期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Hierarchical structure observation and nanoindentation size effect characterization for a limnetic shell 被引量:4
1
作者 Jingru Song Cuncai Fan +1 位作者 Hansong Ma Yueguang Wei 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2015年第3期364-372,共9页
In the present research, hierarchical structure observation and mechanical property characterization for a type of biomaterial are carried out. The investigated bioma- terial is Hyriopsis cumingii, a typical limnetic ... In the present research, hierarchical structure observation and mechanical property characterization for a type of biomaterial are carried out. The investigated bioma- terial is Hyriopsis cumingii, a typical limnetic shell, which consists of two different structural layers, a prismatic "pillar" structure and a nacreous "brick and mortar" structure. The prismatic layer looks like a "pillar forest" with variationsection pillars sized on the order of several tens of microns. The nacreous material looks like a "brick wall" with bricks sized on the order of several microns. Both pillars and bricks are composed of nanoparticles. The mechanical properties of the hierarchical biomaterial are measured by using the nanoindentation test. Hardness and modulus are measured for both the nacre layer and the prismatic layer, respectively. The nanoindentation size effects for the hierarchical structural materials are investigated experimentally. The results show that the prismatic nanostructured material has a higher stiffness and hardness than the nacre nanostructured material. In addition, the nanoindentation size effects for the hierarchical structural materials are described theoretically, by using the trans-scale mechanics theory considering both strain gradient effect and the surface/interface effect. The modeling results are consistent with experimental ones. 展开更多
关键词 Biomaterial hierarchical structure - Mechan-ical property Nanoindentation size effect Trans-scalemechanics
下载PDF
Hydrothermal Synthesis and Luminescent Properties of Flowerlike Zn_2GeO_4 and Mn^(2+)-Doped Zn_2GeO_4 Hierarchical Architectures 被引量:1
2
作者 LI Bo SONG Shu-yan +3 位作者 SUN Xiu-juan PENG Jing WANG Bo XING Yan 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2012年第5期764-767,共4页
Three-dimensional(3D) flowerlike hierarchical Zn2GeO4 and Mn2+-doped Zn2GeO4 microstructures have been prepared by a facile hydrothermal approach. X-Ray diffraction(XRD), field emission scanning electron micro-sc... Three-dimensional(3D) flowerlike hierarchical Zn2GeO4 and Mn2+-doped Zn2GeO4 microstructures have been prepared by a facile hydrothermal approach. X-Ray diffraction(XRD), field emission scanning electron micro-scopy(FESEM), transmission electron microscopy(TEM) and photoluminescence(PL) spectrometry were employed to characterize the samples. Such flowerlike hierarchical Zn2GeO4 microstructures with an average diameter of 3―4 μm were found to be constructed by abundant single crystalline nanorods of about 90 nm in diameter. The luminescent properties of Zn2GeO4:xMn phosphors with different contents of Mn2+ as an activator were investigated. The Mn2+-doped samples showed green luminescence corresponding to the d-d transition of Mn2+ under the irradiation of UV light. The red shift(from 531 nm to 538 nm) in λem with increasing Mn2+ content was observed in the luminescent spectra, which should be attributed to a weak crystal field because of the substitution of Zn2+ by Mn2+ at a distorted tetrahedral lattice site. 展开更多
关键词 Zinc orthogermanate hierarchical architecture Luminescent property
下载PDF
A facile one-step approach to hierarchically assembled core-shell-like MnO2@MnO2 nanoarchitectures on carbon fibers: An efficient and flexible electrode material to enhance energy storage 被引量:3
3
作者 Goli Nagaraju Yeong Hwan Ko +2 位作者 Sung Min Cha Sang Hyuk Im Jae Su Yu 《Nano Research》 SCIE EI CAS CSCD 2016年第5期1507-1522,共16页
Hierarchical core-shell-like MnO2 nanostructures (NSs) were used to anchor MnO2 hexagonal nanoplate arrays (HNPAs) on carbon cloth (CC) fibers. The NSs were prepared by a novel one-step electrochemical depositio... Hierarchical core-shell-like MnO2 nanostructures (NSs) were used to anchor MnO2 hexagonal nanoplate arrays (HNPAs) on carbon cloth (CC) fibers. The NSs were prepared by a novel one-step electrochemical deposition method. Under an external cathodic voltage of -2.0 V for 30 min, hierarchical core-shell-like MnO2-NS-decorated MnO2 HNPAs (MnO2 NSs@MnO2 HNPAs) were uniformly grown on CC with reliable adhesion. The phase purity and morphological properties of the samples were characterized by various physicochemical techniques. At a constant external cathodic voltage, growth of MnO2 NSs@MnO2 HNPAs on CC was carried for different time periods. When utilized as a flexible, robust, and binder-free electrode for pseudocapacitors, the hierarchical core-shell-like MnO2 NSs@MnO2 HNPAs on CC showed clearly enhanced electrochemical properties in 1 M Na2SO4 electrolyte solution. The results indicate that the MnO2 NSs@MnO2 HNPAs on CC have a maximum specific capacitance of 244.54 F/g at a current density of 0.5 A/g with excellent cycling stability compared to that of bare MnO2 HNPAs on CC (112.1 F/g at 0.5 A/g current density). We believe that the superior charge storage performance of the pseudocapacitive electrode can be mainly attributed to the hierarchical MnO2 NSs@MnO2 HNPAs building blocks that have a large specific surface area, offering additional electroactive sites for efficient electrochemical reactions. The facile and single-step approach to growth of hierarchical pseudocapacitive materials on textile based electrodes opens up the possibility for the fabrication of high-performance flexible energy storage devices. 展开更多
关键词 manganese oxide hierarchical structures carbon cloth electrochemical deposition energy storage properties
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部