期刊文献+
共找到209篇文章
< 1 2 11 >
每页显示 20 50 100
HIGH ACCURACY FINITE VOLUME ELEMENT METHOD FOR TWO-POINT BOUNDARY VALUE PROBLEM OF SECOND ORDER ORDINARY DIFFERENTIAL EQUATIONS 被引量:4
1
作者 Wang Tongke(王同科) 《Numerical Mathematics A Journal of Chinese Universities(English Series)》 SCIE 2002年第2期213-225,共13页
In this paper, a high accuracy finite volume element method is presented for two-point boundary value problem of second order ordinary differential equation, which differs from the high order generalized difference me... In this paper, a high accuracy finite volume element method is presented for two-point boundary value problem of second order ordinary differential equation, which differs from the high order generalized difference methods. It is proved that the method has optimal order error estimate O(h3) in H1 norm. Finally, two examples show that the method is effective. 展开更多
关键词 SECOND order ordinary differential equation TWO-POINT boundary value problem high accuracy finite volume element method error estimate.
下载PDF
A FAMILY OF HIGH-ORDER ACCURACY EXPLICIT DIFFERENCE SCHEMES WITH BRANCHING STABILITY FOR SOLVING 3-D PARABOLIC PARTIAL DIFFERENTIAL EQUATION
2
作者 马明书 王同科 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2000年第10期1207-1212,共6页
A family of high-order accuracy explict difference schemes for solving 3-dimension parabolic P. D. E. is constructed. The stability condition is r = Deltat/Deltax(2) Deltat/Deltay(2) = Deltat/Deltaz(2) < 1/2 ,and t... A family of high-order accuracy explict difference schemes for solving 3-dimension parabolic P. D. E. is constructed. The stability condition is r = Deltat/Deltax(2) Deltat/Deltay(2) = Deltat/Deltaz(2) < 1/2 ,and the truncation error is 0(<Delta>t(2) + Deltax(4)). 展开更多
关键词 high-order accuracy explicit difference scheme branching stability 3-D parabolic PDE
下载PDF
A NEW HIGH-ORDER ACCURACY EXPLICIT DIFFERENCE SCHEME FOR SOLVING THREE-DIMENSIONAL PARABOLIC EQUATIONS
3
作者 马明书 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1998年第5期497-501,共5页
In this paper, a new three-level explicit difference scheme with high-order accuracy is proposed for solving three-dimensional parabolic equations. The stability condition is r = Delta t/Delta x(2) = Delta t/Delta gam... In this paper, a new three-level explicit difference scheme with high-order accuracy is proposed for solving three-dimensional parabolic equations. The stability condition is r = Delta t/Delta x(2) = Delta t/Delta gamma(2) = Delta t/Delta z(2) less than or equal to 1/4, and the truncation error is O(Delta t(2) + Delta x(4)). 展开更多
关键词 high-order accuracy explicit difference scheme three-dimensional parabolic equation
全文增补中
Hermite WENO-based limiters for high order discontinuous Galerkin method on unstructured grids 被引量:4
4
作者 Zhen-Hua Jiang Chao Yan +1 位作者 Jian Yu Wu Yuan 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第2期241-252,共12页
