Convolutional neural networks (CNNs) are widely used in image classification tasks, but their increasing model size and computation make them challenging to implement on embedded systems with constrained hardware reso...Convolutional neural networks (CNNs) are widely used in image classification tasks, but their increasing model size and computation make them challenging to implement on embedded systems with constrained hardware resources. To address this issue, the MobileNetV1 network was developed, which employs depthwise convolution to reduce network complexity. MobileNetV1 employs a stride of 2 in several convolutional layers to decrease the spatial resolution of feature maps, thereby lowering computational costs. However, this stride setting can lead to a loss of spatial information, particularly affecting the detection and representation of smaller objects or finer details in images. To maintain the trade-off between complexity and model performance, a lightweight convolutional neural network with hierarchical multi-scale feature fusion based on the MobileNetV1 network is proposed. The network consists of two main subnetworks. The first subnetwork uses a depthwise dilated separable convolution (DDSC) layer to learn imaging features with fewer parameters, which results in a lightweight and computationally inexpensive network. Furthermore, depthwise dilated convolution in DDSC layer effectively expands the field of view of filters, allowing them to incorporate a larger context. The second subnetwork is a hierarchical multi-scale feature fusion (HMFF) module that uses parallel multi-resolution branches architecture to process the input feature map in order to extract the multi-scale feature information of the input image. Experimental results on the CIFAR-10, Malaria, and KvasirV1 datasets demonstrate that the proposed method is efficient, reducing the network parameters and computational cost by 65.02% and 39.78%, respectively, while maintaining the network performance compared to the MobileNetV1 baseline.展开更多
A kind of predictive control based on the neural network(NN) for nonlinear systems with time delay is addressed.The off line NN model is obtained by using hierarchical genetic algorithms (HGA) to train a sequence da...A kind of predictive control based on the neural network(NN) for nonlinear systems with time delay is addressed.The off line NN model is obtained by using hierarchical genetic algorithms (HGA) to train a sequence data of input and output.Output predictions are obtained by recursively mapping the NN model.The error rectification term is introduced into a performance function that is directly optimized while on line control so that it overcomes influences of the mismatched model and disturbances,etc.Simulations show the system has good dynamic responses and robustness.展开更多
To explore the problems of monitoring chemical processes with large numbers of input parameters, a method based on Auto-associative Hierarchical Neural Network(AHNN) is proposed. AHNN focuses on dealing with datasets ...To explore the problems of monitoring chemical processes with large numbers of input parameters, a method based on Auto-associative Hierarchical Neural Network(AHNN) is proposed. AHNN focuses on dealing with datasets in high-dimension. AHNNs consist of two parts: groups of subnets based on well trained Autoassociative Neural Networks(AANNs) and a main net. The subnets play an important role on the performance of AHNN. A simple but effective method of designing the subnets is developed in this paper. In this method,the subnets are designed according to the classification of the data attributes. For getting the classification, an effective method called Extension Data Attributes Classification(EDAC) is adopted. Soft sensor using AHNN based on EDAC(EDAC-AHNN) is introduced. As a case study, the production data of Purified Terephthalic Acid(PTA) solvent system are selected to examine the proposed model. The results of the EDAC-AHNN model are compared with the experimental data extracted from the literature, which shows the efficiency of the proposed model.展开更多
The real-time fault diagnosis system is very great important for steam turbine generator set due to a serious fault results in a reduced amount of electricity supply in power plant. A novel real-time fault diagnosis s...The real-time fault diagnosis system is very great important for steam turbine generator set due to a serious fault results in a reduced amount of electricity supply in power plant. A novel real-time fault diagnosis system is proposed by using strata hierarchical fuzzy CMAC neural network. A framework of the fault diagnosis system is described. Hierarchical fault diagnostic structure is discussed in detail. The model of a novel fault diagnosis system by using fuzzy CMAC are built and analyzed. A case of the diagnosis is simulated. The results show that the real-time fault diagnostic system is of high accuracy, quick convergence, and high noise rejection. It is also found that this model is feasible in real-time fault diagnosis.展开更多
