This paper investigates the distributed fault-tolerant containment control(FTCC)problem of nonlinear multi-agent systems(MASs)under a directed network topology.The proposed control framework which is independent on th...This paper investigates the distributed fault-tolerant containment control(FTCC)problem of nonlinear multi-agent systems(MASs)under a directed network topology.The proposed control framework which is independent on the global information about the communication topology consists of two layers.Different from most existing distributed fault-tolerant control(FTC)protocols where the fault in one agent may propagate over network,the developed control method can eliminate the phenomenon of fault propagation.Based on the hierarchical control strategy,the FTCC problem with a directed graph can be simplified to the distributed containment control of the upper layer and the fault-tolerant tracking control of the lower layer.Finally,simulation results are given to demonstrate the effectiveness of the proposed control protocol.展开更多
The cooperative control and stability analysis problems for the multi-agent system with sampled com- munication are investigated. Distributed state feedback controllers are adopted for the cooperation of networked age...The cooperative control and stability analysis problems for the multi-agent system with sampled com- munication are investigated. Distributed state feedback controllers are adopted for the cooperation of networked agents. A theorem in the form of linear matrix inequalities(LMI) is derived to analyze the system stability. An- other theorem in the form of optimization problem subject to LMI constraints is proposed to design the controller, and then the algorithm is presented. The simulation results verify the validity and the effectiveness of the pro- posed approach.展开更多
In this paper, the leader-following tracking problem of fractional-order multi-agent systems is addressed. The dynamics of each agent may be heterogeneous and has unknown nonlinearities. By assumptions that the intera...In this paper, the leader-following tracking problem of fractional-order multi-agent systems is addressed. The dynamics of each agent may be heterogeneous and has unknown nonlinearities. By assumptions that the interaction topology is undirected and connected and the unknown nonlinear uncertain dynamics can be parameterized by a neural network, an adaptive learning law is proposed to deal with unknown nonlinear dynamics, based on which a kind of cooperative tracking protocols are constructed. The feedback gain matrix is obtained to solve an algebraic Riccati equation. To construct the fully distributed cooperative tracking protocols, the adaptive law is also adopted to adjust the coupling weight. With the developed control laws,we can prove that all signals in the closed-loop systems are guaranteed to be uniformly ultimately bounded. Finally, a simple simulation example is provided to illustrate the established result.展开更多
To investigate the leader-following formation control, in this paper we present the design problem of control protocols and distributed observers under which the agents can achieve and maintain the desired formation f...To investigate the leader-following formation control, in this paper we present the design problem of control protocols and distributed observers under which the agents can achieve and maintain the desired formation from any initial states, while the velocity converges to that of the virtual leader whose velocity cannot be measured by agents in real time. The two cases of switching topologies without communication delay and fixed topology with time-varying communication delay are both considered for multi-agent networks. By using the Lyapunov stability theory, the issue of stability is analysed for multi-agent systems with switching topologies. Then, by considering the time-varying communication delay, the sufficient condition is proposed for the multi-agent systems with fixed topology. Finally, two numerical examples are given to illustrate the effectiveness of the proposed leader-following formation control protocols.展开更多
The coordinated optimization problem of the electricity-gas-heat integrated energy system(IES)has the characteristics of strong coupling,non-convexity,and nonlinearity.The centralized optimization method has a high co...The coordinated optimization problem of the electricity-gas-heat integrated energy system(IES)has the characteristics of strong coupling,non-convexity,and nonlinearity.The centralized optimization method has a high cost of communication and complex modeling.Meanwhile,the traditional numerical iterative solution cannot deal with uncertainty and solution efficiency,which is difficult to apply online.For the coordinated optimization problem of the electricity-gas-heat IES in this study,we constructed a model for the distributed IES with a dynamic distribution factor and transformed the centralized optimization problem into a distributed optimization problem in the multi-agent reinforcement learning environment using multi-agent deep deterministic policy gradient.Introducing the dynamic distribution factor allows the system to consider the impact of changes in real-time supply and demand on system optimization,dynamically coordinating different energy sources for complementary utilization and effectively improving the system economy.Compared with centralized optimization,the distributed model with multiple decision centers can achieve similar results while easing the pressure on system communication.The proposed method considers the dual uncertainty of renewable energy and load in the training.Compared with the traditional iterative solution method,it can better cope with uncertainty and realize real-time decision making of the system,which is conducive to the online application.Finally,we verify the effectiveness of the proposed method using an example of an IES coupled with three energy hub agents.展开更多
In this paper,a resilient distributed control scheme against replay attacks for multi-agent networked systems subject to input and state constraints is proposed.The methodological starting point relies on a smart use ...In this paper,a resilient distributed control scheme against replay attacks for multi-agent networked systems subject to input and state constraints is proposed.The methodological starting point relies on a smart use of predictive arguments with a twofold aim:1)Promptly detect malicious agent behaviors affecting normal system operations;2)Apply specific control actions,based on predictive ideas,for mitigating as much as possible undesirable domino effects resulting from adversary operations.Specifically,the multi-agent system is topologically described by a leader-follower digraph characterized by a unique leader and set-theoretic receding horizon control ideas are exploited to develop a distributed algorithm capable to instantaneously recognize the attacked agent.Finally,numerical simulations are carried out to show benefits and effectiveness of the proposed approach.展开更多
