employed to characterize the struc- ture and acidity of both hierarchically porous zeolites and their conventional counterparts. The method is found to be applicable to ZSM-5 with molar ratios of Si/A1 from 20 to 180. The ZSM-5 zeolites are used as catalysts for benzene methylation at 460 ℃ to investigate the effect of additional porosity and Si/A1 ratios. At low Si/AI ratios, the benzene conversions over conventional and hierarchical ZSM-5 are close, and selectivity to toluene is high over hierarchical ZSM-5. It is found that hierarchical porosity markedly enhances the utility of zeolite and the se- lectivity towards xylenes via improved mass transport at higher Si/Al ratios. Under an optimized hierarchical ZSM-5 catalvst, xvlene selectivity reaches 34.9% at a Si/AI ratio of 180.展开更多
HZSM-5 zeolites with the micro-mesopore hierarchical porosity have been prepared by the post-synthesis of alkali-treatment, and their thermal and hydrothermal stabilities were studied using DTA, XRD, and NH3-TPD chara...HZSM-5 zeolites with the micro-mesopore hierarchical porosity have been prepared by the post-synthesis of alkali-treatment, and their thermal and hydrothermal stabilities were studied using DTA, XRD, and NH3-TPD characterization techniques. Compared to the unmodified zeolite, the thermal and hydrothermal stabilities of the alkali-treated ZSM-5 zeolites were slightly deteriorated because of the introduction of mesopores caused by the desilication. Nevertheless, the alkali-treated zeolite framework could be maintained until the temperature increased to 1175 ℃.展开更多
文摘First,the hierarchical ZSM-5 zeolite was prepared by hydrothermal method using mesoporous template cetyltrimethylammonium bromide(CTAB).The physical and chemical properties of the hierarchical ZSM-5 zeolite were characterized by X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FT-IR)and N2 adsorption-desorption and Scanning electron microscope(SEM).Then,the as-prepared hierarchical ZSM-5 zeolite and ion exchange resin were used as catalysts to evaluate the reaction performance of the synthesis of tributyl citrate.Compared with the ion exchange resin,the as-prepared ZSM-5 has a microporous and mesoporous composite structure and a large specific surface area,so that significantly improving the catalytic performance of synthesizing tributyl citrate and increasing the esterification rate of the reaction 8.7%.
基金supported by the National Natural Science Foundation of China(No.21771081)the Chang Bai Mountain Scholars Program,China(No.440020031182)+1 种基金the Provincial Major Project,China(No.20180101001JC)the PetroChina Scientific Research and Technology Development Project,China(Nos.2018A-0907,2020D-5006-82).
文摘Herein,we propose a novel approach to reduce the viscosity of heavy oil by functional hierarchical CTMS-ZSM-5-PTMS zeolites.CTMS-ZSM-5-PTMS zeolites synthesized by asymmetric modification and selective alkali etching can reduce the viscosity of heavy oil through adsorbing asphaltenes.This method can reduce the viscosity of heavy oil from hundreds of thousands mPa·s to about ten thousand mPa·s.The work provides an economical and environmentally friendly candidate for heavy oil viscosity reduction under low-temperature conditions.
基金the National Key Research and Development Program of China(Grant No.2017YFB0702800)China Postdoctoral Science Foundation(2016M600347).
文摘Hierarchical ZSM-5 zeolite with radial mesopores is controllably synthesized using piperidine in a NaOH solution.The piperidine molecules enter the zeolite micropores and protect the zeolite framework from extensive desilication.The areas containing fewer aluminum atoms contain fewer piperidine protectant molecules and so they dissolve first.Small amounts of mesopores are then gradually generated in areas with more aluminum atoms and more piperidine protectant.In this manner,radial mesopores are formed in the ZSM-5 zeolite with a maximal preservation of the micropores and active sites.The optimal hierarchical ZSM-5 zeolite,prepared with a molar ratio of piperidine to zeolite of 0.03,had a mesopore surface area of 136 m·g and a solid yield of 80%.The incorporation of the radial mesopores results in micropores that are interconnected which shortened the average diffusion path length.Compared to the parent zeolite,the hierarchical ZSM-5 zeolite possesses more accessible acid sites and has a higher catalytic activity and a longer lifetime for the alkylation of benzene.