A novel class of weighted essentially nonoscillatory (WENO) schemes based on Hermite polynomi- als, termed as HWENO schemes, is developed and applied as limiters for high order discontinuous Galerkin (DG) method o... A novel class of weighted essentially nonoscillatory (WENO) schemes based on Hermite polynomi- als, termed as HWENO schemes, is developed and applied as limiters for high order discontinuous Galerkin (DG) method on triangular grids. The developed HWENO methodology utilizes high-order derivative information to keep WENO re- construction stencils in the von Neumann neighborhood. A simple and efficient technique is also proposed to enhance the smoothness of the existing stencils, making higher-order scheme stable and simplifying the reconstruction process at the same time. The resulting HWENO-based limiters are as compact as the underlying DG schemes and therefore easy to implement. Numerical results for a wide range of flow conditions demonstrate that for DG schemes of up to fourth order of accuracy, the designed HWENO limiters can simul- taneously obtain uniform high order accuracy and sharp, es- sentially non-oscillatory shock transition. 展开更多
关键词 Discontinuous Galerkin method LIMITERS WENO. high order accuracy. Unstructured grids
下载PDF
High-order discontinuous Galerkin solver on hybrid anisotropic meshes for laminar and turbulent simulations 被引量:2
5
作者 姜振华 阎超 于剑 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2014年第7期799-812,共14页
Efficient and robust solution strategies are developed for discontinuous Galerkin (DG) discretization of the Navier-Stokes (NS) and Reynolds-averaged NS (RANS) equations on structured/unstructured hybrid meshes.... Efficient and robust solution strategies are developed for discontinuous Galerkin (DG) discretization of the Navier-Stokes (NS) and Reynolds-averaged NS (RANS) equations on structured/unstructured hybrid meshes. A novel line-implicit scheme is devised and implemented to reduce the memory gain and improve the computational eificiency for highly anisotropic meshes. A simple and effective technique to use the mod- ified Baldwin-Lomax (BL) model on the unstructured meshes for the DC methods is proposed. The compact Hermite weighted essentially non-oscillatory (HWENO) limiters are also investigated for the hybrid meshes to treat solution discontinuities. A variety of compressible viscous flows are performed to examine the capability of the present high- order DG solver. Numerical results indicate that the designed line-implicit algorithms exhibit weak dependence on the cell aspect-ratio as well as the discretization order. The accuracy and robustness of the proposed approaches are demonstrated by capturing com- plex flow structures and giving reliable predictions of benchmark turbulent problems. 展开更多
关键词 discontinuous Galerkin (DG) method implicit method Baldwin-Lomax(BL) model high order accuracy structured/unstructured hybrid mesh
下载PDF
High Order Finite Difference WENO Methods for Shallow Water Equations on Curvilinear Meshes
6
作者 Zepeng Liu Yan Jiang +1 位作者 Mengping Zhang Qingyuan Liu 《Communications on Applied Mathematics and Computation》 2023年第1期485-528,共44页
A high order finite difference numerical scheme is developed for the shallow water equations on curvilinear meshes based on an alternative flux formulation of the weighted essentially non-oscillatory(WENO)scheme.The e... A high order finite difference numerical scheme is developed for the shallow water equations on curvilinear meshes based on an alternative flux formulation of the weighted essentially non-oscillatory(WENO)scheme.The exact C-property is investigated,and comparison with the standard finite difference WENO scheme is made.Theoretical derivation and numerical results show that the proposed finite difference WENO scheme can maintain the exact C-property on both stationarily and dynamically generalized coordinate systems.The Harten-Lax-van Leer type flux is developed on general curvilinear meshes in two dimensions and verified on a number of benchmark problems,indicating smaller errors compared with the Lax-Friedrichs solver.In addition,we propose a positivity-preserving limiter on stationary meshes such that the scheme can preserve the non-negativity of the water height without loss of mass conservation. 展开更多
