期刊文献+
共找到154篇文章
< 1 2 8 >
每页显示 20 50 100
Preparation of hierarchical ZSM-5 zeolite and its application in synthesis of tributyl citrate
1
作者 Zhiwen Chen 《石化技术》 CAS 2020年第3期24-25,共2页
First,the hierarchical ZSM-5 zeolite was prepared by hydrothermal method using mesoporous template cetyltrimethylammonium bromide(CTAB).The physical and chemical properties of the hierarchical ZSM-5 zeolite were chara... First,the hierarchical ZSM-5 zeolite was prepared by hydrothermal method using mesoporous template cetyltrimethylammonium bromide(CTAB).The physical and chemical properties of the hierarchical ZSM-5 zeolite were characterized by X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FT-IR)and N2 adsorption-desorption and Scanning electron microscope(SEM).Then,the as-prepared hierarchical ZSM-5 zeolite and ion exchange resin were used as catalysts to evaluate the reaction performance of the synthesis of tributyl citrate.Compared with the ion exchange resin,the as-prepared ZSM-5 has a microporous and mesoporous composite structure and a large specific surface area,so that significantly improving the catalytic performance of synthesizing tributyl citrate and increasing the esterification rate of the reaction 8.7%. 展开更多
关键词 hierarchical zsm-5 zeolite Tributyl CITRATE
下载PDF
Functionalized Hierarchical ZSM-5 Zeolites for the Viscosity Reduction of Heavy Oil at Low Temperature 被引量:1
2
作者 XIAO Peiwen LI Hui +8 位作者 WANG Pingmei LIU Bolun JING Wendan HE Lipeng WANG Runwei HAN Xue ZHANG Zongtao QIU Shilun LUO Jianhui 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2022年第4期1083-1088,共6页
Herein,we propose a novel approach to reduce the viscosity of heavy oil by functional hierarchical CTMS-ZSM-5-PTMS zeolites.CTMS-ZSM-5-PTMS zeolites synthesized by asymmetric modification and selective alkali etching ... Herein,we propose a novel approach to reduce the viscosity of heavy oil by functional hierarchical CTMS-ZSM-5-PTMS zeolites.CTMS-ZSM-5-PTMS zeolites synthesized by asymmetric modification and selective alkali etching can reduce the viscosity of heavy oil through adsorbing asphaltenes.This method can reduce the viscosity of heavy oil from hundreds of thousands mPa·s to about ten thousand mPa·s.The work provides an economical and environmentally friendly candidate for heavy oil viscosity reduction under low-temperature conditions. 展开更多
关键词 Heavy oil VISCOSITY hierarchical zsm-5 zeolite
原文传递
Hierarchical ZSM-5 zeolite with radial mesopores:Preparation,formation mechanism and application for benzene alkylation 被引量:1
3
作者 Darui Wang Hongmin Sun +2 位作者 Wei Liu Zhenhao Shen Weimin Yang 《Frontiers of Chemical Science and Engineering》 SCIE EI CAS CSCD 2020年第2期248-257,共10页
Hierarchical ZSM-5 zeolite with radial mesopores is controllably synthesized using piperidine in a NaOH solution.The piperidine molecules enter the zeolite micropores and protect the zeolite framework from extensive d... Hierarchical ZSM-5 zeolite with radial mesopores is controllably synthesized using piperidine in a NaOH solution.The piperidine molecules enter the zeolite micropores and protect the zeolite framework from extensive desilication.The areas containing fewer aluminum atoms contain fewer piperidine protectant molecules and so they dissolve first.Small amounts of mesopores are then gradually generated in areas with more aluminum atoms and more piperidine protectant.In this manner,radial mesopores are formed in the ZSM-5 zeolite with a maximal preservation of the micropores and active sites.The optimal hierarchical ZSM-5 zeolite,prepared with a molar ratio of piperidine to zeolite of 0.03,had a mesopore surface area of 136 m·g and a solid yield of 80%.The incorporation of the radial mesopores results in micropores that are interconnected which shortened the average diffusion path length.Compared to the parent zeolite,the hierarchical ZSM-5 zeolite possesses more accessible acid sites and has a higher catalytic activity and a longer lifetime for the alkylation of benzene. 展开更多