In order to improve the detection accuracy of small objects,a neighborhood fusion-based hierarchical parallel feature pyramid network(NFPN)is proposed.Unlike the layer-by-layer structure adopted in the feature pyramid...In order to improve the detection accuracy of small objects,a neighborhood fusion-based hierarchical parallel feature pyramid network(NFPN)is proposed.Unlike the layer-by-layer structure adopted in the feature pyramid network(FPN)and deconvolutional single shot detector(DSSD),where the bottom layer of the feature pyramid network relies on the top layer,NFPN builds the feature pyramid network with no connections between the upper and lower layers.That is,it only fuses shallow features on similar scales.NFPN is highly portable and can be embedded in many models to further boost performance.Extensive experiments on PASCAL VOC 2007,2012,and COCO datasets demonstrate that the NFPN-based SSD without intricate tricks can exceed the DSSD model in terms of detection accuracy and inference speed,especially for small objects,e.g.,4%to 5%higher mAP(mean average precision)than SSD,and 2%to 3%higher mAP than DSSD.On VOC 2007 test set,the NFPN-based SSD with 300×300 input reaches 79.4%mAP at 34.6 frame/s,and the mAP can raise to 82.9%after using the multi-scale testing strategy.展开更多
Having a universal, fair, democratic and practical higher education system plays a particularly important role in the future development of the country. However, the higher education system in various countries is une...Having a universal, fair, democratic and practical higher education system plays a particularly important role in the future development of the country. However, the higher education system in various countries is uneven. It is of great significance to establish a general evaluation system for the development of global education. In this paper, 23 indicators are preliminarily selected from the education data of Universitas 21 and Global Statistical Yearbook. After the gray correlation analysis, 12 indicators were selected. On the one hand, principal component analysis is used to reduce the dimension of these 12 indicators in 50 countries, and the first four principal components with cumulative contribution rate of 99% are finally selected as the input parameters of BP neural network. On the other hand, 12 indicators are divided into four aspects as the standard of scheme decision-making. Finally, a higher education quality evaluation and decision-making model based on BP neural network and analytic hierarchy process are established. Then eight countries are selected to use the model to evaluate their current higher education quality. Based on the input and evaluation results of the four aspects of higher education in various countries, the analytic hierarchy process is used to make program decision, and several improvement suggestions are put forward for the current education policies of various countries.展开更多
order to help investors understand the credit status of target corporations and reduce investment risks,the corporate credit rating model has become an important evaluation tool in the financial market.These models ar...order to help investors understand the credit status of target corporations and reduce investment risks,the corporate credit rating model has become an important evaluation tool in the financial market.These models are based on statistical learning,machine learning and deep learning especially graph neural networks(GNNs).However,we found that only few models take the hierarchy,heterogeneity or unlabeled data into account in the actual corporate credit rating process.Therefore,we propose a novel framework named hierarchical heterogeneous graph neural networks(HHGNN),which can fully model the hierarchy of corporate features and the heterogeneity of relationships between corporations.In addition,we design an adversarial learning block to make full use of the rich unlabeled samples in the financial data.Extensive experiments conducted on the public-listed corporate rating dataset prove that HHGNN achieves SOTA compared to the baseline methods.展开更多
The neural network with multi hierarchic structure is provided in this paper to evaluate sustainable development of the coal mines based on analyzing its effect factors. The whole evaluating system is composed of 5 ne...The neural network with multi hierarchic structure is provided in this paper to evaluate sustainable development of the coal mines based on analyzing its effect factors. The whole evaluating system is composed of 5 neural networks.The feasibility of this method has been proved by case study. This study will provide a scientfic and theoretic foundation for evaluating the sustainable development of coal mines.展开更多