关键词 Shallow water equation Well-balanced high order accuracy WENO scheme Curvilinear meshes Positivity-preserving limiter
下载PDF
Numerical modeling of wave equation by a truncated high-order finite-difference method 被引量:4
7
作者 Yang Liu Mrinal K. Sen 《Earthquake Science》 CSCD 2009年第2期205-213,共9页
Finite-difference methods with high-order accuracy have been utilized to improve the precision of numerical solution for partial differential equations. However, the computation cost generally increases linearly with ... Finite-difference methods with high-order accuracy have been utilized to improve the precision of numerical solution for partial differential equations. However, the computation cost generally increases linearly with increased order of accuracy. Upon examination of the finite-difference formulas for the first-order and second-order derivatives, and the staggered finite-difference formulas for the first-order derivative, we examine the variation of finite-difference coefficients with accuracy order and note that there exist some very small coefficients. With the order increasing, the number of these small coefficients increases, however, the values decrease sharply. An error analysis demonstrates that omitting these small coefficients not only maintain approximately the same level of accuracy of finite difference but also reduce computational cost significantly. Moreover, it is easier to truncate for the high-order finite-difference formulas than for the pseudospectral for- mulas. Thus this study proposes a truncated high-order finite-difference method, and then demonstrates the efficiency and applicability of the method with some numerical examples. 展开更多
关键词 finite difference high-order accuracy TRUNCATION EFFICIENCY numerical modeling
下载PDF
A Provable Positivity-Preserving Local Discontinuous Galerkin Method for the Viscous and Resistive MHD Equations
8
作者 Mengjiao Jiao Yan Jiang Mengping Zhang 《Communications on Applied Mathematics and Computation》 EI 2024年第1期279-310,共32页
In this paper,we construct a high-order discontinuous Galerkin(DG)method which can preserve the positivity of the density and the pressure for the viscous and resistive magnetohydrodynamics(VRMHD).To control the diver... In this paper,we construct a high-order discontinuous Galerkin(DG)method which can preserve the positivity of the density and the pressure for the viscous and resistive magnetohydrodynamics(VRMHD).To control the divergence error in the magnetic field,both the local divergence-free basis and the Godunov source term would be employed for the multi-dimensional VRMHD.Rigorous theoretical analyses are presented for one-dimensional and multi-dimensional DG schemes,respectively,showing that the scheme can maintain the positivity-preserving(PP)property under some CFL conditions when combined with the strong-stability-preserving time discretization.Then,general frameworks are established to construct the PP limiter for arbitrary order of accuracy DG schemes.Numerical tests demonstrate the effectiveness of the proposed schemes. 展开更多
