期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Effect of Plastic Deformation on Microstructure and Properties of Cu-(1 wt%-6 wt%) Ag Alloy
1
作者 茹亚东 ZHANG Zhongyuan +7 位作者 高召顺 ZHANG Ling ZUO Tingting XUE Jiangli TANG Zhixiang DA Bo LIU Yongsheng XIAO Liye 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期747-753,共7页
In the present study,the Cu-(1 wt%-6 wt%)Ag alloys were prepared by melting,forging and wire drawing.The effects of plastic deformation on microstructure evolution and properties of the alloys were investigated.The re... In the present study,the Cu-(1 wt%-6 wt%)Ag alloys were prepared by melting,forging and wire drawing.The effects of plastic deformation on microstructure evolution and properties of the alloys were investigated.The results show that non-equilibrium eutectic colonies exist in the Cu-(3 wt%-6 wt%)Ag alloy and no eutectic colonies in the 1 wt%-2 wt%Ag containing alloys.These eutectic colonies are aligned along the drawing direction and refined with the increase of draw ratio.Attributed to the refinement of eutectic colonies,the Cu-Ag alloy exhibits higher strength with the increase of draw ratio.The Cu-6Ag alloy exhibits excellent comprehensive properties with a strength of 930 MPa and a conductivity of 82%IACS when the draw ratio reaches 5.7. 展开更多
关键词 Cu-Ag alloy high strength and high conductivity microstructure eutectic structure strengthening mechanism
下载PDF
Hybrid effect on mechanical properties and high-temperature performance of copper matrix composite reinforced with micro-nano dual-scale particles
2
作者 Xingde Zhang Yihui Jiang +3 位作者 Fei Cao Tian Yang Fan Gao Shuhua Liang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第5期94-103,共10页
A dual-scale hybrid HfB_(2)/Cu-Hf composite with HfB_(2) microparticles and Cu_(5) Hf nanoprecipitates was designed and prepared.The contribution of the hybrid effect to the mechanical properties and high-temperature ... A dual-scale hybrid HfB_(2)/Cu-Hf composite with HfB_(2) microparticles and Cu_(5) Hf nanoprecipitates was designed and prepared.The contribution of the hybrid effect to the mechanical properties and high-temperature performances was studied from macro and micro perspectives,respectively.The hybrid of dual-scale particles can make the strain distribution of the composite at the early deformation stage more uniform and delay the strain concentration caused by the HfB_(2) particle.The dislocation pinning of HfB_(2) particles and the coherent strengthening of Cu_(5) Hf nanoprecipitates simultaneously play a strengthening role,but the strength of the hybrid composite is not a simple superposition of two strengthening mod-els.In addition,both Cu_(5) Hf nanoprecipitates and HfB_(2) microparticles contribute to the high-temperature performance of the composite,the growth and phase transition of nanoprecipitates at high temperature will reduce their contribution to strength,while the stable HfB_(2) particles can inhibit the coarsening of matrix grains and maintain the high-density geometrically necessary dislocations(GNDs)in the matrix,which ensures more excellent high-temperature resistance of the hybrid composite.As a result,the hy-brid structure can simultaneously possess the advantages of multiple reinforcements and make up for the shortcomings of each other.Finally,a copper matrix composite with high strength,high conductivity,and excellent high-temperature performance is displayed. 展开更多
关键词 Copper matrix composite HfB 2 particles Hybrid effect high strength and high conductivity high-temperature performance
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部