Finite-difference methods with high-order accuracy have been utilized to improve the precision of numerical solution for partial differential equations. However, the computation cost generally increases linearly with ...Finite-difference methods with high-order accuracy have been utilized to improve the precision of numerical solution for partial differential equations. However, the computation cost generally increases linearly with increased order of accuracy. Upon examination of the finite-difference formulas for the first-order and second-order derivatives, and the staggered finite-difference formulas for the first-order derivative, we examine the variation of finite-difference coefficients with accuracy order and note that there exist some very small coefficients. With the order increasing, the number of these small coefficients increases, however, the values decrease sharply. An error analysis demonstrates that omitting these small coefficients not only maintain approximately the same level of accuracy of finite difference but also reduce computational cost significantly. Moreover, it is easier to truncate for the high-order finite-difference formulas than for the pseudospectral for- mulas. Thus this study proposes a truncated high-order finite-difference method, and then demonstrates the efficiency and applicability of the method with some numerical examples.展开更多
The Z–S–C multiphase lattice Boltzmann model [Zheng, Shu, and Chew(ZSC), J. Comput. Phys. 218, 353(2006)]is favored due to its good stability, high efficiency, and large density ratio. However, in terms of mass cons...The Z–S–C multiphase lattice Boltzmann model [Zheng, Shu, and Chew(ZSC), J. Comput. Phys. 218, 353(2006)]is favored due to its good stability, high efficiency, and large density ratio. However, in terms of mass conservation, this model is not satisfactory during the simulation computations. In this paper, a mass correction is introduced into the ZSC model to make up the mass leakage, while a high-order difference is used to calculate the gradient of the order parameter to improve the accuracy. To verify the improved model, several three-dimensional multiphase flow simulations are carried out,including a bubble in a stationary flow, the merging of two bubbles, and the bubble rising under buoyancy. The numerical simulations show that the results from the present model are in good agreement with those from previous experiments and simulations. The present model not only retains the good properties of the original ZSC model, but also achieves the mass conservation and higher accuracy.展开更多
The paper presents a staggered-grid any even-order accurate finite-difference scheme for two-dimensional (2D), three-component (3C), first-order stress-velocity elastic wave equation and its stability condition in the...The paper presents a staggered-grid any even-order accurate finite-difference scheme for two-dimensional (2D), three-component (3C), first-order stress-velocity elastic wave equation and its stability condition in the arbitrary tilt anisotropic media; and derives a perfectly matched absorbing layer (PML) boundary condition and its stag- gered-grid any even-order accurate difference scheme in the 2D arbitrary tilt anisotropic media. The results of nu- merical modeling indicate that the modeling precision is high, the calculation efficiency is satisfactory and the absorbing boundary condition is better. The wave-front shapes of elastic waves are complex in the anisotropic media, and the velocity of qP wave is not always faster than that of qS wave. The wave-front triplication of qS wave and its events in both reflected domain and propagated domain, which are not commonly hyperbola, is a common phenomenon. When the symmetry axis is tilted in the TI media, the phenomenon of S-wave splitting is clearly observed in the snaps of three components and synthetic seismograms, and the events of all kinds of waves are asymmetric.展开更多
A family of high-order accuracy explict difference schemes for solving 3-dimension parabolic P. D. E. is constructed. The stability condition is r = Deltat/Deltax(2) Deltat/Deltay(2) = Deltat/Deltaz(2) < 1/2 ,and t...A family of high-order accuracy explict difference schemes for solving 3-dimension parabolic P. D. E. is constructed. The stability condition is r = Deltat/Deltax(2) Deltat/Deltay(2) = Deltat/Deltaz(2) < 1/2 ,and the truncation error is 0(<Delta>t(2) + Deltax(4)).展开更多
The method of splitting a plane-wave finite-difference time-domain (SP-FDTD) algorithm is presented for the initiation of plane-wave source in the total-field / scattered-field (TF/SF) formulation of high-order sy...The method of splitting a plane-wave finite-difference time-domain (SP-FDTD) algorithm is presented for the initiation of plane-wave source in the total-field / scattered-field (TF/SF) formulation of high-order symplectic finite- difference time-domain (SFDTD) scheme for the first time. By splitting the fields on one-dimensional grid and using the nature of numerical plane-wave in finite-difference time-domain (FDTD), the identical dispersion relation can be obtained and proved between the one-dimensional and three-dimensional grids. An efficient plane-wave source is simulated on one-dimensional grid and a perfect match can be achieved for a plane-wave propagating at any angle forming an integer grid cell ratio. Numerical simulations show that the method is valid for SFDTD and the residual field in SF region is shrinked down to -300 dB.展开更多