In this paper,we consider distributed convex optimization problems on multi-agent networks.We develop and analyze the distributed gradient method which allows each agent to compute its dynamic stepsize by utilizing th...In this paper,we consider distributed convex optimization problems on multi-agent networks.We develop and analyze the distributed gradient method which allows each agent to compute its dynamic stepsize by utilizing the time-varying estimate of the local function value at the global optimal solution.Our approach can be applied to both synchronous and asynchronous communication protocols.Specifically,we propose the distributed subgradient with uncoordinated dynamic stepsizes(DS-UD)algorithm for synchronous protocol and the AsynDGD algorithm for asynchronous protocol.Theoretical analysis shows that the proposed algorithms guarantee that all agents reach a consensus on the solution to the multi-agent optimization problem.Moreover,the proposed approach with dynamic stepsizes eliminates the requirement of diminishing stepsize in existing works.Numerical examples of distributed estimation in sensor networks are provided to illustrate the effectiveness of the proposed approach.展开更多
In this paper,the distributed fuzzy fault-tolerant tracking consensus problem of leader-follower multi-agent systems(MASs)is studied.The objective system includes actuator faults,mismatched parameter uncertainties,non...In this paper,the distributed fuzzy fault-tolerant tracking consensus problem of leader-follower multi-agent systems(MASs)is studied.The objective system includes actuator faults,mismatched parameter uncertainties,nonlinear functions,and exogenous disturbances under switching communication topologies.To solve this problem,a distributed fuzzy fault-tolerant controller is proposed for each follower by adaptive mechanisms to track the state of the leader.Furthermore,the fuzzy logic system is utilized to approximate the unknown nonlinear dynamics.An error estimator is introduced between the mismatched parameter matrix and the input matrix.Then,a selective adaptive law with relative state information is adopted and applied.When calculating the Lyapunov function’s derivative,the coupling terms related to consensus error and mismatched parameter uncertainties can be eliminated.Finally,a numerical simulation is given to validate the effectiveness of the proposed protocol.展开更多
This paper studies a novel distributed optimization problem that aims to minimize the sum of the non-convex objective functionals of the multi-agent network under privacy protection, which means that the local objecti...This paper studies a novel distributed optimization problem that aims to minimize the sum of the non-convex objective functionals of the multi-agent network under privacy protection, which means that the local objective of each agent is unknown to others. The above problem involves complexity simultaneously in the time and space aspects. Yet existing works about distributed optimization mainly consider privacy protection in the space aspect where the decision variable is a vector with finite dimensions. In contrast, when the time aspect is considered in this paper, the decision variable is a continuous function concerning time. Hence, the minimization of the overall functional belongs to the calculus of variations. Traditional works usually aim to seek the optimal decision function. Due to privacy protection and non-convexity, the Euler-Lagrange equation of the proposed problem is a complicated partial differential equation.Hence, we seek the optimal decision derivative function rather than the decision function. This manner can be regarded as seeking the control input for an optimal control problem, for which we propose a centralized reinforcement learning(RL) framework. In the space aspect, we further present a distributed reinforcement learning framework to deal with the impact of privacy protection. Finally, rigorous theoretical analysis and simulation validate the effectiveness of our framework.展开更多
Erasure code is widely used as the redundancy scheme in distributed storage system. When a storage node fails, the repair process often requires to transfer a large amount of data. Regenerating code and hierarchical c...Erasure code is widely used as the redundancy scheme in distributed storage system. When a storage node fails, the repair process often requires to transfer a large amount of data. Regenerating code and hierarchical code are two classes of codes proposed to reduce the repair bandwidth cost. Regenerating codes reduce the amount of data transferred by each helping node, while hierarchical codes reduce the number of nodes participating in the repair process. In this paper, we propose a "sub-code nesting framework" to combine them together. The resulting regenerating hierarchical code has low repair degree as hierarchical code and lower repair cost than hierarchical code. Our code can achieve exact regeneration of the failed node, and has the additional property of low updating complexity.展开更多
Highly penetration of Distributed Energy Resources (DER) on the grid systems nowadays makes the systems grow dynamically. The system become more complex and the protection system become more complicated. The protectio...Highly penetration of Distributed Energy Resources (DER) on the grid systems nowadays makes the systems grow dynamically. The system become more complex and the protection system become more complicated. The protection relay should accommodate the system changes according to the system conditions and topologies. As part of developmental aspect of Distributed Artificial Intelligent, Multi Agent System (MAS) is a challenging method for improving the intelligent properties of relay protection. This paper introduces the use of MAS approach on radial distribution system protection dominated with DER using dispersed adaptive rule-based protection supported by distributed database agent. The simulation results confirmed that the proposed algorithm can respond within 15.05 ms.展开更多