基金The support from the National Natural Science Foundation of China(22278353)is greatly appreciated。
文摘Single-crystalline hierarchical ZSM-5 zeolites with different particle sizes(namely 100,140,and 200 nm)were successfully prepared by adjusting the amount of tetrapropylammonium hydroxide(TPAOH),and investigated in n-heptane catalytic cracking reaction.Diffusional measurements by zero-length column(ZLC)method showed that the apparent diffusivities of n-heptane decreased with the reduction of particle size,indicating the existence of surface barriers.Moreover,with the decrease of particle size,the additional diffusion path length increased,which meant the influence of surface barriers became more apparent.Despite the change of surface barriers,the intracrystalline diffusion still dominated the overall diffusion.Catalytic performance showed that the zeolite with smaller particle size had better stability.
基金This work was financially supported by the Natural Science Foundation of Shandong Province(ZR2021MB134 and ZR2022MB019)the National Natural Science Foundation of China(22008131)+1 种基金the Talent Fund for Province and Ministry Co-construction Collaborative Innovation Center of Eco-chemical Engineering(STHGYX2220)the Opening Fund of State Key Laboratory of Heavy Oil Processing(SKLOP202002002).
文摘Various metal-modified ZSM-5 zeolite adsorbents prepared by the impregnation method were applied to the removal of organic chlorides from model naphtha.The adsorption performance and regeneration stability were investigated by static adsorption experiments.The morphologies,structural features,and physicochemical properties of the adsorbents were characterized by X-ray diffraction,Brunauer-Emmett-Teller analysis,NH3 temperature-programmed desorption,scanning electron microscopy,transmission electron microscopy,and pyridine adsorption infrared spectroscopy.The Mg/ZSM-5 zeolite adsorbent possessed a relatively high specific surface area and good metal dispersion and exhibited the best dechlorination and regeneration performance.The characterization results revealed that introduction of the metal exerted a significant influence on the acidic properties of the catalyst surface.A decrease in the ratio of Brønsted acidic sites to Lewis acidic sites and an increase in the amount of moderately acidic sites were confirmed to be responsible for the excellent adsorption performance of the Mg-modified ZSM-5 zeolite.Furthermore,the Langmuir adsorption isotherm model was applied to study the adsorption equilibrium and thermodynamics of the Mg/ZSM-5 adsorbent under mild conditions.The results revealed that the removal of 1,2-dichloroethane by the Mg/ZSM-5 adsorbent was endothermic,spontaneous,disordered,and primarily involved physical adsorption.
基金Financial support by the Specialized Research Fund for Doctoral Program of Higher Education,China (No.20120010110003)。
文摘Catalytic oxidation of benzene with N_(2)O to phenol over the hierarchical and microporous Fe/ZSM-5-based catalysts in a continuous fixedbed reactor was investigated.The spent catalyst was in-situ regenerated by an oxidative treatment using N_(2)O and in total 10 reaction-regeneration cycles were performed.A 100% N_(2)O conversion,93.3% phenol selectivity,and high initial phenol formation rate of 16.49±0.06mmol_(phenol gcatalyst)^(-1)h^(-1)at time on stream(TOS) of 5 min,and a good phenol productivity of 147.06 mmol_(phenol gcatalyst)^(-1)during catalyst lifetime of 1800 min were obtained on a fresh hierarchical Fe/ZSM-5-Hi2.8 catalyst.With the reaction-regeneration cycle,N_(2)O conversion is fully recovered within TOS of 3 h,moreover,the phenol productivity was decreased ca.2.2±0.8% after each cycle,leading to a total phenol productivity of ca.0.44 ton_(pheol kg_(catalyst)^(-1)estimated for 300 cycles.Catalyst characterizations imply that the coke is rapidly deposited on catalyst surface in the initial TOS of 3 h(0.28 mgc_(gcatalyst)^(-1)min^(-1)) and gradually becomes graphitic during the TOS of 30 h with a slow formation rate of 0.06 mgc g_(catalyst)^(-1)min^(-1).Among others(e.g.,the decrease of textural property and acidity),the nearly complete coverage of the active Fe-O-Al sites by coke accounts for the main catalyst deactivation.Besides these reversible deactivation characteristics related to coking,the irreversible catalyst deactivation is also observed with the reaction-regeneration cycle.The latter is reflected by a further decreased amount of the active Fe-O-Al sites,which agglomerate on catalyst surface with the cycle,likely associated with the hard coke residue that is not completely removed by the regeneration.