In this paper, a new three-level explicit difference scheme with high-order accuracy is proposed for solving three-dimensional parabolic equations. The stability condition is r = Delta t/Delta x(2) = Delta t/Delta gam...In this paper, a new three-level explicit difference scheme with high-order accuracy is proposed for solving three-dimensional parabolic equations. The stability condition is r = Delta t/Delta x(2) = Delta t/Delta gamma(2) = Delta t/Delta z(2) less than or equal to 1/4, and the truncation error is O(Delta t(2) + Delta x(4)).展开更多
In the present paper, a new numerical method for solving initial-boundary value problems of evolutionary equations is proposed and studied, combining difference method with high accuracy with boundary integral equatio...In the present paper, a new numerical method for solving initial-boundary value problems of evolutionary equations is proposed and studied, combining difference method with high accuracy with boundary integral equation method. The numerical approximate schemes for both problems on a bounded or unbounded domain in R3 are proposed and their prior error estimates are obtained.展开更多
In this paper, a high order compact difference scheme and a multigrid method are proposed for solving two-dimensional (2D) elliptic problems with variable coefficients and interior/boundary layers on nonuniform grids....In this paper, a high order compact difference scheme and a multigrid method are proposed for solving two-dimensional (2D) elliptic problems with variable coefficients and interior/boundary layers on nonuniform grids. Firstly, the original equation is transformed from the physical domain (with a nonuniform mesh) to the computational domain (with a uniform mesh) by using a coordinate transformation. Then, a fourth order compact difference scheme is proposed to solve the transformed elliptic equation on uniform girds. After that, a multigrid method is employed to solve the linear algebraic system arising from the difference equation. At last, the numerical experiments on some elliptic problems with interior/boundary layers are conducted to show high accuracy and high efficiency of the present method.展开更多
A global seventh-order dissipative compact finite-difference scheme is optimized in terms of time stability. The dissipative parameters appearing in the boundary closures are assumed to be different, resulting in an o...A global seventh-order dissipative compact finite-difference scheme is optimized in terms of time stability. The dissipative parameters appearing in the boundary closures are assumed to be different, resulting in an optimization problem with several parameters determined by applying a generic algorithm. The optimized schemes are analyzed carefully from the aspects of the eigenvalue distribution, the ε-pseudospectra, the short time behavior, and the Fourier analysis. Numerical experiments for the Euler equations are used to show the effectiveness of the final recommended scheme.展开更多
In this paper. a three explicit difference shcemes with high order accuracy for solving the equations of two-dimensional parabolic type is proposed. The stability condition is r=△t/△x ̄ 2=△t/△y ̄2≤1/4 and the...In this paper. a three explicit difference shcemes with high order accuracy for solving the equations of two-dimensional parabolic type is proposed. The stability condition is r=△t/△x ̄ 2=△t/△y ̄2≤1/4 and the truncation error is O (△t ̄2 + △x ̄4 ).展开更多
Kizmaz [13] studied the difference sequence spaces ∞(A), c(A), and co(A). Several article dealt with the sets of sequences of m-th order difference of which are bounded, convergent, or convergent to zero. Alta...Kizmaz [13] studied the difference sequence spaces ∞(A), c(A), and co(A). Several article dealt with the sets of sequences of m-th order difference of which are bounded, convergent, or convergent to zero. Altay and Basar [5] and Altay, Basar, and Mursaleen [7] introduced the Euler sequence spaces e0^r, ec^r, and e∞^r, respectively. The main purpose of this article is to introduce the spaces e0^r△^(m)), ec^r△^(m)), and e∞^r△^(m))consisting of all sequences whose mth order differences are in the Euler spaces e0^r, ec^r, and e∞^r, respectively. Moreover, the authors give some topological properties and inclusion relations, and determine the α-, β-, and γ-duals of the spaces e0^r△^(m)), ec^r△^(m)), and e∞^r△^(m)), and the Schauder basis of the spaces e0^r△^(m)), ec^r△^(m)). The last section of the article is devoted to the characterization of some matrix mappings on the sequence space ec^r△^(m)).展开更多