Distributed Data Mining is expected to discover preciously unknown, implicit and valuable information from massive data set inherently distributed over a network. In recent years several approaches to distributed data...Distributed Data Mining is expected to discover preciously unknown, implicit and valuable information from massive data set inherently distributed over a network. In recent years several approaches to distributed data mining have been developed, but only a few of them make use of intelligent agents. This paper provides the reason for applying Multi-Agent Technology in Distributed Data Mining and presents a Distributed Data Mining System based on Multi-Agent Technology that deals with heterogeneity in such environment. Based on the advantages of both the CS model and agent-based model, the system is being able to address the specific concern of increasing scalability and enhancing performance.展开更多
The existing containment control has been widely developed for several years, but ignores the case for large-scale cooperation. The strong coupling of large-scale networks will increase the costs of system detection a...The existing containment control has been widely developed for several years, but ignores the case for large-scale cooperation. The strong coupling of large-scale networks will increase the costs of system detection and maintenance. Therefore, this paper is concerned with an extensional containment control issue, hierarchical containment control. It aims to enable a multitude of followers achieving a novel cooperation in the convex hull shaped by multiple leaders. Firstly, by constructing the three-layer topology, large-scale networks are decoupled. Then,under the condition of directed spanning group-tree, a class of dynamic hierarchical containment control protocol is designed such that the novel group-consensus behavior in the convex hull can be realized. Moreover, the definitions of coupling strength coefficients and the group-consensus parameter in the proposed dynamic hierarchical control protocol enhance the adjustability of systems. Compared with the existing containment control strategy, the proposed hierarchical containment control strategy improves dynamic control performance. Finally, numerical simulations are presented to demonstrate the effectiveness of the proposed hierarchical control protocol.展开更多
Different from the organization structure of complex projects in Western countries, the Liang Zong hierarchical organization structure of complex projects in China has two different chains, the chief-engineer chain an...Different from the organization structure of complex projects in Western countries, the Liang Zong hierarchical organization structure of complex projects in China has two different chains, the chief-engineer chain and the general-director chain,to handle the trade-off between technical and management decisions. However, previous works on organization search have mainly focused on the single-chain hierarchical organization in which all decisions are regarded as homogeneous. The heterogeneity and the interdependency between technical decisions and management decisions have been neglected. A two-chain hierarchical organization structure mapped from a real complex project is constructed. Then, a discrete decision model for a Liang Zong two-chain hierarchical organization in an NK model framework is proposed. This model proves that this kind of organization structure can reduce the search space by a large amount and that the search process should reach a final stable state more quickly. For a more complicated decision mechanism, a multi-agent simulation based on the above NK model is used to explore the effect of the two-chain organization structure on the speed, stability, and performance of the search process. The results provide three insights into how, compared with the single-chain hierarchical organization, the two-chain organization can improve the search process: it can reduce the number of iterations efficiently; the search is more stable because the search space is a smoother hill-like fitness landscape; in general, the search performance can be improved.However, when the organization structure is very complicated, the performance of a two-chain organization is inferior to that of a single-chain organization. These findings about the efficiency of the unique Chinese-style organization structure can be used to guide organization design for complex projects.展开更多
The rapid growth of modern mobile devices leads to a large number of distributed data,which is extremely valuable for learning models.Unfortunately,model training by collecting all these original data to a centralized...The rapid growth of modern mobile devices leads to a large number of distributed data,which is extremely valuable for learning models.Unfortunately,model training by collecting all these original data to a centralized cloud server is not applicable due to data privacy and communication costs concerns,hindering artificial intelligence from empowering mobile devices.Moreover,these data are not identically and independently distributed(Non-IID)caused by their different context,which will deteriorate the performance of the model.To address these issues,we propose a novel Distributed Learning algorithm based on hierarchical clustering and Adaptive Dataset Condensation,named ADC-DL,which learns a shared model by collecting the synthetic samples generated on each device.To tackle the heterogeneity of data distribution,we propose an entropy topsis comprehensive tiering model for hierarchical clustering,which distinguishes clients in terms of their data characteristics.Subsequently,synthetic dummy samples are generated based on the hierarchical structure utilizing adaptive dataset condensation.The procedure of dataset condensation can be adjusted adaptively according to the tier of the client.Extensive experiments demonstrate that the performance of our ADC-DL is more outstanding in prediction accuracy and communication costs compared with existing algorithms.展开更多
Consensus control of multi-agent systems has attracted compelling attentions from various scientific communities for its promising applications.This paper presents a discrete-time consensus protocol for a class of mul...Consensus control of multi-agent systems has attracted compelling attentions from various scientific communities for its promising applications.This paper presents a discrete-time consensus protocol for a class of multi-agent systems with switching topologies and input constraints based on distributed predictive control scheme.The consensus protocol is not only distributed but also depends on the errors of states between agent and its neighbors.We focus mainly on dealing with the input constraints and a distributed model predictive control scheme is developed to achieve stable consensus under the condition that both velocity and acceleration constraints are included simultaneously.The acceleration constraint is regarded as the changing rate of velocity based on some reasonable assumptions so as to simplify the analysis.Theoretical analysis shows that the constrained system steered by the proposed protocol achieves consensus asymptotically if the switching interaction graphs always have a spanning tree.Numerical examples are also provided to illustrate the validity of the algorithm.展开更多