A vast amount of information has been produced in recent years,which brings a huge challenge to information management.The better usage of big data is of important theoretical and practical significance for effectivel...A vast amount of information has been produced in recent years,which brings a huge challenge to information management.The better usage of big data is of important theoretical and practical significance for effectively addressing and managing messages.In this paper,we propose a nine-rectangle-grid information model according to the information value and privacy,and then present information use policies based on the rough set theory.Recurrent neural networks were employed to classify OTT messages.The content of user interest is effectively incorporated into the classification process during the annotation of OTT messages,ending with a reliable trained classification model.Experimental results showed that the proposed method yielded an accurate classification performance and hence can be used for effective distribution and control of OTT messages.展开更多
This research proposes a method called enhanced collaborative andgeometric multi-kernel learning (E-CGMKL) that can enhance the CGMKLalgorithm which deals with multi-class classification problems with non-lineardata d...This research proposes a method called enhanced collaborative andgeometric multi-kernel learning (E-CGMKL) that can enhance the CGMKLalgorithm which deals with multi-class classification problems with non-lineardata distributions. CGMKL combines multiple kernel learning with softmaxfunction using the framework of multi empirical kernel learning (MEKL) inwhich empirical kernel mapping (EKM) provides explicit feature constructionin the high dimensional kernel space. CGMKL ensures the consistent outputof samples across kernel spaces and minimizes the within-class distance tohighlight geometric features of multiple classes. However, the kernels constructed by CGMKL do not have any explicit relationship among them andtry to construct high dimensional feature representations independently fromeach other. This could be disadvantageous for learning on datasets with complex hidden structures. To overcome this limitation, E-CGMKL constructskernel spaces from hidden layers of trained deep neural networks (DNN).Due to the nature of the DNN architecture, these kernel spaces not onlyprovide multiple feature representations but also inherit the compositionalhierarchy of the hidden layers, which might be beneficial for enhancing thepredictive performance of the CGMKL algorithm on complex data withnatural hierarchical structures, for example, image data. Furthermore, ourproposed scheme handles image data by constructing kernel spaces from aconvolutional neural network (CNN). Considering the effectiveness of CNNarchitecture on image data, these kernel spaces provide a major advantageover the CGMKL algorithm which does not exploit the CNN architecture forconstructing kernel spaces from image data. Additionally, outputs of hiddenlayers directly provide features for kernel spaces and unlike CGMKL, do notrequire an approximate MEKL framework. E-CGMKL combines the consistency and geometry preserving aspects of CGMKL with the compositionalhierarchy of kernel spaces extracted from DNN hidden layers to enhance the predictive performance of CGMKL significantly. The experimental results onvarious data sets demonstrate the superior performance of the E-CGMKLalgorithm compared to other competing methods including the benchmarkCGMKL.展开更多
Most modern face recognition and classification systems mainly rely on hand-crafted image feature descriptors. In this paper, we propose a novel deep learning algorithm combining unsupervised and supervised learning n...Most modern face recognition and classification systems mainly rely on hand-crafted image feature descriptors. In this paper, we propose a novel deep learning algorithm combining unsupervised and supervised learning named deep belief network embedded with Softmax regress (DBNESR) as a natural source for obtaining additional, complementary hierarchical representations, which helps to relieve us from the complicated hand-crafted feature-design step. DBNESR first learns hierarchical representations of feature by greedy layer-wise unsupervised learning in a feed-forward (bottom-up) and back-forward (top-down) manner and then makes more efficient recognition with Softmax regress by supervised learning. As a comparison with the algorithms only based on supervised learning, we again propose and design many kinds of classifiers: BP, HBPNNs, RBF, HRBFNNs, SVM and multiple classification decision fusion classifier (MCDFC)—hybrid HBPNNs-HRBFNNs-SVM classifier. The conducted experiments validate: Firstly, the proposed DBNESR is optimal for face recognition with the highest and most stable recognition rates;second, the algorithm combining unsupervised and supervised learning has better effect than all supervised learning algorithms;third, hybrid neural networks have better effect than single model neural network;fourth, the average recognition rate and variance of these algorithms in order of the largest to the smallest are respectively shown as DBNESR, MCDFC, SVM, HRBFNNs, RBF, HBPNNs, BP and BP, RBF, HBPNNs, HRBFNNs, SVM, MCDFC, DBNESR;at last, it reflects hierarchical representations of feature by DBNESR in terms of its capability of modeling hard artificial intelligent tasks.展开更多