We have successfully attempted to solve the equations of full-MHD model within the framework of Ψ- ωformulation with an objective to evaluate the performance of a new higher order scheme to predict b...We have successfully attempted to solve the equations of full-MHD model within the framework of Ψ- ωformulation with an objective to evaluate the performance of a new higher order scheme to predict better values of control parameters of the flow. In particular for MHD flows, magnetic field and electrical conductivity are the control parameters. In this work, the results from our efficient high order accurate scheme are compared with the results of second order method and significant discrepancies are noted in separation length, drag coefficient and mean Nusselt number. The governing Navier-Stokes equation is fully nonlinear due to its coupling with Maxwell’s equations. The momentum equation has several highly nonlinear body-force terms due to full-MHD model in cylindrical polar system. Our high accuracy results predict that a relatively lower magnetic field is sufficient to achieve full suppression of boundary layer and this is a favorable result for practical applications. The present computational scheme predicts that a drag-coefficient minimum can be achieved when β=0.4 which is much lower when compared to the value β=1 as given by second order method. For a special value of β=0.65, it is found that the heat transfer rate is independent of electrical conductivity of the fluid. From the numerical values of physical quantities, we establish that the order of accuracy of the computed numerical results is fourth order accurate by using the method of divided differences.展开更多
AIM: To compare the difference and agreement of KR- lW and iTrace for measurement of high order aberrations.METHODS: KR-1W and iTrace were respectively used in a group of healthy people (40 volunteers, 32 eyes) to...AIM: To compare the difference and agreement of KR- lW and iTrace for measurement of high order aberrations.METHODS: KR-1W and iTrace were respectively used in a group of healthy people (40 volunteers, 32 eyes) to measure the high order aberration (HOA) of corneal, internal and total ocular. The clinical difference and agreement of two instruments were respectively evaluated by paired-samples 1-test and Bland-Altman analysis. RESULTS: The paired-samples t-test showed that the corneal HOA measured by the two instruments had no statistical differences (P〉0.05); but the internal and total ocular HOA had significant statistical differences (P〈 0.05), and the mean results measured by iTrace were higher than that of KR-1W. However, Bland-Altman analysis revealed that the HOA of corneal and internal were all in 95% limits of agreement; and just one point of total ocular HOA was beyond the 95% limits of agreement. CONCLUSION: KR-1W and iTrace were consistent well in the measurement of corneal, internal and total ocular HOA, especially for the cornea.展开更多
A new method was proposed for constructing total variation diminishing (TVD) upwind schemes in conservation forms. Two limiters were used to prevent nonphysical oscillations across discontinuity. Both limiters can e...A new method was proposed for constructing total variation diminishing (TVD) upwind schemes in conservation forms. Two limiters were used to prevent nonphysical oscillations across discontinuity. Both limiters can ensure the nonlinear compact schemes TVD property. Two compact TVD (CTVD) schemes were tested, one is thirdorder accuracy, and the other is fifth-order. The performance of the numerical algorithms was assessed by one-dimensional complex waves and Riemann problems, as well as a twodimensional shock-vortex interaction and a shock-boundary flow interaction. Numerical results show their high-order accuracy and high resolution, and low oscillations across discontinuities.展开更多
By using Richardson extrapolation and fourth-order compact finite difference scheme on different scale grids, a sixth-order solution is computed on the coarse grid. Other three techniques are applied to obtain a sixth...By using Richardson extrapolation and fourth-order compact finite difference scheme on different scale grids, a sixth-order solution is computed on the coarse grid. Other three techniques are applied to obtain a sixth-order solution on the fine grid, and thus give out three kinds of Richardson extrapolation-based sixth order compact computation methods. By carefully analyzing the truncation errors respectively on 2D Poisson equation, we compare the accuracy of these three sixth order methods theoretically. Numerical results for two test problems are discussed.展开更多