Droop control is one of the main control strategies of islanded microgrid(MG),but the droop control cannot achieve reasonable power distribution of microgrid,resulting in frequency and voltage deviation from the ratin...Droop control is one of the main control strategies of islanded microgrid(MG),but the droop control cannot achieve reasonable power distribution of microgrid,resulting in frequency and voltage deviation from the rating value,which needs the upper control link to eliminate the deviation.However,at present,most layered control requires a centralized control center,which excessively relies on microgrid central controller(MGCC)and real-time communication among distributed generation(DG),which has certain limitations.To solve the above problems,this paper proposes a hierarchical distributed power and power quality optimization strategy based on multi-agent finite time consistency algorithm(MA-FTCA).Firstly,based on the first layer droop control,MA-FTCA is applied to introduce frequency and voltage compensation to stabilize the system frequency and voltage at the rated value.Secondly,in the third layer,the MA-FTCA is adopted to estimate the total active power and total reactive power spare capacity of the system,to realize the reasonable distribution of active power and reactive power output of each DG according to its proportion of spare capacity when the system load side changes.The control strategy proposed in this paper adopts a completely distributed control method and does not need a centralized control center in each layer of control.Finally,MATLAB/Simulink simulation platform is used to verify the correctness and effectiveness of the proposed optimization strategy.展开更多
The quality of K-12 education has been a very big concern for years. Previous methods studied only one or two factors, such as school choice, or teacher quality, on school performance. Therefore the results they provi...The quality of K-12 education has been a very big concern for years. Previous methods studied only one or two factors, such as school choice, or teacher quality, on school performance. Therefore the results they provide can be limited. We propose a multi-agent approach to integrate multiple actors in a school system. These actors include teachers, students, supporting staffs and administrators. The interactions among these actors compose a hierarchical school social network. We first detect the hierarchical community structure in this school network by using an agglomerative hierarchical algorithm. Existing agglomerative hierarchical algorithms usually calculate similarity or dissimilarity between two clusters by using some measure of distance between pairs of observations. We, however, develop a method that calculates similarity based on social interactions between interactions is essential in multi-agent systems. Our algorithm is applied to 15 school districts in Bexar County, Texas, and it provides satisfying results on generating the hierarchical structure of all school districts. We then use the detected structure of the social network to evaluate the school system’s organization performance. We design and implement a funding evaluation model to decompose the funding policy task into subtasks and then evaluate these subtasks by using funding distribution policies from past years and looking for possible relationships between student performances and funding policies. Experiments in the 15 school districts in Bexar County show no significant correlation between student performance and the amount of the funding a school district received.展开更多
The large scale and complex manufacturing systems have a hierarchical structure where a system is composed several lines with some stations and each station also have several machines and so on. In such a hierarchical...The large scale and complex manufacturing systems have a hierarchical structure where a system is composed several lines with some stations and each station also have several machines and so on. In such a hierarchical structure, the controllers are geographically distributed according to their physical structure. So it is desirable to realize the hierarchical and distributed control. In this paper, a methodology is presented using Petri nets for hierarchical and distributed control. The Petri net representation of discrete event manufacturing processes is decomposed and distributed into the machine controllers, which are coordinated through communication between the coordinator and machine controllers so that the decomposed transitions fire at the same time. Implementation of a hierarchical and distributed control system is described for an example robotic manufacturing system. The demonstrations show that the proposed system can be used as an effective tool for consistent modeling and control of large and complex manufacturing systems.展开更多
基金supported in part by the National Natural Science Foundation of China(61873056,61621004,61420106016)the Fundamental Research Funds for the Central Universities in China(N2004001,N2004002,N182608004)the Research Fund of State Key Laboratory of Synthetical Automation for Process Industries in China(2013ZCX01)。
文摘This paper investigates the distributed fault-tolerant containment control(FTCC)problem of nonlinear multi-agent systems(MASs)under a directed network topology.The proposed control framework which is independent on the global information about the communication topology consists of two layers.Different from most existing distributed fault-tolerant control(FTC)protocols where the fault in one agent may propagate over network,the developed control method can eliminate the phenomenon of fault propagation.Based on the hierarchical control strategy,the FTCC problem with a directed graph can be simplified to the distributed containment control of the upper layer and the fault-tolerant tracking control of the lower layer.Finally,simulation results are given to demonstrate the effectiveness of the proposed control protocol.