关键词 hierarchical zsm-5 zeolite protective DESILICATION PIPERIDINE RADIAL MESOPORES benzene ALKYLATION
原文传递
Effect of particle size of single-crystalline hierarchical ZSM-5 on its surface mass transfer in n-heptane catalytic cracking 被引量:2
4
作者 Xiaoxue Zhang Shuman Xu +3 位作者 Jing Hao Xiaojin Xie Fengqiu Chen Dangguo Cheng 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第11期148-157,共10页
Single-crystalline hierarchical ZSM-5 zeolites with different particle sizes(namely 100,140,and 200 nm)were successfully prepared by adjusting the amount of tetrapropylammonium hydroxide(TPAOH),and investigated in n-h... Single-crystalline hierarchical ZSM-5 zeolites with different particle sizes(namely 100,140,and 200 nm)were successfully prepared by adjusting the amount of tetrapropylammonium hydroxide(TPAOH),and investigated in n-heptane catalytic cracking reaction.Diffusional measurements by zero-length column(ZLC)method showed that the apparent diffusivities of n-heptane decreased with the reduction of particle size,indicating the existence of surface barriers.Moreover,with the decrease of particle size,the additional diffusion path length increased,which meant the influence of surface barriers became more apparent.Despite the change of surface barriers,the intracrystalline diffusion still dominated the overall diffusion.Catalytic performance showed that the zeolite with smaller particle size had better stability. 展开更多
关键词 SINGLE-CRYSTALLINE hierarchical zsm-5 Particle size Surface barriers n-Heptane catalytic cracking
下载PDF
Removal of Organochlorine from Model Oil Using Mg-Modified ZSM-5 Zeolite:Dechlorination Performance,Regeneration,and Thermodynamics 被引量:2
5
作者 Cheng Xingyuan Gu Jie +4 位作者 Huang Bingtian Bing Liancheng Han Dezhi Wang Guangjian Wang Fang 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2023年第2期24-32,共9页
Various metal-modified ZSM-5 zeolite adsorbents prepared by the impregnation method were applied to the removal of organic chlorides from model naphtha.The adsorption performance and regeneration stability were invest... Various metal-modified ZSM-5 zeolite adsorbents prepared by the impregnation method were applied to the removal of organic chlorides from model naphtha.The adsorption performance and regeneration stability were investigated by static adsorption experiments.The morphologies,structural features,and physicochemical properties of the adsorbents were characterized by X-ray diffraction,Brunauer-Emmett-Teller analysis,NH3 temperature-programmed desorption,scanning electron microscopy,transmission electron microscopy,and pyridine adsorption infrared spectroscopy.The Mg/ZSM-5 zeolite adsorbent possessed a relatively high specific surface area and good metal dispersion and exhibited the best dechlorination and regeneration performance.The characterization results revealed that introduction of the metal exerted a significant influence on the acidic properties of the catalyst surface.A decrease in the ratio of Brønsted acidic sites to Lewis acidic sites and an increase in the amount of moderately acidic sites were confirmed to be responsible for the excellent adsorption performance of the Mg-modified ZSM-5 zeolite.Furthermore,the Langmuir adsorption isotherm model was applied to study the adsorption equilibrium and thermodynamics of the Mg/ZSM-5 adsorbent under mild conditions.The results revealed that the removal of 1,2-dichloroethane by the Mg/ZSM-5 adsorbent was endothermic,spontaneous,disordered,and primarily involved physical adsorption. 展开更多
关键词 adsorption dechlorination zsm-5 zeolite metal modification THERMODYNAMICS