文摘The hierarchically structured ZSM-5 monolith was prepared through transforming the skeletons of the macroporous silica gel into ZSM-5 by the steam-assisted conversion method. The morphology and monolithic shapes of macroporous silica gel were well preserved. The hierarchically structured ZSM-5 monolith exhibited the hierarchical porosity, with mesopores and macropores existing inside the macroporous silica gel, and micropores formed by the ZSM-5. The products have been characterized properly by using the XRD, SEM and N2 adsorption–desorption methods.
基金Synfuels China Co.Ltd.for the financial and equipments support
文摘The ZSM-5 zeolite with an unusual snowflake-shaped morphology was hydrothermally synthesized for the first time,and compared with common ellipsoidal and boat-like shaped samples.These samples were characterized by N2 adsorption-desorption,X-ray fluorescence spectroscopy,scanning electron microscopy,X-ray diffraction,magic angle spinning nuclear magnetic resonance,temperature-programmed desorption of ammonia,and infrared spectroscopy of pyridine adsorption.The results suggest that the BET surface area and SiO2/Al2O3 ratio of these samples are similar,while the snowflake-shaped ZSM-5 zeolite possesses more of the(101) face,and distortion,dislocation,and asymmetry in the framework,resulting in a larger number of acid sites than the conventional samples.Catalysts for the methanol to olefin(MTO) reaction were prepared by loading Ca on the samples.The snowflake-shaped Ca/ZSM-5 zeolite exhibited excellent selectivity for total light olefin(72%) and propene(39%) in MTO.The catalytic performance influenced by the morphology can be mainly attributed to the snowflake-shaped ZSM-5 zeolite possessing distortion,dislocation,and asymmetry in the framework,and lower diffusion limitation than the conventional samples.
基金supported by the National Key R&D Program of China(No.2022YFB3504000)the National Natural Science Foundation of China(Nos.22302152,U20A20122,22293020,U22B6011)+3 种基金the Fundamental Research Funds for the Central Universities,China(WUT:2024IVA090)the Program of Introducing Talents of Discipline to Universities-Plan 111(No.B20002)from the Ministry of Science and Technology and the Ministry of Education of ChinaThis research was also supported by the European Commission Interreg V France-Wallonie-Vlaanderen Project“DepollutAir”,the Program Win2Wal(No.TCHARBONACTIF:2110120)Wallonia Region of Belgium and the National Key R&D Program Intergovernmental Technological Innovation Special Cooperation Project Wallonia-Brussels/China(MOST)(No.SUB/2021/IND493971/524448).
文摘Hollow zeolite microspheres have recently attracted much attention for their applications in catalysis,microreactors and biomedicine.Herein,we present hierarchically structured zeolite ZSM-5 microspheres with unique,abundant macropores that allow more efficient use for catalysis.The hierarchically macroporous zeolite ZSM-5 microspheres are synthesized under the assistance of water/oil emulsions and using polystyrene nanospheres as templates.The zeolite microsphere is assembled by uniform hollow zeolite nanospheres.Their large inner cavities and thin zeolite shells lead to smaller diffusion channel and higher improved accessibility to active sites,contributing to high catalytic performance in the catalytic conversion of benzyl alcohol in mesitylene.Such novel zeolite microspheres with impressive performance will be applied to numerous other industrial catalytic reactions.
基金We gratefully acknowledge financial support from the National Nature Science Foundation of China(2177606)PetroChina(Development of methanol coupled light hydrocarbon aromatization catalyst and process technology,2016A-24308).
文摘Steam pretreatment is a widely used method for modifying the acidity and structure of zeolites,thereby enhancing their catalytic properties.This study systematically investigated the effects of steam treatment on ZSM-5 zeolites at varying treatment temperatures and durations.The structural evolution of the catalysts was monitored using N2 adsorptiondesorption,X-ray diffraction,inductively coupled plasma optical emission spectroscopy,scanning electron microscopy,NH3 temperature-programmed desorption,in situ pyridine infrared spectroscopy,and thermogravimetric analysis.The characterization results revealed that mesopores were introduced into the ZSM-5 zeolite catalysts through dealumination induced using steam treatment at moderate temperatures(400 and 500℃).Moreover,compared with the parent catalyst,the steam-treated catalysts exhibited a lower amount of acid sites and relative crystallinity,while the n(Si)/n(Al)ratio increased.In the co-conversion of methanol and n-hexane in a fixed bed reactor at 400℃and 0.5 MPa(N2 atmosphere),with a weight hourly space velocity of 1 h−1 and a stoichiometric ratio of 1:1(CH3OH to n-hexane),the steam-treated catalysts displayed a prolonged catalyst lifetime.Particularly,the parent zeolite had a lifetime of 96 h,while the catalyst treated at 500℃for 12 h had a lifetime of up to 240 h.Additionally,the steam-treated catalysts maintained stable n-hexane conversion and improved aromatic selectivity.Notably,these treated catalysts exhibited a lower deactivation rate than the parent catalyst,and would be conducive to industrial scale-up production.