基金Supported by the National Natural Science Foundation of China(91016017)the National Aviation Found of China(20115868009)~~
文摘The cooperative control and stability analysis problems for the multi-agent system with sampled com- munication are investigated. Distributed state feedback controllers are adopted for the cooperation of networked agents. A theorem in the form of linear matrix inequalities(LMI) is derived to analyze the system stability. An- other theorem in the form of optimization problem subject to LMI constraints is proposed to design the controller, and then the algorithm is presented. The simulation results verify the validity and the effectiveness of the pro- posed approach.
基金supported by the National Natural Science Foundation of China(61303211)Zhejiang Provincial Natural Science Foundation of China(LY17F030003,LY15F030009)
文摘In this paper, the leader-following tracking problem of fractional-order multi-agent systems is addressed. The dynamics of each agent may be heterogeneous and has unknown nonlinearities. By assumptions that the interaction topology is undirected and connected and the unknown nonlinear uncertain dynamics can be parameterized by a neural network, an adaptive learning law is proposed to deal with unknown nonlinear dynamics, based on which a kind of cooperative tracking protocols are constructed. The feedback gain matrix is obtained to solve an algebraic Riccati equation. To construct the fully distributed cooperative tracking protocols, the adaptive law is also adopted to adjust the coupling weight. With the developed control laws,we can prove that all signals in the closed-loop systems are guaranteed to be uniformly ultimately bounded. Finally, a simple simulation example is provided to illustrate the established result.
基金Project supported by the National Natural Science Foundation for Distinguished Young Scholars of China (Grant No. 60525303)the National Natural Science Foundation of China (Grant No. 60704009)+1 种基金the Key Project for Natural Science Research of the Hebei Educational Department (Grant No. ZD200908)the Doctorial Fund of Yanshan University (Grant No. B203)
文摘To investigate the leader-following formation control, in this paper we present the design problem of control protocols and distributed observers under which the agents can achieve and maintain the desired formation from any initial states, while the velocity converges to that of the virtual leader whose velocity cannot be measured by agents in real time. The two cases of switching topologies without communication delay and fixed topology with time-varying communication delay are both considered for multi-agent networks. By using the Lyapunov stability theory, the issue of stability is analysed for multi-agent systems with switching topologies. Then, by considering the time-varying communication delay, the sufficient condition is proposed for the multi-agent systems with fixed topology. Finally, two numerical examples are given to illustrate the effectiveness of the proposed leader-following formation control protocols.
基金supported by The National Key R&D Program of China(2020YFB0905900):Research on artificial intelligence application of power internet of things.
文摘The coordinated optimization problem of the electricity-gas-heat integrated energy system(IES)has the characteristics of strong coupling,non-convexity,and nonlinearity.The centralized optimization method has a high cost of communication and complex modeling.Meanwhile,the traditional numerical iterative solution cannot deal with uncertainty and solution efficiency,which is difficult to apply online.For the coordinated optimization problem of the electricity-gas-heat IES in this study,we constructed a model for the distributed IES with a dynamic distribution factor and transformed the centralized optimization problem into a distributed optimization problem in the multi-agent reinforcement learning environment using multi-agent deep deterministic policy gradient.Introducing the dynamic distribution factor allows the system to consider the impact of changes in real-time supply and demand on system optimization,dynamically coordinating different energy sources for complementary utilization and effectively improving the system economy.Compared with centralized optimization,the distributed model with multiple decision centers can achieve similar results while easing the pressure on system communication.The proposed method considers the dual uncertainty of renewable energy and load in the training.Compared with the traditional iterative solution method,it can better cope with uncertainty and realize real-time decision making of the system,which is conducive to the online application.Finally,we verify the effectiveness of the proposed method using an example of an IES coupled with three energy hub agents.
