In this paper, we discuss the relationship between the blocking probabilityand the configuration of storage hierarchy in a Video on Demand ( VoD) server using the queueingmodel we propose. With this model, the optimal...In this paper, we discuss the relationship between the blocking probabilityand the configuration of storage hierarchy in a Video on Demand ( VoD) server using the queueingmodel we propose. With this model, the optimal configuration of the storage system can be obtained .展开更多
With supercomputers developing towards exascale, the number of compute cores increases dramatically, making more complex and larger-scale applications possible. The input/output (I/O) requirements of large-scale app...With supercomputers developing towards exascale, the number of compute cores increases dramatically, making more complex and larger-scale applications possible. The input/output (I/O) requirements of large-scale applications, workflow applications, and their checkpointing include substantial bandwidth and an extremely low latency, posing a serious challenge to high performance computing (HPC) storage systems. Current hard disk drive (HDD) based underlying storage systems are becoming more and more incompetent to meet the requirements of next-generation exascale supercomputers. To rise to the challenge, we propose a hierarchical hybrid storage system, on-line and near-line file system (ONFS). It leverages dynamic random access memory (DRAM) and solid state drive (SSD) in compute nodes, and HDD in storage servers to build a three-level storage system in a unified namespace. It supports portable operating system interface (POSIX) semantics, and provides high bandwidth, low latency, and huge storage capacity. In this paper, we present the technical details on distributed metadata management, the strategy of memory borrow and return, data consistency, parallel access control, and mechanisms guiding downward and upward migration in ONFS. We implement an ONFS prototype on the TH-1A supercomputer, and conduct experiments to test its I/O performance and scalability. The results show that the bandwidths of single-thread and multi-thread 'read'/'write' are 6-fold and 5-fold better than HDD-based Lustre, respectively. The I/O bandwidth of data-intensive applications in ONFS can be 6.35 timcs that in Lustre.展开更多
Hollow ordered porous carbon spheres (HOPCS) with a hierarchical structure were prepared by templating with hollow ordered mesoporous silica spheres (HOMSS). Scanning electron microscopy (SEM) and transmission e...Hollow ordered porous carbon spheres (HOPCS) with a hierarchical structure were prepared by templating with hollow ordered mesoporous silica spheres (HOMSS). Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) showed that HOPCS exhibited a spherical hollow morphology. High-resolution TEM, small angle X-ray diffraction (SAXRD) and N2 sorption measurements confirmed that HOPCS inversely replicated the unconnected hexagonal-stacked pore structure of HOMSS, and possessed ordered porosity. HOPCS exhibited a higher storage capacity for Li^+ ion battery (LIB) of 527.6 mA h/g, and good cycling performance. A large capacity loss during the first discharge-charge cycle was found attributed to the high content of micropores. The cycling performance was derived from the hierarchical structure.展开更多
Three-dimensional porous nitrogen-doped graphene aerogels(NGAs) were synthesized by using graphene oxide(GO) and chitosan via a self-assembly process by a rapid method.The morphology and structure of the as-prepar...Three-dimensional porous nitrogen-doped graphene aerogels(NGAs) were synthesized by using graphene oxide(GO) and chitosan via a self-assembly process by a rapid method.The morphology and structure of the as-prepared aerogels were characterized.The results showed that NGAs possesed the hierarchical pores with the wide size distribution ranging from mesopores to macropores.The NGAs carbonized at different temperature all showed excellent electrochemical performance in 6 mol/L KOH electrolyte and the electrochemical performance of the NGA-900 was the best.When working as a supercapacitor electrode,NGA-900 exhibited a high specific capacitance(244.4 F/g at a current density of 0.2 A/g),superior rate capability(51.0% capacity retention) and excellent cycling life(96.2% capacitance retained after 5000 cycles).展开更多
文摘In this paper, we discuss the relationship between the blocking probabilityand the configuration of storage hierarchy in a Video on Demand ( VoD) server using the queueingmodel we propose. With this model, the optimal configuration of the storage system can be obtained .
基金Project supported by the National Key Research and Development Program of China(No.2016YFB0200402)
文摘With supercomputers developing towards exascale, the number of compute cores increases dramatically, making more complex and larger-scale applications possible. The input/output (I/O) requirements of large-scale applications, workflow applications, and their checkpointing include substantial bandwidth and an extremely low latency, posing a serious challenge to high performance computing (HPC) storage systems. Current hard disk drive (HDD) based underlying storage systems are becoming more and more incompetent to meet the requirements of next-generation exascale supercomputers. To rise to the challenge, we propose a hierarchical hybrid storage system, on-line and near-line file system (ONFS). It leverages dynamic random access memory (DRAM) and solid state drive (SSD) in compute nodes, and HDD in storage servers to build a three-level storage system in a unified namespace. It supports portable operating system interface (POSIX) semantics, and provides high bandwidth, low latency, and huge storage capacity. In this paper, we present the technical details on distributed metadata management, the strategy of memory borrow and return, data consistency, parallel access control, and mechanisms guiding downward and upward migration in ONFS. We implement an ONFS prototype on the TH-1A supercomputer, and conduct experiments to test its I/O performance and scalability. The results show that the bandwidths of single-thread and multi-thread 'read'/'write' are 6-fold and 5-fold better than HDD-based Lustre, respectively. The I/O bandwidth of data-intensive applications in ONFS can be 6.35 timcs that in Lustre.
基金supported by National Natural Science Foundation of China(NSFC)(Nos.51002154,51272253)GF Science &Technology Innovation Fund of Chinese Academy of Sciences(No. CXJJ-11-M44)National High Technology Research and Development Program 863(No.2013AA031801)of China
文摘Hollow ordered porous carbon spheres (HOPCS) with a hierarchical structure were prepared by templating with hollow ordered mesoporous silica spheres (HOMSS). Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) showed that HOPCS exhibited a spherical hollow morphology. High-resolution TEM, small angle X-ray diffraction (SAXRD) and N2 sorption measurements confirmed that HOPCS inversely replicated the unconnected hexagonal-stacked pore structure of HOMSS, and possessed ordered porosity. HOPCS exhibited a higher storage capacity for Li^+ ion battery (LIB) of 527.6 mA h/g, and good cycling performance. A large capacity loss during the first discharge-charge cycle was found attributed to the high content of micropores. The cycling performance was derived from the hierarchical structure.
基金financially supported by the National Natural Science Foundation of China(No.51502274)the Doctoral Research Fund of Southwest University of Science and Technology(Nos.15zx7137,16zx7142)the Research Fund for Joint Laboratory for Extreme Conditions Matter Properties(Nos.l3zxjk04,14tdjk03)
文摘Three-dimensional porous nitrogen-doped graphene aerogels(NGAs) were synthesized by using graphene oxide(GO) and chitosan via a self-assembly process by a rapid method.The morphology and structure of the as-prepared aerogels were characterized.The results showed that NGAs possesed the hierarchical pores with the wide size distribution ranging from mesopores to macropores.The NGAs carbonized at different temperature all showed excellent electrochemical performance in 6 mol/L KOH electrolyte and the electrochemical performance of the NGA-900 was the best.When working as a supercapacitor electrode,NGA-900 exhibited a high specific capacitance(244.4 F/g at a current density of 0.2 A/g),superior rate capability(51.0% capacity retention) and excellent cycling life(96.2% capacitance retained after 5000 cycles).