文摘Various ZSM-5 zeolites modified with alkali metals (Li, Na, K, Rb, and Cs) were prepared using ion exchange. The catalysts were used to enhance the catalytic dehydration of lactic acid (LA) to acrylic acid (AA). The effects of cationic species on the structures and surface acid-base distributions of the ZSM-5 zeolites were investigated. The important factors that affect the catalytic performance were also identified. The modified ZSM-5 catalysts were characterized using X-ray diffraction, tempera- ture-programmed desorptions of NH3 and CO2, pyridine adsorption spectroscopy, and N2 adsorption to determine the crystal phase structures, surface acidities and basicities, nature of acid sites, specific surface areas, and pore volumes. The results show that the acid-base sites that are adjusted by alkali-metal species, particularly weak acid-base sites, are mainly responsible for the formation of AA. The KZSM-5 catalyst, in particular, significantly improved LA conversion and AA selectivity because of the synergistic effect of weak acid-base sites. The reaction was conducted at different reaction temperatures and liquid hourly space velocities (LHSVs) to understand the catalyst selectivity for AA and trends in byproduct formation. Approximately 98% LA conversion and 77% AA selectivity were achieved using the KZSM-5 catalyst under the optimum conditions (40 wt% LA aqueous solution, 365 ℃, and LHSV 2 h-1).
基金supported by the Fundamental Research Funds for the Central Universities, HUST (No. Z2009008)the National Natural Science Foundation of China (No. 20973068)
文摘The hierarchical mesoporous Zn/ZSM-5 zeolite catalyst was prepared by NaOH treatment and Zn impregnation, and its application in the conversion of methanol to gasoline (MTG) was studied. N2 adsorption-desorption results showed that the mesopores with sizes of 2-20 nm in HZ5/0.3AT was formed by 0.3 M NaOH alkali treatment. The zeolite samples after modification were also characterized by XRF, AAS, XRD, SEM and NH3-TPD methods. Zn impregnated catalyst Zn/HZ5/0.3AT exhibited dramatic improvements in catalytic lifetime and liquid hydrocarbons yield. The selectivity of aromatic hydrocarbons was also improved after Zn impregnation. It is suggested that the mesopores of Zn/HZ5/0.3AT enhanced the synergetic effect of Zn species and acid sites and the capability to coke tolerance, which were confirmed by the results of catalytic test and TGA analysis, respectively.
基金Supported by the Key Natural Science Foundation for Universities of Jiangsu Province(06KJA53012) the National Natural Science Foundation of China(20776069 20976084)
文摘Shape-selective catalysts for the disproportionation of toluene were prepared by the modification of the cylinder-shaped ZSM-5 zeolite extrudates with chemical liquid deposition with TEOS (tetraethyl orthosilicate).Various parameters for preparing catalysts were changed to investigate the suitable conditions.The resulting cata-lysts were tested in a pressured fixed bed reactor and characterized by SEM (scanning electron microscopy).The conversion of toluene and para-xylene selectivity were influenced remarkably by the n(SiO2)/n(Al2O3) ratio of ZSM-5 zeolite,the type and amount of deposition agent,acid and solvent used,and the time and cycle of deposition treatment.TEOS was proved to be a more efficient agent than the conventional polysiloxanes when the deposition amount was low.The catalyst prepared at the suitable conditions exhibited a high para-xylene selectivity of 91.1% with considerable high conversion of 25.6%.SEM analyses confirmed the formation of a layer of amorphous silica on the external surface of ZSM-5 zeolie crystals,which was responsible for the highly enhanced shape-selectivity.