下载PDF
Oxidation of benzene to phenol with N_(2)O over a hierarchical Fe/ZSM-5 catalyst 被引量:1
6
作者 Cui Ouyang Jianwei Li +2 位作者 Yaqi Qu Song Hong Songbo He 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第4期1161-1173,共13页
Catalytic oxidation of benzene with N_(2)O to phenol over the hierarchical and microporous Fe/ZSM-5-based catalysts in a continuous fixedbed reactor was investigated.The spent catalyst was in-situ regenerated by an ox... Catalytic oxidation of benzene with N_(2)O to phenol over the hierarchical and microporous Fe/ZSM-5-based catalysts in a continuous fixedbed reactor was investigated.The spent catalyst was in-situ regenerated by an oxidative treatment using N_(2)O and in total 10 reaction-regeneration cycles were performed.A 100% N_(2)O conversion,93.3% phenol selectivity,and high initial phenol formation rate of 16.49±0.06mmol_(phenol gcatalyst)^(-1)h^(-1)at time on stream(TOS) of 5 min,and a good phenol productivity of 147.06 mmol_(phenol gcatalyst)^(-1)during catalyst lifetime of 1800 min were obtained on a fresh hierarchical Fe/ZSM-5-Hi2.8 catalyst.With the reaction-regeneration cycle,N_(2)O conversion is fully recovered within TOS of 3 h,moreover,the phenol productivity was decreased ca.2.2±0.8% after each cycle,leading to a total phenol productivity of ca.0.44 ton_(pheol kg_(catalyst)^(-1)estimated for 300 cycles.Catalyst characterizations imply that the coke is rapidly deposited on catalyst surface in the initial TOS of 3 h(0.28 mgc_(gcatalyst)^(-1)min^(-1)) and gradually becomes graphitic during the TOS of 30 h with a slow formation rate of 0.06 mgc g_(catalyst)^(-1)min^(-1).Among others(e.g.,the decrease of textural property and acidity),the nearly complete coverage of the active Fe-O-Al sites by coke accounts for the main catalyst deactivation.Besides these reversible deactivation characteristics related to coking,the irreversible catalyst deactivation is also observed with the reaction-regeneration cycle.The latter is reflected by a further decreased amount of the active Fe-O-Al sites,which agglomerate on catalyst surface with the cycle,likely associated with the hard coke residue that is not completely removed by the regeneration. 展开更多
关键词 hierarchical Fe/zsm-5 N_(2)O conversion Phenol product productivity Reaction-regeneration cycles Irreversible deactivation mechanism
下载PDF
Hierarchically Structured Monolithic ZSM-5 through Macroporous Silica Gel Zeolitization 被引量:1
7
作者 Lei Qian Zhao Tianbo +2 位作者 Li Fengyan Zong Baoning Tong Yangchuan 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2006年第1期57-60,共4页
The hierarchically structured ZSM-5 monolith was prepared through transforming the skeletons of the macroporous silica gel into ZSM-5 by the steam-assisted conversion method. The morphology and monolithic shapes of ma... The hierarchically structured ZSM-5 monolith was prepared through transforming the skeletons of the macroporous silica gel into ZSM-5 by the steam-assisted conversion method. The morphology and monolithic shapes of macroporous silica gel were well preserved. The hierarchically structured ZSM-5 monolith exhibited the hierarchical porosity, with mesopores and macropores existing inside the macroporous silica gel, and micropores formed by the ZSM-5. The products have been characterized properly by using the XRD, SEM and N2 adsorption–desorption methods. 展开更多
关键词 zeolite zsm-5 hierarchical porosity macroporous silica gel steam-assisted conversion
下载PDF
Synthesis and characterization of an unusual snowflake-shaped ZSM-5 zeolite with high catalytic performance in the methanol to olefin reaction 被引量:16
8
作者 李静 刘粟侥 +3 位作者 张怀科 吕恩静 任鹏举 任杰 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第2期308-315,共8页