为解决目前基于节点采样的图池化方法中所存在的评估节点重要性的策略过于简单以及子结构特征信息大量丢失等问题,提出了基于节点采样的子结构代表层次池化模型(sub-structure representative hierarchical pooling model based on node...为解决目前基于节点采样的图池化方法中所存在的评估节点重要性的策略过于简单以及子结构特征信息大量丢失等问题,提出了基于节点采样的子结构代表层次池化模型(sub-structure representative hierarchical pooling model based on node sampling,SsrPool)。该模型主要包括子结构代表节点选择模块和子结构代表节点特征生成模块2个部分。首先,子结构代表节点选择模块同时考虑了节点特征信息以及结构信息,利用不同方法评估节点重要性并通过不同重要性分数协作产生鲁棒的节点排名以指导节点选择。其次,子结构代表节点特征生成模块通过特征融合保留局部子结构特征信息。通过将SsrPool与现有神经网络相结合,在不同规模公共数据集上的图分类实验结果证明了SsrPool的有效性。展开更多
文摘Convolutional neural networks (CNNs) are widely used in image classification tasks, but their increasing model size and computation make them challenging to implement on embedded systems with constrained hardware resources. To address this issue, the MobileNetV1 network was developed, which employs depthwise convolution to reduce network complexity. MobileNetV1 employs a stride of 2 in several convolutional layers to decrease the spatial resolution of feature maps, thereby lowering computational costs. However, this stride setting can lead to a loss of spatial information, particularly affecting the detection and representation of smaller objects or finer details in images. To maintain the trade-off between complexity and model performance, a lightweight convolutional neural network with hierarchical multi-scale feature fusion based on the MobileNetV1 network is proposed. The network consists of two main subnetworks. The first subnetwork uses a depthwise dilated separable convolution (DDSC) layer to learn imaging features with fewer parameters, which results in a lightweight and computationally inexpensive network. Furthermore, depthwise dilated convolution in DDSC layer effectively expands the field of view of filters, allowing them to incorporate a larger context. The second subnetwork is a hierarchical multi-scale feature fusion (HMFF) module that uses parallel multi-resolution branches architecture to process the input feature map in order to extract the multi-scale feature information of the input image. Experimental results on the CIFAR-10, Malaria, and KvasirV1 datasets demonstrate that the proposed method is efficient, reducing the network parameters and computational cost by 65.02% and 39.78%, respectively, while maintaining the network performance compared to the MobileNetV1 baseline.
文摘A kind of predictive control based on the neural network(NN) for nonlinear systems with time delay is addressed.The off line NN model is obtained by using hierarchical genetic algorithms (HGA) to train a sequence data of input and output.Output predictions are obtained by recursively mapping the NN model.The error rectification term is introduced into a performance function that is directly optimized while on line control so that it overcomes influences of the mismatched model and disturbances,etc.Simulations show the system has good dynamic responses and robustness.
基金Supported by the National Natural Science Foundation of China(61074153)
文摘To explore the problems of monitoring chemical processes with large numbers of input parameters, a method based on Auto-associative Hierarchical Neural Network(AHNN) is proposed. AHNN focuses on dealing with datasets in high-dimension. AHNNs consist of two parts: groups of subnets based on well trained Autoassociative Neural Networks(AANNs) and a main net. The subnets play an important role on the performance of AHNN. A simple but effective method of designing the subnets is developed in this paper. In this method,the subnets are designed according to the classification of the data attributes. For getting the classification, an effective method called Extension Data Attributes Classification(EDAC) is adopted. Soft sensor using AHNN based on EDAC(EDAC-AHNN) is introduced. As a case study, the production data of Purified Terephthalic Acid(PTA) solvent system are selected to examine the proposed model. The results of the EDAC-AHNN model are compared with the experimental data extracted from the literature, which shows the efficiency of the proposed model.
文摘The real-time fault diagnosis system is very great important for steam turbine generator set due to a serious fault results in a reduced amount of electricity supply in power plant. A novel real-time fault diagnosis system is proposed by using strata hierarchical fuzzy CMAC neural network. A framework of the fault diagnosis system is described. Hierarchical fault diagnostic structure is discussed in detail. The model of a novel fault diagnosis system by using fuzzy CMAC are built and analyzed. A case of the diagnosis is simulated. The results show that the real-time fault diagnostic system is of high accuracy, quick convergence, and high noise rejection. It is also found that this model is feasible in real-time fault diagnosis.
