期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Hierarchical structure observation and nanoindentation size effect characterization for a limnetic shell 被引量:4
1
作者 Jingru Song Cuncai Fan +1 位作者 Hansong Ma Yueguang Wei 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2015年第3期364-372,共9页
In the present research, hierarchical structure observation and mechanical property characterization for a type of biomaterial are carried out. The investigated bioma- terial is Hyriopsis cumingii, a typical limnetic ... In the present research, hierarchical structure observation and mechanical property characterization for a type of biomaterial are carried out. The investigated bioma- terial is Hyriopsis cumingii, a typical limnetic shell, which consists of two different structural layers, a prismatic "pillar" structure and a nacreous "brick and mortar" structure. The prismatic layer looks like a "pillar forest" with variationsection pillars sized on the order of several tens of microns. The nacreous material looks like a "brick wall" with bricks sized on the order of several microns. Both pillars and bricks are composed of nanoparticles. The mechanical properties of the hierarchical biomaterial are measured by using the nanoindentation test. Hardness and modulus are measured for both the nacre layer and the prismatic layer, respectively. The nanoindentation size effects for the hierarchical structural materials are investigated experimentally. The results show that the prismatic nanostructured material has a higher stiffness and hardness than the nacre nanostructured material. In addition, the nanoindentation size effects for the hierarchical structural materials are described theoretically, by using the trans-scale mechanics theory considering both strain gradient effect and the surface/interface effect. The modeling results are consistent with experimental ones. 展开更多
关键词 Biomaterial hierarchical structure - Mechan-ical property Nanoindentation size effect Trans-scalemechanics
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部