The ZSM-5 zeolite with an unusual snowflake-shaped morphology was hydrothermally synthesized for the first time,and compared with common ellipsoidal and boat-like shaped samples.These samples were characterized by N2 ... The ZSM-5 zeolite with an unusual snowflake-shaped morphology was hydrothermally synthesized for the first time,and compared with common ellipsoidal and boat-like shaped samples.These samples were characterized by N2 adsorption-desorption,X-ray fluorescence spectroscopy,scanning electron microscopy,X-ray diffraction,magic angle spinning nuclear magnetic resonance,temperature-programmed desorption of ammonia,and infrared spectroscopy of pyridine adsorption.The results suggest that the BET surface area and SiO2/Al2O3 ratio of these samples are similar,while the snowflake-shaped ZSM-5 zeolite possesses more of the(101) face,and distortion,dislocation,and asymmetry in the framework,resulting in a larger number of acid sites than the conventional samples.Catalysts for the methanol to olefin(MTO) reaction were prepared by loading Ca on the samples.The snowflake-shaped Ca/ZSM-5 zeolite exhibited excellent selectivity for total light olefin(72%) and propene(39%) in MTO.The catalytic performance influenced by the morphology can be mainly attributed to the snowflake-shaped ZSM-5 zeolite possessing distortion,dislocation,and asymmetry in the framework,and lower diffusion limitation than the conventional samples. 展开更多
关键词 zsm-5 zeolite MODIFICATION Methanol to olefins
下载PDF
等级孔结构协同Fe改性提升ZSM-5分子筛催化苯甲醇烷基化性能
9
作者 宋宇航 刘湛 +5 位作者 吕佳敏 余申 李小云 孙明慧 陈丽华 苏宝连 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2024年第5期28-37,共10页
针对ZSM-5分子筛微孔扩散限制和催化活性位单一的问题,使用有序大孔-介孔碳模板为硬模板并结合原位引入金属策略,一步晶化合成了具有高结晶度、高比表面积的有序贯通大孔-介孔-微孔等级结构的Fe/ZSM-5分子筛单晶.通过X射线衍射(XRD)、紫... 针对ZSM-5分子筛微孔扩散限制和催化活性位单一的问题,使用有序大孔-介孔碳模板为硬模板并结合原位引入金属策略,一步晶化合成了具有高结晶度、高比表面积的有序贯通大孔-介孔-微孔等级结构的Fe/ZSM-5分子筛单晶.通过X射线衍射(XRD)、紫外-可见光谱(UV-Vis)、H_(2)程序升温还原实验(H2-TPR)和X射线光电子能谱(XPS)等手段对催化剂中活性Fe的存在形式进行了表征.结果表明,该材料中位于离子交换位及铁氧八面体(六配位)的孤立Fe(III)是主要的氧化还原活性中心,当Fe负载量(质量分数)为1%时,苯甲醇转化率最高为59.3%,产物选择性为83.2%,最终收率达到49.3%,在循环使用5次后仍保持高催化活性. 展开更多
关键词 zsm-5分子筛 等级结构 过渡金属铁 芳烃烷基化
下载PDF
多级孔花状ZSM-5分子筛的合成及其正辛烷催化裂解反应性能研究
10
作者 王健捷 束小龙 +5 位作者 肖霞 王鹏 范晓强 孔莲 解则安 赵震 《无机盐工业》 CAS CSCD 北大核心 2024年第8期139-146,共8页
高性能催化剂的研发是石脑油催化裂解制低碳烯烃领域的研究热点。使用双子季胺盐表面活性剂[C_(18)H_(37)-N^(+)(CH_(3))_(2)-C_6H_(12)-N^(+)(CH_(3))_(2)-C_6H_(13)]Br_(2)作为结构导向剂,成功合成了花状ZSM-5分子筛。利用XRD、SEM、N... 高性能催化剂的研发是石脑油催化裂解制低碳烯烃领域的研究热点。使用双子季胺盐表面活性剂[C_(18)H_(37)-N^(+)(CH_(3))_(2)-C_6H_(12)-N^(+)(CH_(3))_(2)-C_6H_(13)]Br_(2)作为结构导向剂,成功合成了花状ZSM-5分子筛。利用XRD、SEM、N_(2)吸附-脱附和NH_(3)-TPD表征技术研究了晶化温度、n(Si)/n(Al)、n(H_(2)O)/n(Si O_(2))和n(Na_(2)O)/n(Si O_(2))等合成条件对ZSM-5分子筛物化性质的影响,并考察其正辛烷催化裂解反应性能。研究结果表明,花状ZSM-5分子筛的优化制备条件为:n(Na_(2)O)∶n(Al_(2)O_(3))∶n(Si O_(2))∶n(C_(18-6-6)Br_(2))∶n(H_(2)O)=5∶1∶100∶10∶4000、晶化时间为72 h、晶化温度为175℃。随着n(Si)/n(Al)的增大,花状分子筛颗粒逐渐团聚;当投料n(Na_(2)O)/n(Si O_(2))高于0.05时,分子筛样品中开始出现其他杂相;随着投料n(H_(2)O)/n(Si O_(2))的增大,分子筛层状形貌逐渐不明显。在催化裂解正辛烷制乙烯和丙烯反应中,经过30 h连续测试,花状ZSM-5分子筛的正辛烷转化率始终保持稳定,乙烯和丙烯总收率从62.0%逐渐增加至64.4%。花状ZSM-5分子筛较高的催化活性和优异的抗积炭稳定性主要归结于其独特的层状形貌和多级孔结构。 展开更多
关键词 低碳烯烃 多级孔 zsm-5分子筛 催化裂解 晶化条件
下载PDF
单晶多级孔ZSM-5分子筛酸性质对正庚烷催化裂解反应传质性能的影响
11
作者 谢小金 张晓雪 +3 位作者 刘晓玲 崇明本 程党国 陈丰秋 《化工进展》 EI CAS CSCD 北大核心 2024年第5期2661-2672,共12页
采用L-赖氨酸作为介孔模板剂,通过调控铝源(偏铝酸钠)添加量改变分子筛硅铝比,在单晶分子筛内部引入晶内介孔,成功地合成了一系列具有不同硅铝比的单晶多级孔ZSM-5分子筛,研究了其酸性质对正庚烷催化裂解反应传质性能的影响。利用X射线... 采用L-赖氨酸作为介孔模板剂,通过调控铝源(偏铝酸钠)添加量改变分子筛硅铝比,在单晶分子筛内部引入晶内介孔,成功地合成了一系列具有不同硅铝比的单晶多级孔ZSM-5分子筛,研究了其酸性质对正庚烷催化裂解反应传质性能的影响。利用X射线衍射(XRD)、N2物理吸附、氨气程序升温脱附(NH_(3)-TPD)、吡啶红外(Py-IR)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)等表征了单晶多级孔ZSM-5分子筛的物理结构、酸性质和微观形貌。同时,利用零长柱(ZLC)装置测试获取了正庚烷在单晶多级孔ZSM-5分子筛中的表观扩散系数,用于反映其传质性能。研究结果表明,随着硅铝比的提高,单晶多级孔ZSM-5分子筛的物理结构基本保持一致;传质性能随酸量的减少而提升,催化裂解性能随酸量的增加而提高。当单晶多级孔ZSM-5分子筛的Si/Al从80提高至140,正庚烷的表观扩散系数提升了87%以上;当单晶多级孔ZSM-5分子筛的Si/Al=80时,正庚烷的转化率最高可达97.5%,乙烯和丙烯的选择性分别为24.3%和35.1%。 展开更多