基金The National Natural Science Foundation of China(No.61603091)。
文摘In order to improve the detection accuracy of small objects,a neighborhood fusion-based hierarchical parallel feature pyramid network(NFPN)is proposed.Unlike the layer-by-layer structure adopted in the feature pyramid network(FPN)and deconvolutional single shot detector(DSSD),where the bottom layer of the feature pyramid network relies on the top layer,NFPN builds the feature pyramid network with no connections between the upper and lower layers.That is,it only fuses shallow features on similar scales.NFPN is highly portable and can be embedded in many models to further boost performance.Extensive experiments on PASCAL VOC 2007,2012,and COCO datasets demonstrate that the NFPN-based SSD without intricate tricks can exceed the DSSD model in terms of detection accuracy and inference speed,especially for small objects,e.g.,4%to 5%higher mAP(mean average precision)than SSD,and 2%to 3%higher mAP than DSSD.On VOC 2007 test set,the NFPN-based SSD with 300×300 input reaches 79.4%mAP at 34.6 frame/s,and the mAP can raise to 82.9%after using the multi-scale testing strategy.
文摘Having a universal, fair, democratic and practical higher education system plays a particularly important role in the future development of the country. However, the higher education system in various countries is uneven. It is of great significance to establish a general evaluation system for the development of global education. In this paper, 23 indicators are preliminarily selected from the education data of Universitas 21 and Global Statistical Yearbook. After the gray correlation analysis, 12 indicators were selected. On the one hand, principal component analysis is used to reduce the dimension of these 12 indicators in 50 countries, and the first four principal components with cumulative contribution rate of 99% are finally selected as the input parameters of BP neural network. On the other hand, 12 indicators are divided into four aspects as the standard of scheme decision-making. Finally, a higher education quality evaluation and decision-making model based on BP neural network and analytic hierarchy process are established. Then eight countries are selected to use the model to evaluate their current higher education quality. Based on the input and evaluation results of the four aspects of higher education in various countries, the analytic hierarchy process is used to make program decision, and several improvement suggestions are put forward for the current education policies of various countries.
文摘order to help investors understand the credit status of target corporations and reduce investment risks,the corporate credit rating model has become an important evaluation tool in the financial market.These models are based on statistical learning,machine learning and deep learning especially graph neural networks(GNNs).However,we found that only few models take the hierarchy,heterogeneity or unlabeled data into account in the actual corporate credit rating process.Therefore,we propose a novel framework named hierarchical heterogeneous graph neural networks(HHGNN),which can fully model the hierarchy of corporate features and the heterogeneity of relationships between corporations.In addition,we design an adversarial learning block to make full use of the rich unlabeled samples in the financial data.Extensive experiments conducted on the public-listed corporate rating dataset prove that HHGNN achieves SOTA compared to the baseline methods.
文摘The neural network with multi hierarchic structure is provided in this paper to evaluate sustainable development of the coal mines based on analyzing its effect factors. The whole evaluating system is composed of 5 neural networks.The feasibility of this method has been proved by case study. This study will provide a scientfic and theoretic foundation for evaluating the sustainable development of coal mines.
基金This work is supported by the Research on Big Data in Application for Education of BUPT(No.2018Y0403)Fundamental Research Funds of BUPT(No.2018XKJC07,2018RC27)the National Natural Science Foundation of China(No.61571059).
文摘A vast amount of information has been produced in recent years,which brings a huge challenge to information management.The better usage of big data is of important theoretical and practical significance for effectively addressing and managing messages.In this paper,we propose a nine-rectangle-grid information model according to the information value and privacy,and then present information use policies based on the rough set theory.Recurrent neural networks were employed to classify OTT messages.The content of user interest is effectively incorporated into the classification process during the annotation of OTT messages,ending with a reliable trained classification model.Experimental results showed that the proposed method yielded an accurate classification performance and hence can be used for effective distribution and control of OTT messages.