文摘In this paper,a resilient distributed control scheme against replay attacks for multi-agent networked systems subject to input and state constraints is proposed.The methodological starting point relies on a smart use of predictive arguments with a twofold aim:1)Promptly detect malicious agent behaviors affecting normal system operations;2)Apply specific control actions,based on predictive ideas,for mitigating as much as possible undesirable domino effects resulting from adversary operations.Specifically,the multi-agent system is topologically described by a leader-follower digraph characterized by a unique leader and set-theoretic receding horizon control ideas are exploited to develop a distributed algorithm capable to instantaneously recognize the attacked agent.Finally,numerical simulations are carried out to show benefits and effectiveness of the proposed approach.
基金supported by the Key Research and Development Project in Guangdong Province(2020B0101050001)the National Science Foundation of China(61973214,61590924,61963030)the Natural Science Foundation of Shanghai(19ZR1476200)。
文摘In this paper,we consider distributed convex optimization problems on multi-agent networks.We develop and analyze the distributed gradient method which allows each agent to compute its dynamic stepsize by utilizing the time-varying estimate of the local function value at the global optimal solution.Our approach can be applied to both synchronous and asynchronous communication protocols.Specifically,we propose the distributed subgradient with uncoordinated dynamic stepsizes(DS-UD)algorithm for synchronous protocol and the AsynDGD algorithm for asynchronous protocol.Theoretical analysis shows that the proposed algorithms guarantee that all agents reach a consensus on the solution to the multi-agent optimization problem.Moreover,the proposed approach with dynamic stepsizes eliminates the requirement of diminishing stepsize in existing works.Numerical examples of distributed estimation in sensor networks are provided to illustrate the effectiveness of the proposed approach.
基金This work was supported by Tianjin Natural Science Foundation of China(20JCYBJC01060,20JCQNJC01450)the National Natural Science Foundation of China(61973175)Tianjin Postgraduate Scientific Research and Innovation Project(2020YJSZXB03,2020YJSZXB12).
文摘In this paper,the distributed fuzzy fault-tolerant tracking consensus problem of leader-follower multi-agent systems(MASs)is studied.The objective system includes actuator faults,mismatched parameter uncertainties,nonlinear functions,and exogenous disturbances under switching communication topologies.To solve this problem,a distributed fuzzy fault-tolerant controller is proposed for each follower by adaptive mechanisms to track the state of the leader.Furthermore,the fuzzy logic system is utilized to approximate the unknown nonlinear dynamics.An error estimator is introduced between the mismatched parameter matrix and the input matrix.Then,a selective adaptive law with relative state information is adopted and applied.When calculating the Lyapunov function’s derivative,the coupling terms related to consensus error and mismatched parameter uncertainties can be eliminated.Finally,a numerical simulation is given to validate the effectiveness of the proposed protocol.
基金supported in part by the National Natural Science Foundation of China(NSFC)(61773260)the Ministry of Science and Technology (2018YFB130590)。
文摘This paper studies a novel distributed optimization problem that aims to minimize the sum of the non-convex objective functionals of the multi-agent network under privacy protection, which means that the local objective of each agent is unknown to others. The above problem involves complexity simultaneously in the time and space aspects. Yet existing works about distributed optimization mainly consider privacy protection in the space aspect where the decision variable is a vector with finite dimensions. In contrast, when the time aspect is considered in this paper, the decision variable is a continuous function concerning time. Hence, the minimization of the overall functional belongs to the calculus of variations. Traditional works usually aim to seek the optimal decision function. Due to privacy protection and non-convexity, the Euler-Lagrange equation of the proposed problem is a complicated partial differential equation.Hence, we seek the optimal decision derivative function rather than the decision function. This manner can be regarded as seeking the control input for an optimal control problem, for which we propose a centralized reinforcement learning(RL) framework. In the space aspect, we further present a distributed reinforcement learning framework to deal with the impact of privacy protection. Finally, rigorous theoretical analysis and simulation validate the effectiveness of our framework.