关键词 L-赖氨酸 硅铝比 单晶多级孔zsm-5分子筛 传质 催化 反应
下载PDF
Hierarchically Macroporous Zeolite ZSM-5 Microspheres for Efficient Catalysis
12
作者 ZHENG Mingdan CHEN Ya +5 位作者 LIU Zhan LYU Jiamin YE Bo SUN Ming-Hui CHEN Li-Hua SU Bao-Lian 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2024年第4期704-711,共8页
Hollow zeolite microspheres have recently attracted much attention for their applications in catalysis,microreactors and biomedicine.Herein,we present hierarchically structured zeolite ZSM-5 microspheres with unique,a... Hollow zeolite microspheres have recently attracted much attention for their applications in catalysis,microreactors and biomedicine.Herein,we present hierarchically structured zeolite ZSM-5 microspheres with unique,abundant macropores that allow more efficient use for catalysis.The hierarchically macroporous zeolite ZSM-5 microspheres are synthesized under the assistance of water/oil emulsions and using polystyrene nanospheres as templates.The zeolite microsphere is assembled by uniform hollow zeolite nanospheres.Their large inner cavities and thin zeolite shells lead to smaller diffusion channel and higher improved accessibility to active sites,contributing to high catalytic performance in the catalytic conversion of benzyl alcohol in mesitylene.Such novel zeolite microspheres with impressive performance will be applied to numerous other industrial catalytic reactions. 展开更多
关键词 hierarchically porous structure Hollow structure MICROSPHERE zeolite zsm-5 ALKYLATION
原文传递
Effect of Steam Treatment on the Catalytic Performance of ZSM-5 in the Co-conversion of Methanol and n-Hexane to Aromatics
13
作者 Wei Shumei Xu Yarong +2 位作者 Yang Fan Zhu Kake Zhu Xuedong 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2024年第3期73-81,共9页
Steam pretreatment is a widely used method for modifying the acidity and structure of zeolites,thereby enhancing their catalytic properties.This study systematically investigated the effects of steam treatment on ZSM-... Steam pretreatment is a widely used method for modifying the acidity and structure of zeolites,thereby enhancing their catalytic properties.This study systematically investigated the effects of steam treatment on ZSM-5 zeolites at varying treatment temperatures and durations.The structural evolution of the catalysts was monitored using N2 adsorptiondesorption,X-ray diffraction,inductively coupled plasma optical emission spectroscopy,scanning electron microscopy,NH3 temperature-programmed desorption,in situ pyridine infrared spectroscopy,and thermogravimetric analysis.The characterization results revealed that mesopores were introduced into the ZSM-5 zeolite catalysts through dealumination induced using steam treatment at moderate temperatures(400 and 500℃).Moreover,compared with the parent catalyst,the steam-treated catalysts exhibited a lower amount of acid sites and relative crystallinity,while the n(Si)/n(Al)ratio increased.In the co-conversion of methanol and n-hexane in a fixed bed reactor at 400℃and 0.5 MPa(N2 atmosphere),with a weight hourly space velocity of 1 h−1 and a stoichiometric ratio of 1:1(CH3OH to n-hexane),the steam-treated catalysts displayed a prolonged catalyst lifetime.Particularly,the parent zeolite had a lifetime of 96 h,while the catalyst treated at 500℃for 12 h had a lifetime of up to 240 h.Additionally,the steam-treated catalysts maintained stable n-hexane conversion and improved aromatic selectivity.Notably,these treated catalysts exhibited a lower deactivation rate than the parent catalyst,and would be conducive to industrial scale-up production. 展开更多
关键词 steam zsm-5 zeolites co-conversion AROMATIZATION METHANOL N-HEXANE
下载PDF
Alkali-metal-modified ZSM-5 zeolites for improvement of catalytic dehydration of lactic acid to acrylic acid 被引量:8
14