This paper develops the high-order accurate entropy stable finite difference schemes for one-and two-dimensional special relativistic hydrodynamic equations.The schemes are built on the entropy conservative flux and t...This paper develops the high-order accurate entropy stable finite difference schemes for one-and two-dimensional special relativistic hydrodynamic equations.The schemes are built on the entropy conservative flux and the weighted essentially non-oscillatory(WENO)technique as well as explicit Runge-Kutta time discretization.The key is to technically construct the affordable entropy conservative flux of the semi-discrete second-order accurate entropy conservative schemes satisfying the semi-discrete entropy equality for the found convex entropy pair.As soon as the entropy conservative flux is derived,the dissipation term can be added to give the semidiscrete entropy stable schemes satisfying the semi-discrete entropy inequality with the given convex entropy function.The WENO reconstruction for the scaled entropy variables and the high-order explicit Runge-Kutta time discretization are implemented to obtain the fully-discrete high-order entropy stable schemes.Several numerical tests are conducted to validate the accuracy and the ability to capture discontinuities of our entropy stable schemes.展开更多
An implicit non-linear lower-upper symmetric Gauss-Seidel(LU-SGS)solution algorithm has been developed for a high-order spectral difference Navier-Stokes solver on unstructured hexahedral grids.The non-linear LU-SGS s...An implicit non-linear lower-upper symmetric Gauss-Seidel(LU-SGS)solution algorithm has been developed for a high-order spectral difference Navier-Stokes solver on unstructured hexahedral grids.The non-linear LU-SGS solver is preconditioned by a block element matrix,and the system of equations is then solved with the LU decomposition approach.The large sparse Jacobian matrix is computed numerically,resulting in extremely simple operations for arbitrarily complex residual operators.Several inviscid and viscous test cases were performed to evaluate the performance.The implicit solver has shown speedup of 1 to 2 orders of magnitude over the multi-stage Runge-Kutta time integration scheme.展开更多
基金supported by China Scholarship Council and partially by the National "863" Program of China under contract No. 2007AA06Z218.
文摘Finite-difference methods with high-order accuracy have been utilized to improve the precision of numerical solution for partial differential equations. However, the computation cost generally increases linearly with increased order of accuracy. Upon examination of the finite-difference formulas for the first-order and second-order derivatives, and the staggered finite-difference formulas for the first-order derivative, we examine the variation of finite-difference coefficients with accuracy order and note that there exist some very small coefficients. With the order increasing, the number of these small coefficients increases, however, the values decrease sharply. An error analysis demonstrates that omitting these small coefficients not only maintain approximately the same level of accuracy of finite difference but also reduce computational cost significantly. Moreover, it is easier to truncate for the high-order finite-difference formulas than for the pseudospectral for- mulas. Thus this study proposes a truncated high-order finite-difference method, and then demonstrates the efficiency and applicability of the method with some numerical examples.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11862003 and 81860635)the Key Project of the Natural Science Foundation of Guangxi Zhuang Autonomous Region,China(Grant No.2017GXNSFDA198038)+3 种基金the Project of Natural Science Foundation of Guangxi Zhuang Autonomous Region,China(Grant No.2018GXNSFAA281302)the Project for Promotion of Young and Middle-aged Teachers’Basic Scientific Research Ability in Guangxi Universities,China(Grant No.2019KY0084)the“Bagui Scholar”Teams for Innovation and Research Project of Guangxi Zhuang Autonomous Region,Chinathe Graduate Innovation Program of Guangxi Normal University,China(Grant No.JXYJSKT-2019-007)。
文摘The Z–S–C multiphase lattice Boltzmann model [Zheng, Shu, and Chew(ZSC), J. Comput. Phys. 218, 353(2006)]is favored due to its good stability, high efficiency, and large density ratio. However, in terms of mass conservation, this model is not satisfactory during the simulation computations. In this paper, a mass correction is introduced into the ZSC model to make up the mass leakage, while a high-order difference is used to calculate the gradient of the order parameter to improve the accuracy. To verify the improved model, several three-dimensional multiphase flow simulations are carried out,including a bubble in a stationary flow, the merging of two bubbles, and the bubble rising under buoyancy. The numerical simulations show that the results from the present model are in good agreement with those from previous experiments and simulations. The present model not only retains the good properties of the original ZSC model, but also achieves the mass conservation and higher accuracy.