基金Supported by the National Natural Science Foundation of China(21476207,21506189)Zhejiang Postdoctoral Research Funded Projects(BSH1502147)
文摘The acidity and acid distribution of hierarchical porous ZSM-5 were tailored via phosphate modification. The catalytic results showed that both benzene conversion and selectivity of toluene and xylene increased with the presence of appropriate amount of phosphorus. Meanwhile, side reactions such as methanol to olefins related with the formation of by-product ethylbenzene formation and isomerization of xylene to meta-xylene were suppressed efficiently. The acid strength and sites amount of Br?nsted acid of the catalyst were crucial for improving benzene conversion and yield of xylene, whereas passivation of external surface acid sites played an important role in breaking thermodynamic equilibrium distribution of xylene isomers.
基金supported by the National Natural Science Foundation of China(Nos.21276067 and 21676074)Programs of International S&T cooperation(No.2014DFR41110)
文摘Nanosized Ga-containing ZSM-5 zeolites were prepared via isomorphous substitution and impregnation followed by characterized using various techniques. The catalytic performance of the zeolites for the aromatization of 1-hexene was investigated. The results indicate that isomorphous substitution promotes the incorporation of Ga heteroatoms into the framework along with the formation of extra-framework GaO;species([GaO;]a) that have stronger interactions with the negative potential of the framework. In addition, based on the Py-IR results and catalytic performance, the [GaO;]aspecies with stronger Lewis acid sites produced a better synergism with moderate Br?nsted acid sites and thus improved the selectivity to aromatic compounds. However, the impregnation results in the formation of Ga;O;phase and small amounts of GaO;species that are mainly located on the external surface([GaO;];), which contribute to weaker Lewis acid sites due to weaker interactions with the zeolite framework. During 1-hexene aromatization, the nanosized Ga isomorphously substituted ZSM-5 zeolite samples(Gax-NZ5) exhibited better catalytic performance compared to the impregnated samples, and the highest aromatic yield(i.e.,65.4 wt%) was achieved over the Ga4.2-NZ5 sample, which contained with the highest Ga content.
基金Supported by the National Natural Science Foundation of China(21006024)the CNPC Innovation Foundation(2011D-5006-0507)+2 种基金the Shanghai Pujiang Program(11PJ1402600)the New Century Excellent Talents in University(NCET-11-0644)the Fundamental Research Funds for the Central Universities(WB1213004-1)
文摘Methylation of benzene is an alternative low-cost route to produce xylenes, but selectivity to xylene remains low over conventional zeolitic catalysts. In this work, a combined dry-gel-conversion and steam-assisted- crystallization method is used to synthesize hierarchically porous zeolite ZSM-5 with varied Si/AI malar ratios. X-ray diffraction (XRD), N2 physisorption, NH3-temperature programmed desorption (TPD), scanning electronic microscopic (SEM) measurement and Fourier transform infrared (FT-IR) are employed to characterize the struc- ture and acidity of both hierarchically porous zeolites and their conventional counterparts. The method is found to be applicable to ZSM-5 with molar ratios of Si/A1 from 20 to 180. The ZSM-5 zeolites are used as catalysts for benzene methylation at 460 ℃ to investigate the effect of additional porosity and Si/A1 ratios. At low Si/AI ratios, the benzene conversions over conventional and hierarchical ZSM-5 are close, and selectivity to toluene is high over hierarchical ZSM-5. It is found that hierarchical porosity markedly enhances the utility of zeolite and the se- lectivity towards xylenes via improved mass transport at higher Si/Al ratios. Under an optimized hierarchical ZSM-5 catalvst, xvlene selectivity reaches 34.9% at a Si/AI ratio of 180.
基金the National Key Project for Basic Research of China(973 Project)(No.2005CB221403)the Knowledge Innovation Program of the Chinese Academy of Sciences(Grant:DICP K2007D3)
文摘HZSM-5 zeolites with the micro-mesopore hierarchical porosity have been prepared by the post-synthesis of alkali-treatment, and their thermal and hydrothermal stabilities were studied using DTA, XRD, and NH3-TPD characterization techniques. Compared to the unmodified zeolite, the thermal and hydrothermal stabilities of the alkali-treated ZSM-5 zeolites were slightly deteriorated because of the introduction of mesopores caused by the desilication. Nevertheless, the alkali-treated zeolite framework could be maintained until the temperature increased to 1175 ℃.