作者 袁川 刘华彦 +3 位作者 张泽凯 卢晗锋 朱秋莲 陈银飞 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2015年第11期1861-1866,共6页
Various ZSM-5 zeolites modified with alkali metals (Li, Na, K, Rb, and Cs) were prepared using ion exchange. The catalysts were used to enhance the catalytic dehydration of lactic acid (LA) to acrylic acid (AA).... Various ZSM-5 zeolites modified with alkali metals (Li, Na, K, Rb, and Cs) were prepared using ion exchange. The catalysts were used to enhance the catalytic dehydration of lactic acid (LA) to acrylic acid (AA). The effects of cationic species on the structures and surface acid-base distributions of the ZSM-5 zeolites were investigated. The important factors that affect the catalytic performance were also identified. The modified ZSM-5 catalysts were characterized using X-ray diffraction, tempera- ture-programmed desorptions of NH3 and CO2, pyridine adsorption spectroscopy, and N2 adsorption to determine the crystal phase structures, surface acidities and basicities, nature of acid sites, specific surface areas, and pore volumes. The results show that the acid-base sites that are adjusted by alkali-metal species, particularly weak acid-base sites, are mainly responsible for the formation of AA. The KZSM-5 catalyst, in particular, significantly improved LA conversion and AA selectivity because of the synergistic effect of weak acid-base sites. The reaction was conducted at different reaction temperatures and liquid hourly space velocities (LHSVs) to understand the catalyst selectivity for AA and trends in byproduct formation. Approximately 98% LA conversion and 77% AA selectivity were achieved using the KZSM-5 catalyst under the optimum conditions (40 wt% LA aqueous solution, 365 ℃, and LHSV 2 h-1). 展开更多
关键词 zsm-5 zeolite Alkali metal Lactic acid Acrylic acid Dehydration
下载PDF
Preparation of hierarchical mesoporous Zn/HZSM-5 catalyst and its application in MTG reaction 被引量:32
15
作者 Youming Ni Aiming Sun +4 位作者 XiaolingWu Guoliang Hai Jianglin Hu Tao Li Guangxing Li 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2011年第3期237-242,共6页
The hierarchical mesoporous Zn/ZSM-5 zeolite catalyst was prepared by NaOH treatment and Zn impregnation, and its application in the conversion of methanol to gasoline (MTG) was studied. N2 adsorption-desorption res... The hierarchical mesoporous Zn/ZSM-5 zeolite catalyst was prepared by NaOH treatment and Zn impregnation, and its application in the conversion of methanol to gasoline (MTG) was studied. N2 adsorption-desorption results showed that the mesopores with sizes of 2-20 nm in HZ5/0.3AT was formed by 0.3 M NaOH alkali treatment. The zeolite samples after modification were also characterized by XRF, AAS, XRD, SEM and NH3-TPD methods. Zn impregnated catalyst Zn/HZ5/0.3AT exhibited dramatic improvements in catalytic lifetime and liquid hydrocarbons yield. The selectivity of aromatic hydrocarbons was also improved after Zn impregnation. It is suggested that the mesopores of Zn/HZ5/0.3AT enhanced the synergetic effect of Zn species and acid sites and the capability to coke tolerance, which were confirmed by the results of catalytic test and TGA analysis, respectively. 展开更多
关键词 hierarchical mesoporous zsm-5 alkali treatment zinc impregnation methanol-to-gasoline
下载PDF
Disproportionation of Toluene by Modified ZSM-5 Zeolite Catalysts with High Shape-selectivity Prepared Using Chemical Liquid Deposition with Tetraethyl Orthosilicate 被引量:16
16
作者 腾晖 王军 +1 位作者 任晓乾 陈德民 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2011年第2期292-298,共7页