关键词 Viscous and resistive MHD equations Positivity-preserving Discontinuous Galerkin(DG)method high order accuracy
下载PDF
Research of influence of reduced-order boundary on accuracy and solution of interior points
9
作者 Yunlong LI Wei CAO 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2017年第1期111-124,共14页
The flow field with a high order scheme is usually calculated so as to solve complex flow problems and describe the flow structure accurately. However, there are two problems, i.e., the reduced-order boundary is inevi... The flow field with a high order scheme is usually calculated so as to solve complex flow problems and describe the flow structure accurately. However, there are two problems, i.e., the reduced-order boundary is inevitable and the order of the scheme at the discontinuous shock wave contained in the flow field as the supersonic flow field is low. It is questionable whether the reduced-order boundary and the low-order scheme at the shock wave have an effect on the numerical solution and accuracy of the flow field inside. In this paper, according to the actual situation of the direct numerical simulation of the flow field, two model equations with the exact solutions are solved, which are steady and unsteady, respectively, to study the question with a high order scheme at the interior of the domain and the reduced-order method at the boundary and center of the domain. Comparing with the exact solutions, it is found that the effect of reduced-order exists and cannot be ignored. In addition, the other two model equations with the exact solutions, which are often used in fluid mechanics, are also studied with the same process for the reduced-order problem. 展开更多
关键词 reduced-order boundary shock wave accuracy numerical solution high order scheme
下载PDF
A COUPLING METHOD OF DIFFERENCE WITH HIGH ORDER ACCURACY AND BOUNDARY INTEGRAL EQUATION FOR EVOLUTIONARY EQUATION AND ITS ERROR ESTIMATES
10
作者 羊丹平 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1991年第9期891-905,共15页
In the present paper, a new numerical method for solving initial-boundary value problems of evolutionary equations is proposed and studied, combining difference method with high accuracy with boundary integral equatio... In the present paper, a new numerical method for solving initial-boundary value problems of evolutionary equations is proposed and studied, combining difference method with high accuracy with boundary integral equation method. The numerical approximate schemes for both problems on a bounded or unbounded domain in R3 are proposed and their prior error estimates are obtained. 展开更多
关键词 difference with high order accuracy boundary finite element evolutionary equation error estimates
下载PDF
High Order Semi-implicit Multistep Methods for Time-Dependent Partial Differential Equations
11
作者 Giacomo Albi Lorenzo Pareschi 《Communications on Applied Mathematics and Computation》 2021年第4期701-718,共18页