基金Supported by 973 Project of China (No. 2012CB315803)Research Fund for the Doctoral Program of Higher Education of China (No. 20100002110033)Open research Fund of National Mobile Communications Research Laboratory, Southeast University (No. 2011D11)
文摘Erasure code is widely used as the redundancy scheme in distributed storage system. When a storage node fails, the repair process often requires to transfer a large amount of data. Regenerating code and hierarchical code are two classes of codes proposed to reduce the repair bandwidth cost. Regenerating codes reduce the amount of data transferred by each helping node, while hierarchical codes reduce the number of nodes participating in the repair process. In this paper, we propose a "sub-code nesting framework" to combine them together. The resulting regenerating hierarchical code has low repair degree as hierarchical code and lower repair cost than hierarchical code. Our code can achieve exact regeneration of the failed node, and has the additional property of low updating complexity.
文摘Highly penetration of Distributed Energy Resources (DER) on the grid systems nowadays makes the systems grow dynamically. The system become more complex and the protection system become more complicated. The protection relay should accommodate the system changes according to the system conditions and topologies. As part of developmental aspect of Distributed Artificial Intelligent, Multi Agent System (MAS) is a challenging method for improving the intelligent properties of relay protection. This paper introduces the use of MAS approach on radial distribution system protection dominated with DER using dispersed adaptive rule-based protection supported by distributed database agent. The simulation results confirmed that the proposed algorithm can respond within 15.05 ms.
文摘Distributed Data Mining is expected to discover preciously unknown, implicit and valuable information from massive data set inherently distributed over a network. In recent years several approaches to distributed data mining have been developed, but only a few of them make use of intelligent agents. This paper provides the reason for applying Multi-Agent Technology in Distributed Data Mining and presents a Distributed Data Mining System based on Multi-Agent Technology that deals with heterogeneity in such environment. Based on the advantages of both the CS model and agent-based model, the system is being able to address the specific concern of increasing scalability and enhancing performance.
基金supported in part by the National Natural Science Foundation of China(U22A20221,62073064)in part by the Fundamental Research Funds for the Central Universities in China(N2204007)。
文摘The existing containment control has been widely developed for several years, but ignores the case for large-scale cooperation. The strong coupling of large-scale networks will increase the costs of system detection and maintenance. Therefore, this paper is concerned with an extensional containment control issue, hierarchical containment control. It aims to enable a multitude of followers achieving a novel cooperation in the convex hull shaped by multiple leaders. Firstly, by constructing the three-layer topology, large-scale networks are decoupled. Then,under the condition of directed spanning group-tree, a class of dynamic hierarchical containment control protocol is designed such that the novel group-consensus behavior in the convex hull can be realized. Moreover, the definitions of coupling strength coefficients and the group-consensus parameter in the proposed dynamic hierarchical control protocol enhance the adjustability of systems. Compared with the existing containment control strategy, the proposed hierarchical containment control strategy improves dynamic control performance. Finally, numerical simulations are presented to demonstrate the effectiveness of the proposed hierarchical control protocol.
基金supported by the National Natural Science Foundation of China(7157105771390522)the Key Lab for Public Engineering Audit of Jiangsu Province,Nanjing Audit University(GGSS2016-08)
文摘Different from the organization structure of complex projects in Western countries, the Liang Zong hierarchical organization structure of complex projects in China has two different chains, the chief-engineer chain and the general-director chain,to handle the trade-off between technical and management decisions. However, previous works on organization search have mainly focused on the single-chain hierarchical organization in which all decisions are regarded as homogeneous. The heterogeneity and the interdependency between technical decisions and management decisions have been neglected. A two-chain hierarchical organization structure mapped from a real complex project is constructed. Then, a discrete decision model for a Liang Zong two-chain hierarchical organization in an NK model framework is proposed. This model proves that this kind of organization structure can reduce the search space by a large amount and that the search process should reach a final stable state more quickly. For a more complicated decision mechanism, a multi-agent simulation based on the above NK model is used to explore the effect of the two-chain organization structure on the speed, stability, and performance of the search process. The results provide three insights into how, compared with the single-chain hierarchical organization, the two-chain organization can improve the search process: it can reduce the number of iterations efficiently; the search is more stable because the search space is a smoother hill-like fitness landscape; in general, the search performance can be improved.However, when the organization structure is very complicated, the performance of a two-chain organization is inferior to that of a single-chain organization. These findings about the efficiency of the unique Chinese-style organization structure can be used to guide organization design for complex projects.
基金the General Program of National Natural Science Foundation of China(62072049).