Shape-selective catalysts for the disproportionation of toluene were prepared by the modification of the cylinder-shaped ZSM-5 zeolite extrudates with chemical liquid deposition with TEOS (tetraethyl orthosilicate).... Shape-selective catalysts for the disproportionation of toluene were prepared by the modification of the cylinder-shaped ZSM-5 zeolite extrudates with chemical liquid deposition with TEOS (tetraethyl orthosilicate).Various parameters for preparing catalysts were changed to investigate the suitable conditions.The resulting cata-lysts were tested in a pressured fixed bed reactor and characterized by SEM (scanning electron microscopy).The conversion of toluene and para-xylene selectivity were influenced remarkably by the n(SiO2)/n(Al2O3) ratio of ZSM-5 zeolite,the type and amount of deposition agent,acid and solvent used,and the time and cycle of deposition treatment.TEOS was proved to be a more efficient agent than the conventional polysiloxanes when the deposition amount was low.The catalyst prepared at the suitable conditions exhibited a high para-xylene selectivity of 91.1% with considerable high conversion of 25.6%.SEM analyses confirmed the formation of a layer of amorphous silica on the external surface of ZSM-5 zeolie crystals,which was responsible for the highly enhanced shape-selectivity. 展开更多
关键词 shape-selective catalysis zsm-5 zeolite disproportionation of toluene chemical liquid deposition tet-raethyl orthosilicate
下载PDF
Benzene alkylation with methanol over phosphate modified hierarchical porous ZSM-5 with tailored acidity 被引量:15
17
作者 Jinghui Lyu Hualei Hu +7 位作者 Carolyn Tait Jiayao Rui Caiyi Lou Qingtao Wang Wenwen Han Qunfeng Zhang Zhiyan Pan Xiaonian Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第9期1187-1194,共8页
The acidity and acid distribution of hierarchical porous ZSM-5 were tailored via phosphate modification. The catalytic results showed that both benzene conversion and selectivity of toluene and xylene increased with t... The acidity and acid distribution of hierarchical porous ZSM-5 were tailored via phosphate modification. The catalytic results showed that both benzene conversion and selectivity of toluene and xylene increased with the presence of appropriate amount of phosphorus. Meanwhile, side reactions such as methanol to olefins related with the formation of by-product ethylbenzene formation and isomerization of xylene to meta-xylene were suppressed efficiently. The acid strength and sites amount of Br?nsted acid of the catalyst were crucial for improving benzene conversion and yield of xylene, whereas passivation of external surface acid sites played an important role in breaking thermodynamic equilibrium distribution of xylene isomers. 展开更多
关键词 hierarchical porous zsm-5 Phosphate modification Benzene alkylation with methanol XYLENE
下载PDF
Aromatization over nanosized Ga-containing ZSM-5 zeolites prepared by different methods:Effect of acidity of active Ga species on the catalytic performance 被引量:10
18
作者 Yujun Fang Xiaofang Su +4 位作者 Xuefeng Bai Wei Wu Gaoliang Wang Linfei Xiao Anran Yu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第4期768-775,共8页
Nanosized Ga-containing ZSM-5 zeolites were prepared via isomorphous substitution and impregnation followed by characterized using various techniques. The catalytic performance of the zeolites for the aromatization of... Nanosized Ga-containing ZSM-5 zeolites were prepared via isomorphous substitution and impregnation followed by characterized using various techniques. The catalytic performance of the zeolites for the aromatization of 1-hexene was investigated. The results indicate that isomorphous substitution promotes the incorporation of Ga heteroatoms into the framework along with the formation of extra-framework GaO;species([GaO;]a) that have stronger interactions with the negative potential of the framework. In addition, based on the Py-IR results and catalytic performance, the [GaO;]aspecies with stronger Lewis acid sites produced a better synergism with