To maximize the aggregate throughput achieved in heterogeneous networks, this paper investigates inter-session network coding for the distribution of layered source data. We define inter-layer hierarchical random line...To maximize the aggregate throughput achieved in heterogeneous networks, this paper investigates inter-session network coding for the distribution of layered source data. We define inter-layer hierarchical random linear network codes (IHRLNC), which not only take the flexibility of intersession network coding for layer mixing but also consider the strict priority inherent in the layered source data. Furthermore, we propose the inter-layer hierarchical multicast (IHM), which performs IHRLNC in the network such that each sink can recover some source layers according to its individu- al capacity. To determine the optimal type of IHRLNC that should be performed on each edge in IHM, we formulate an optimization problem based on 0-1 integer linear programming, and propose a heuristic approach to approximate the optimal solution in polynomial time. Simulation results show that the proposed IHM can achieve throughput gains over the layered muhicast schemes.展开更多
基金Supported by the National Natural Science Foundation of China ( No. 60832001 ).
文摘To maximize the aggregate throughput achieved in heterogeneous networks, this paper investigates inter-session network coding for the distribution of layered source data. We define inter-layer hierarchical random linear network codes (IHRLNC), which not only take the flexibility of intersession network coding for layer mixing but also consider the strict priority inherent in the layered source data. Furthermore, we propose the inter-layer hierarchical multicast (IHM), which performs IHRLNC in the network such that each sink can recover some source layers according to its individu- al capacity. To determine the optimal type of IHRLNC that should be performed on each edge in IHM, we formulate an optimization problem based on 0-1 integer linear programming, and propose a heuristic approach to approximate the optimal solution in polynomial time. Simulation results show that the proposed IHM can achieve throughput gains over the layered muhicast schemes.