基金Fund Project of Key Lab of Geophysical Exploration of China National Petroleum Corporation (GPR0408).
文摘The paper presents a staggered-grid any even-order accurate finite-difference scheme for two-dimensional (2D), three-component (3C), first-order stress-velocity elastic wave equation and its stability condition in the arbitrary tilt anisotropic media; and derives a perfectly matched absorbing layer (PML) boundary condition and its stag- gered-grid any even-order accurate difference scheme in the 2D arbitrary tilt anisotropic media. The results of nu- merical modeling indicate that the modeling precision is high, the calculation efficiency is satisfactory and the absorbing boundary condition is better. The wave-front shapes of elastic waves are complex in the anisotropic media, and the velocity of qP wave is not always faster than that of qS wave. The wave-front triplication of qS wave and its events in both reflected domain and propagated domain, which are not commonly hyperbola, is a common phenomenon. When the symmetry axis is tilted in the TI media, the phenomenon of S-wave splitting is clearly observed in the snaps of three components and synthetic seismograms, and the events of all kinds of waves are asymmetric.
文摘A family of high-order accuracy explict difference schemes for solving 3-dimension parabolic P. D. E. is constructed. The stability condition is r = Deltat/Deltax(2) Deltat/Deltay(2) = Deltat/Deltaz(2) < 1/2 ,and the truncation error is 0(<Delta>t(2) + Deltax(4)).
基金supported by the National Natural Science Foundation of China(Grant Nos.60931002 and 61101064)the Universities Natural Science Foundation of Anhui Province,China(Grant Nos.KJ2011A002 and 1108085J01)
文摘The method of splitting a plane-wave finite-difference time-domain (SP-FDTD) algorithm is presented for the initiation of plane-wave source in the total-field / scattered-field (TF/SF) formulation of high-order symplectic finite- difference time-domain (SFDTD) scheme for the first time. By splitting the fields on one-dimensional grid and using the nature of numerical plane-wave in finite-difference time-domain (FDTD), the identical dispersion relation can be obtained and proved between the one-dimensional and three-dimensional grids. An efficient plane-wave source is simulated on one-dimensional grid and a perfect match can be achieved for a plane-wave propagating at any angle forming an integer grid cell ratio. Numerical simulations show that the method is valid for SFDTD and the residual field in SF region is shrinked down to -300 dB.
文摘In this paper, a new three-level explicit difference scheme with high-order accuracy is proposed for solving three-dimensional parabolic equations. The stability condition is r = Delta t/Delta x(2) = Delta t/Delta gamma(2) = Delta t/Delta z(2) less than or equal to 1/4, and the truncation error is O(Delta t(2) + Delta x(4)).
基金This research was supported by the National Natural Science Foundation of China
文摘In the present paper, a new numerical method for solving initial-boundary value problems of evolutionary equations is proposed and studied, combining difference method with high accuracy with boundary integral equation method. The numerical approximate schemes for both problems on a bounded or unbounded domain in R3 are proposed and their prior error estimates are obtained.