moderate Br?nsted acid sites and thus improved the selectivity to aromatic compounds. However, the impregnation results in the formation of Ga;O;phase and small amounts of GaO;species that are mainly located on the external surface([GaO;];), which contribute to weaker Lewis acid sites due to weaker interactions with the zeolite framework. During 1-hexene aromatization, the nanosized Ga isomorphously substituted ZSM-5 zeolite samples(Gax-NZ5) exhibited better catalytic performance compared to the impregnated samples, and the highest aromatic yield(i.e.,65.4 wt%) was achieved over the Ga4.2-NZ5 sample, which contained with the highest Ga content. 展开更多
关键词 Nanosized zsm-5 zeolite Isomorphous substitution IMPREGNATION Active gallium species AROMATIZATION
下载PDF
Promoting Xylene Production in Benzene Methylation using Hierarchically Porous ZSM-5 Derived from a Modified Dry-gel Route 被引量:4
19
作者 邓威 何暄 +5 位作者 张超 高云逸 朱学栋 朱卡克 霍启升 周志杰 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2014年第8期921-929,共9页
Methylation of benzene is an alternative low-cost route to produce xylenes, but selectivity to xylene remains low over conventional zeolitic catalysts. In this work, a combined dry-gel-conversion and steam-assisted- c... Methylation of benzene is an alternative low-cost route to produce xylenes, but selectivity to xylene remains low over conventional zeolitic catalysts. In this work, a combined dry-gel-conversion and steam-assisted- crystallization method is used to synthesize hierarchically porous zeolite ZSM-5 with varied Si/AI malar ratios. X-ray diffraction (XRD), N2 physisorption, NH3-temperature programmed desorption (TPD), scanning electronic microscopic (SEM) measurement and Fourier transform infrared (FT-IR) are employed to characterize the struc- ture and acidity of both hierarchically porous zeolites and their conventional counterparts. The method is found to be applicable to ZSM-5 with molar ratios of Si/A1 from 20 to 180. The ZSM-5 zeolites are used as catalysts for benzene methylation at 460 ℃ to investigate the effect of additional porosity and Si/A1 ratios. At low Si/AI ratios, the benzene conversions over conventional and hierarchical ZSM-5 are close, and selectivity to toluene is high over hierarchical ZSM-5. It is found that hierarchical porosity markedly enhances the utility of zeolite and the se- lectivity towards xylenes via improved mass transport at higher Si/Al ratios. Under an optimized hierarchical ZSM-5 catalvst, xvlene selectivity reaches 34.9% at a Si/AI ratio of 180. 展开更多
关键词 hierarchical zeolite BENZENE METHANOL METHYLATION zsm-5 Process intensification
下载PDF
Thermal and hydrothermal stabilities of the alkali-treated HZSM-5 zeolites 被引量:10
20
作者 Yuning Li Dong Liu +4 位作者 Shenglin Liu Wei Wang Sujuan Xie Xiangxue Zhu Longya Xu 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2008年第1期69-74,共6页
HZSM-5 zeolites with the micro-mesopore hierarchical porosity have been prepared by the post-synthesis of alkali-treatment, and their thermal and hydrothermal stabilities were studied using DTA, XRD, and NH3-TPD chara... HZSM-5 zeolites with the micro-mesopore hierarchical porosity have been prepared by the post-synthesis of alkali-treatment, and their thermal and hydrothermal stabilities were studied using DTA, XRD, and NH3-TPD characterization techniques. Compared to the unmodified zeolite, the thermal and hydrothermal stabilities of the alkali-treated ZSM-5 zeolites were slightly deteriorated because of the introduction of mesopores caused by the desilication. Nevertheless, the alkali-treated zeolite framework could be maintained until the temperature increased to 1175 ℃. 展开更多
关键词 zsm-5 zeolite alkali-treatment thermal stability hydrothermal stability
下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部