We consider the construction of semi-implicit linear multistep methods that can be applied to time-dependent PDEs where the separation of scales in additive form,typically used in implicit-explicit(IMEX)methods,is not... We consider the construction of semi-implicit linear multistep methods that can be applied to time-dependent PDEs where the separation of scales in additive form,typically used in implicit-explicit(IMEX)methods,is not possible.As shown in Boscarino et al.(J.Sci.Comput.68:975-1001,2016)for Runge-Kutta methods,these semi-implicit techniques give a great flexibility,and allow,in many cases,the construction of simple linearly implicit schemes with no need of iterative solvers.In this work,we develop a general setting for the construction of high order semi-implicit linear multistep methods and analyze their stability properties for a prototype lineal'advection-diffusion equation and in the setting of strong stability preserving(SSP)methods.Our findings are demonstrated on several examples,including nonlinear reaction-diffusion and convection-diffusion problems. 展开更多
关键词 Semi-implicit methods Implicit-explicit methods Multistep methods Strong stability preserving high order accuracy
下载PDF
A-HIGH-ORDER ACCURACY EXPLICIT DIFFERENCE SCHEME FOR SOLVING THE EQUATION OF TWO-DIMENSIONAL PARABOLIC TYPE
12
作者 马明书 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1996年第11期1075-1079,共5页
In this paper. a three explicit difference shcemes with high order accuracy for solving the equations of two-dimensional parabolic type is proposed. The stability condition is r=△t/△x ̄ 2=△t/△y ̄2≤1/4 and the... In this paper. a three explicit difference shcemes with high order accuracy for solving the equations of two-dimensional parabolic type is proposed. The stability condition is r=△t/△x ̄ 2=△t/△y ̄2≤1/4 and the truncation error is O (△t ̄2 + △x ̄4 ). 展开更多
关键词 high-order accuracy explicit difference scheme equation of twodimensional parabolic type
下载PDF
A high order boundary scheme to simulate complex moving rigid body under impingement of shock wave 被引量:1
13
作者 Ziqiang CHENG Shibao LIU +3 位作者 Yan JIANG Jianfang LU Mengping ZHANG Shuhai ZHANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2021年第6期841-854,共14页
In the paper, we study a high order numerical boundary scheme for solving the complex moving boundary problem on a fixed Cartesian mesh, and numerically investigate the moving rigid body with the complex boundary unde... In the paper, we study a high order numerical boundary scheme for solving the complex moving boundary problem on a fixed Cartesian mesh, and numerically investigate the moving rigid body with the complex boundary under the impingement of an inviscid shock wave. Based on the high order inverse Lax-Wendroff(ILW) procedure developed in the previous work(TAN, S. and SHU, C. W. A high order moving boundary treatment for compressible inviscid flows. Journal of Computational Physics, 230(15),6023–6036(2011)), in which the authors only considered the translation of the rigid body,we consider both translation and rotation of the body in this paper. In particular, we reformulate the material derivative on the moving boundary with no-penetration condition, and the newly obtained formula plays a key role in the proposed algorithm. Several numerical examples, including cylinder, elliptic cylinder, and NACA0012 airfoil, are given to indicate the effectiveness and robustness of the present method. 展开更多
关键词 inverse Lax-Wendroff(ILW)procedure complex moving boundary scheme Cartesian mesh high order accuracy compressible inviscid shock wave