文摘In this paper, a high order compact difference scheme and a multigrid method are proposed for solving two-dimensional (2D) elliptic problems with variable coefficients and interior/boundary layers on nonuniform grids. Firstly, the original equation is transformed from the physical domain (with a nonuniform mesh) to the computational domain (with a uniform mesh) by using a coordinate transformation. Then, a fourth order compact difference scheme is proposed to solve the transformed elliptic equation on uniform girds. After that, a multigrid method is employed to solve the linear algebraic system arising from the difference equation. At last, the numerical experiments on some elliptic problems with interior/boundary layers are conducted to show high accuracy and high efficiency of the present method.
基金Project supported by the National Natural Science Foundation of China(Nos.11601517,11502296,61772542,and 61561146395)the Basic Research Foundation of National University of Defense Technology(No.ZDYYJ-CYJ20140101)
文摘A global seventh-order dissipative compact finite-difference scheme is optimized in terms of time stability. The dissipative parameters appearing in the boundary closures are assumed to be different, resulting in an optimization problem with several parameters determined by applying a generic algorithm. The optimized schemes are analyzed carefully from the aspects of the eigenvalue distribution, the ε-pseudospectra, the short time behavior, and the Fourier analysis. Numerical experiments for the Euler equations are used to show the effectiveness of the final recommended scheme.
文摘In this paper. a three explicit difference shcemes with high order accuracy for solving the equations of two-dimensional parabolic type is proposed. The stability condition is r=△t/△x ̄ 2=△t/△y ̄2≤1/4 and the truncation error is O (△t ̄2 + △x ̄4 ).
文摘Kizmaz [13] studied the difference sequence spaces ∞(A), c(A), and co(A). Several article dealt with the sets of sequences of m-th order difference of which are bounded, convergent, or convergent to zero. Altay and Basar [5] and Altay, Basar, and Mursaleen [7] introduced the Euler sequence spaces e0^r, ec^r, and e∞^r, respectively. The main purpose of this article is to introduce the spaces e0^r△^(m)), ec^r△^(m)), and e∞^r△^(m))consisting of all sequences whose mth order differences are in the Euler spaces e0^r, ec^r, and e∞^r, respectively. Moreover, the authors give some topological properties and inclusion relations, and determine the α-, β-, and γ-duals of the spaces e0^r△^(m)), ec^r△^(m)), and e∞^r△^(m)), and the Schauder basis of the spaces e0^r△^(m)), ec^r△^(m)). The last section of the article is devoted to the characterization of some matrix mappings on the sequence space ec^r△^(m)).
文摘We have successfully attempted to solve the equations of full-MHD model within the framework of Ψ- ωformulation with an objective to evaluate the performance of a new higher order scheme to predict better values of control parameters of the flow. In particular for MHD flows, magnetic field and electrical conductivity are the control parameters. In this work, the results from our efficient high order accurate scheme are compared with the results of second order method and significant discrepancies are noted in separation length, drag coefficient and mean Nusselt number. The governing Navier-Stokes equation is fully nonlinear due to its coupling with Maxwell’s equations. The momentum equation has several highly nonlinear body-force terms due to full-MHD model in cylindrical polar system. Our high accuracy results predict that a relatively lower magnetic field is sufficient to achieve full suppression of boundary layer and this is a favorable result for practical applications. The present computational scheme predicts that a drag-coefficient minimum can be achieved when β=0.4 which is much lower when compared to the value β=1 as given by second order method. For a special value of β=0.65, it is found that the heat transfer rate is independent of electrical conductivity of the fluid. From the numerical values of physical quantities, we establish that the order of accuracy of the computed numerical results is fourth order accurate by using the method of divided differences.