文摘This research proposes a method called enhanced collaborative andgeometric multi-kernel learning (E-CGMKL) that can enhance the CGMKLalgorithm which deals with multi-class classification problems with non-lineardata distributions. CGMKL combines multiple kernel learning with softmaxfunction using the framework of multi empirical kernel learning (MEKL) inwhich empirical kernel mapping (EKM) provides explicit feature constructionin the high dimensional kernel space. CGMKL ensures the consistent outputof samples across kernel spaces and minimizes the within-class distance tohighlight geometric features of multiple classes. However, the kernels constructed by CGMKL do not have any explicit relationship among them andtry to construct high dimensional feature representations independently fromeach other. This could be disadvantageous for learning on datasets with complex hidden structures. To overcome this limitation, E-CGMKL constructskernel spaces from hidden layers of trained deep neural networks (DNN).Due to the nature of the DNN architecture, these kernel spaces not onlyprovide multiple feature representations but also inherit the compositionalhierarchy of the hidden layers, which might be beneficial for enhancing thepredictive performance of the CGMKL algorithm on complex data withnatural hierarchical structures, for example, image data. Furthermore, ourproposed scheme handles image data by constructing kernel spaces from aconvolutional neural network (CNN). Considering the effectiveness of CNNarchitecture on image data, these kernel spaces provide a major advantageover the CGMKL algorithm which does not exploit the CNN architecture forconstructing kernel spaces from image data. Additionally, outputs of hiddenlayers directly provide features for kernel spaces and unlike CGMKL, do notrequire an approximate MEKL framework. E-CGMKL combines the consistency and geometry preserving aspects of CGMKL with the compositionalhierarchy of kernel spaces extracted from DNN hidden layers to enhance the predictive performance of CGMKL significantly. The experimental results onvarious data sets demonstrate the superior performance of the E-CGMKLalgorithm compared to other competing methods including the benchmarkCGMKL.
文摘Most modern face recognition and classification systems mainly rely on hand-crafted image feature descriptors. In this paper, we propose a novel deep learning algorithm combining unsupervised and supervised learning named deep belief network embedded with Softmax regress (DBNESR) as a natural source for obtaining additional, complementary hierarchical representations, which helps to relieve us from the complicated hand-crafted feature-design step. DBNESR first learns hierarchical representations of feature by greedy layer-wise unsupervised learning in a feed-forward (bottom-up) and back-forward (top-down) manner and then makes more efficient recognition with Softmax regress by supervised learning. As a comparison with the algorithms only based on supervised learning, we again propose and design many kinds of classifiers: BP, HBPNNs, RBF, HRBFNNs, SVM and multiple classification decision fusion classifier (MCDFC)—hybrid HBPNNs-HRBFNNs-SVM classifier. The conducted experiments validate: Firstly, the proposed DBNESR is optimal for face recognition with the highest and most stable recognition rates;second, the algorithm combining unsupervised and supervised learning has better effect than all supervised learning algorithms;third, hybrid neural networks have better effect than single model neural network;fourth, the average recognition rate and variance of these algorithms in order of the largest to the smallest are respectively shown as DBNESR, MCDFC, SVM, HRBFNNs, RBF, HBPNNs, BP and BP, RBF, HBPNNs, HRBFNNs, SVM, MCDFC, DBNESR;at last, it reflects hierarchical representations of feature by DBNESR in terms of its capability of modeling hard artificial intelligent tasks.
文摘为解决目前基于节点采样的图池化方法中所存在的评估节点重要性的策略过于简单以及子结构特征信息大量丢失等问题,提出了基于节点采样的子结构代表层次池化模型(sub-structure representative hierarchical pooling model based on node sampling,SsrPool)。该模型主要包括子结构代表节点选择模块和子结构代表节点特征生成模块2个部分。首先,子结构代表节点选择模块同时考虑了节点特征信息以及结构信息,利用不同方法评估节点重要性并通过不同重要性分数协作产生鲁棒的节点排名以指导节点选择。其次,子结构代表节点特征生成模块通过特征融合保留局部子结构特征信息。通过将SsrPool与现有神经网络相结合,在不同规模公共数据集上的图分类实验结果证明了SsrPool的有效性。