文摘The rapid growth of modern mobile devices leads to a large number of distributed data,which is extremely valuable for learning models.Unfortunately,model training by collecting all these original data to a centralized cloud server is not applicable due to data privacy and communication costs concerns,hindering artificial intelligence from empowering mobile devices.Moreover,these data are not identically and independently distributed(Non-IID)caused by their different context,which will deteriorate the performance of the model.To address these issues,we propose a novel Distributed Learning algorithm based on hierarchical clustering and Adaptive Dataset Condensation,named ADC-DL,which learns a shared model by collecting the synthetic samples generated on each device.To tackle the heterogeneity of data distribution,we propose an entropy topsis comprehensive tiering model for hierarchical clustering,which distinguishes clients in terms of their data characteristics.Subsequently,synthetic dummy samples are generated based on the hierarchical structure utilizing adaptive dataset condensation.The procedure of dataset condensation can be adjusted adaptively according to the tier of the client.Extensive experiments demonstrate that the performance of our ADC-DL is more outstanding in prediction accuracy and communication costs compared with existing algorithms.
基金This work was financially supported by the Major Program of National Natural Science Foundation of China[grant numbers is not public]the National Natural Science Foundation of China[Grant No.61703427].
文摘Consensus control of multi-agent systems has attracted compelling attentions from various scientific communities for its promising applications.This paper presents a discrete-time consensus protocol for a class of multi-agent systems with switching topologies and input constraints based on distributed predictive control scheme.The consensus protocol is not only distributed but also depends on the errors of states between agent and its neighbors.We focus mainly on dealing with the input constraints and a distributed model predictive control scheme is developed to achieve stable consensus under the condition that both velocity and acceleration constraints are included simultaneously.The acceleration constraint is regarded as the changing rate of velocity based on some reasonable assumptions so as to simplify the analysis.Theoretical analysis shows that the constrained system steered by the proposed protocol achieves consensus asymptotically if the switching interaction graphs always have a spanning tree.Numerical examples are also provided to illustrate the validity of the algorithm.
基金support provided by Opening Foundation of Key Laboratory of Opto-technology and Intelligent Control(Lanzhou Jiaotong University),Ministry of Education(KFKT2020-11).
文摘Droop control is one of the main control strategies of islanded microgrid(MG),but the droop control cannot achieve reasonable power distribution of microgrid,resulting in frequency and voltage deviation from the rating value,which needs the upper control link to eliminate the deviation.However,at present,most layered control requires a centralized control center,which excessively relies on microgrid central controller(MGCC)and real-time communication among distributed generation(DG),which has certain limitations.To solve the above problems,this paper proposes a hierarchical distributed power and power quality optimization strategy based on multi-agent finite time consistency algorithm(MA-FTCA).Firstly,based on the first layer droop control,MA-FTCA is applied to introduce frequency and voltage compensation to stabilize the system frequency and voltage at the rated value.Secondly,in the third layer,the MA-FTCA is adopted to estimate the total active power and total reactive power spare capacity of the system,to realize the reasonable distribution of active power and reactive power output of each DG according to its proportion of spare capacity when the system load side changes.The control strategy proposed in this paper adopts a completely distributed control method and does not need a centralized control center in each layer of control.Finally,MATLAB/Simulink simulation platform is used to verify the correctness and effectiveness of the proposed optimization strategy.
文摘The quality of K-12 education has been a very big concern for years. Previous methods studied only one or two factors, such as school choice, or teacher quality, on school performance. Therefore the results they provide can be limited. We propose a multi-agent approach to integrate multiple actors in a school system. These actors include teachers, students, supporting staffs and administrators. The interactions among these actors compose a hierarchical school social network. We first detect the hierarchical community structure in this school network by using an agglomerative hierarchical algorithm. Existing agglomerative hierarchical algorithms usually calculate similarity or dissimilarity between two clusters by using some measure of distance between pairs of observations. We, however, develop a method that calculates similarity based on social interactions between interactions is essential in multi-agent systems. Our algorithm is applied to 15 school districts in Bexar County, Texas, and it provides satisfying results on generating the hierarchical structure of all school districts. We then use the detected structure of the social network to evaluate the school system’s organization performance. We design and implement a funding evaluation model to decompose the funding policy task into subtasks and then evaluate these subtasks by using funding distribution policies from past years and looking for possible relationships between student performances and funding policies. Experiments in the 15 school districts in Bexar County show no significant correlation between student performance and the amount of the funding a school district received.
文摘The large scale and complex manufacturing systems have a hierarchical structure where a system is composed several lines with some stations and each station also have several machines and so on. In such a hierarchical structure, the controllers are geographically distributed according to their physical structure. So it is desirable to realize the hierarchical and distributed control. In this paper, a methodology is presented using Petri nets for hierarchical and distributed control. The Petri net representation of discrete event manufacturing processes is decomposed and distributed into the machine controllers, which are coordinated through communication between the coordinator and machine controllers so that the decomposed transitions fire at the same time. Implementation of a hierarchical and distributed control system is described for an example robotic manufacturing system. The demonstrations show that the proposed system can be used as an effective tool for consistent modeling and control of large and complex manufacturing systems.