文摘AIM: To compare the difference and agreement of KR- lW and iTrace for measurement of high order aberrations.METHODS: KR-1W and iTrace were respectively used in a group of healthy people (40 volunteers, 32 eyes) to measure the high order aberration (HOA) of corneal, internal and total ocular. The clinical difference and agreement of two instruments were respectively evaluated by paired-samples 1-test and Bland-Altman analysis. RESULTS: The paired-samples t-test showed that the corneal HOA measured by the two instruments had no statistical differences (P〉0.05); but the internal and total ocular HOA had significant statistical differences (P〈 0.05), and the mean results measured by iTrace were higher than that of KR-1W. However, Bland-Altman analysis revealed that the HOA of corneal and internal were all in 95% limits of agreement; and just one point of total ocular HOA was beyond the 95% limits of agreement. CONCLUSION: KR-1W and iTrace were consistent well in the measurement of corneal, internal and total ocular HOA, especially for the cornea.
基金Project supported by the National Natural Science Foundation of China (Nos. 10172015 and 90205010)
文摘A new method was proposed for constructing total variation diminishing (TVD) upwind schemes in conservation forms. Two limiters were used to prevent nonphysical oscillations across discontinuity. Both limiters can ensure the nonlinear compact schemes TVD property. Two compact TVD (CTVD) schemes were tested, one is thirdorder accuracy, and the other is fifth-order. The performance of the numerical algorithms was assessed by one-dimensional complex waves and Riemann problems, as well as a twodimensional shock-vortex interaction and a shock-boundary flow interaction. Numerical results show their high-order accuracy and high resolution, and low oscillations across discontinuities.
文摘By using Richardson extrapolation and fourth-order compact finite difference scheme on different scale grids, a sixth-order solution is computed on the coarse grid. Other three techniques are applied to obtain a sixth-order solution on the fine grid, and thus give out three kinds of Richardson extrapolation-based sixth order compact computation methods. By carefully analyzing the truncation errors respectively on 2D Poisson equation, we compare the accuracy of these three sixth order methods theoretically. Numerical results for two test problems are discussed.
基金supported by the Special Project on High-performance Computing under the National Key R&D Program(No.2016YFB0200603)Science Challenge Project(No.TZ2016002)the National Natural Science Foundation of China(Nos.91630310 and 11421101),and High-Performance Computing Platform of Peking University.
文摘This paper develops the high-order accurate entropy stable finite difference schemes for one-and two-dimensional special relativistic hydrodynamic equations.The schemes are built on the entropy conservative flux and the weighted essentially non-oscillatory(WENO)technique as well as explicit Runge-Kutta time discretization.The key is to technically construct the affordable entropy conservative flux of the semi-discrete second-order accurate entropy conservative schemes satisfying the semi-discrete entropy equality for the found convex entropy pair.As soon as the entropy conservative flux is derived,the dissipation term can be added to give the semidiscrete entropy stable schemes satisfying the semi-discrete entropy inequality with the given convex entropy function.The WENO reconstruction for the scaled entropy variables and the high-order explicit Runge-Kutta time discretization are implemented to obtain the fully-discrete high-order entropy stable schemes.Several numerical tests are conducted to validate the accuracy and the ability to capture discontinuities of our entropy stable schemes.
基金The study was partially funded by Rockwell Scientific/DARPA contract W911NF-04-C-0102,AFOSR grant FA9550-06-1-0146,and DOE grant DE-FG02-05ER25677The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements,either expressed or im-plied,of DARPA,AFOSR,DOE,or the U.S.Government.
文摘An implicit non-linear lower-upper symmetric Gauss-Seidel(LU-SGS)solution algorithm has been developed for a high-order spectral difference Navier-Stokes solver on unstructured hexahedral grids.The non-linear LU-SGS solver is preconditioned by a block element matrix,and the system of equations is then solved with the LU decomposition approach.The large sparse Jacobian matrix is computed numerically,resulting in extremely simple operations for arbitrarily complex residual operators.Several inviscid and viscous test cases were performed to evaluate the performance.The implicit solver has shown speedup of 1 to 2 orders of magnitude over the multi-stage Runge-Kutta time integration scheme.