下载PDF
Runge-Kutta型多尺度神经网络求解非定常偏微分方程
14
作者 陈泽斌 冯新龙 《新疆大学学报(自然科学版)(中英文)》 CAS 2023年第2期142-149,共8页
提出了基于Runge-Kutta的多尺度神经网络方法求解非定常偏微分方程.利用q阶Runge-Kutta构造时间迭代格式,通过建立多时间步的总损失函数,实现多时间步的神经网络参数共享,并预测时域内任意时刻的函数值.同时采用m-缩放因子加快损失函数... 提出了基于Runge-Kutta的多尺度神经网络方法求解非定常偏微分方程.利用q阶Runge-Kutta构造时间迭代格式,通过建立多时间步的总损失函数,实现多时间步的神经网络参数共享,并预测时域内任意时刻的函数值.同时采用m-缩放因子加快损失函数收敛,提高数值解精度.最后,给出了若干数值实验验证所提方法的有效性. 展开更多
关键词 非定常偏微分方程 q阶Runge-Kutta法 多尺度神经网络 m-缩放因子 高精度
下载PDF
高动态卫星导航信号多普勒频率模拟方法
15
作者 王彦朋 苏嘉松 +1 位作者 王晓君 姚远 《通信与信息技术》 2024年第4期105-109,共5页
针对卫星导航信号模拟源在高动态场景下对多普勒频率模拟难度较大的现状,提出了一种基于相位重置的三阶DDS导航信号模拟算法。该方法从卫星与接收机之间的相对运动物理模型着手,建立了一种基于数字电路的三阶DDS模型,可有效地模拟出高... 针对卫星导航信号模拟源在高动态场景下对多普勒频率模拟难度较大的现状,提出了一种基于相位重置的三阶DDS导航信号模拟算法。该方法从卫星与接收机之间的相对运动物理模型着手,建立了一种基于数字电路的三阶DDS模型,可有效地模拟出高动态场景下导航信号中含高阶项的多普勒频率。此外,通过对三阶DDS模型中关键参数进行相位重置以避免累计误差。在计算机中进行仿真,其结果表明在速度为10000 m/s,加速度为1000m/s^(2),急动度为1000 m/s^(3)的高动态场景下,该算法相较于传统算法多普勒频率模拟精度提升了31 dB,且不会因急动度增加导致精度恶化,多普勒频率模拟精度可达-36 dB或更高。说明该方法在高动态场景下可精确地模拟导航信号的多普勒频率,且具有一定的鲁棒性。 展开更多
关键词 多普勒频率 高动态 三阶DDS 模拟精度
下载PDF
求解Hamilton-Jacobi方程的一类高精度差分格式 被引量:1
16
作者 郑华盛 《西南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第5期53-59,共7页
构造了一、二维非线性Hamilton-Jacobi方程的一类新的高精度高分辨率差分格式.首先将计算区域划分为互不重叠的子单元,再根据格式的精度要求分割子单元为细小子单元,其次通过子单元上各个细小子单元节点的函数值构造空间导数的高阶插值... 构造了一、二维非线性Hamilton-Jacobi方程的一类新的高精度高分辨率差分格式.首先将计算区域划分为互不重叠的子单元,再根据格式的精度要求分割子单元为细小子单元,其次通过子单元上各个细小子单元节点的函数值构造空间导数的高阶插值逼近,为避免由此产生的数值振荡,对空间导数在各节点左右侧的值进行TVD/TVB校正,利用高阶Runge-Kutta TVD时间离散方法得到一维Hamilton-Jacobi方程的高阶全离散格式并推广到二维情况,最后给出了几个典型的数值算例,验证了格式具有计算简单、高分辨间断导数、无振荡等特性. 展开更多
关键词 HAMILTON-JACOBI方程 高精度 高分辨率 差分格式 Runge-KuttaTVD时间离散
下载PDF
电磁场B样条间断有限元方法
17
作者 华沁怡 李林 齐红新 《强激光与粒子束》 CAS CSCD 北大核心 2024年第7期35-42,共8页
在计算电磁学领域,时域间断有限元算法(DGTD)一般基于模型空间的不规则网格划分和单元上高阶多项式插值计算。同样的插值阶数,二维空间四边形网格划分比三角形网格划分具有更少的自由度和更高的计算效率。然而,传统基于等参变换和多项... 在计算电磁学领域,时域间断有限元算法(DGTD)一般基于模型空间的不规则网格划分和单元上高阶多项式插值计算。同样的插值阶数,二维空间四边形网格划分比三角形网格划分具有更少的自由度和更高的计算效率。然而,传统基于等参变换和多项式张量积插值的基函数空间在四边形单元上仅具有低阶完备性,且稳定性和精度受网格畸变影响较大。为此,提出了一种基于不规则四边形网格的高阶B样条插值DGTD方法,用于Maxwell方程的求解。文章采用的B样条基不仅具有高阶多项式空间的插值完备性,而且完全消除了单元内部自由度。此外,Maxwell方程离散系统的各系数矩阵还具有精确的解析形式。使用该方法分析腔体的本征模和楔形体的电磁散射,结果表明,相较于COMSOL软件最大允许时间步长提高2.5倍,计算所需未知量减少25%,证实了本文算法的高稳定性和高精度特点。 展开更多
关键词 B样条 间断有限元 瞬态电磁学 高阶精度 畸变网格
下载PDF
不同马赫数Navier-Stokes方程计算方法的研究
18
作者 赵兴艳 苏莫明 苗永淼 《应用数学和力学》 EI CSCD 北大核心 2002年第4期429-435,共7页
为了在低马赫数到高马赫数范围内求解可压缩Navier_Stokes方程 ,给出了基于预处理算法的PLU_SGS方法· 将高分辨率AUSMPW格式与三阶MUSCL格式融合 ,将其扩展到三阶精度 ,并采用特征边界条件· 为了验证该方法的有效性 ,通过... 为了在低马赫数到高马赫数范围内求解可压缩Navier_Stokes方程 ,给出了基于预处理算法的PLU_SGS方法· 将高分辨率AUSMPW格式与三阶MUSCL格式融合 ,将其扩展到三阶精度 ,并采用特征边界条件· 为了验证该方法的有效性 ,通过求解曲线坐标系可压缩Navier_Stokes方程 ,对几个典型流动问题进行了数值计算· 计算结果与文献计算结果或实验数据比较表明 ,该方法对不同马赫数Navier_Stokes方程的计算 。 展开更多
关键词 非线性双曲型方程 计算流体动力学 预处理算法 隐式时间推进法 特征边界条件 高阶精度
下载PDF
一类椭圆型Dirichlet边值问题的高精度Richardson外推法
19
作者 李曹杰 张海湘 杨雪花 《湖南工业大学学报》 2024年第1期91-97,104,共8页
针对椭圆型偏微分方程,先建立四阶和六阶精度的紧致差分格式,在此基础上用Richardson外推法,得到其六阶和八阶精度的外推差分格式。并通过两个Poisson方程算例,验算已建立的差分格式。数值算例结果表明,基于紧致差分格式的Richardson外... 针对椭圆型偏微分方程,先建立四阶和六阶精度的紧致差分格式,在此基础上用Richardson外推法,得到其六阶和八阶精度的外推差分格式。并通过两个Poisson方程算例,验算已建立的差分格式。数值算例结果表明,基于紧致差分格式的Richardson外推法能够得到有效的、健壮的高精度数值解。 展开更多
关键词 计算数学 椭圆型偏微分方程 紧致差分格式 RICHARDSON外推法 高阶精度
下载PDF
发展方程初边值问题的高阶差分-边界积分方程法及误差分析
20
作者 羊丹平 《应用数学和力学》 EI CSCD 北大核心 1991年第9期831-844,共14页
本文结合差分方法与边界积分方程方法,提出并研究了一类新的求解发展型方程初边值问题的高阶差分与边界积分方程耦合数值方法.对于有界区域问题与无界区域问题给出了数值计算格式及其误差的先验估计.
关键词 高阶差分 边界元 发展方程 耦合法
下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部