期刊文献+
共找到4,965篇文章
< 1 2 249 >
每页显示 20 50 100
INFLUENCE OF AIRCRAFT DEICER ON FREEZE-THAW DURABILITY OF HIGH PERFORMANCE CONCRETE
1
作者 麻海燕 曹文涛 +2 位作者 白康 周鹏 韩丽娟 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2010年第4期306-312,共7页
The influence of glycol,the main composition of the most frequently used aircraft dicer,on the freeze-thaw durability of high performance concrete(HPC)is investigated.Freeze-thaw durability of HPC is tested by accel... The influence of glycol,the main composition of the most frequently used aircraft dicer,on the freeze-thaw durability of high performance concrete(HPC)is investigated.Freeze-thaw durability of HPC is tested by accelerated freeze-thaw test.Four kinds of the solution,i.e.,tap water,3.5% NaCl solution,glycol solutions,and a LBR-A type commercial aircraft deicer are employed.Results show that freeze-thaw durability of HPC exposed to glycol solutions is closely related to the solution concentrations.The failure of HPC exposed to 3.5% glycol solution is similar to that of those exposed to 3.5% NaCl solution,i.e.,serious surface scaling.While the damage of HPC exposed to 12.5%—25% glycol solutions is postponed.Compared with glycol solution,the commercial aircraft deicer has much more negative effects on HPC freeze-thaw durability compared with 3.5% NaCl solution.In the presence of commercial aircraft deicer for HPC subjected to freeze-thaw cycles,the deterioration is mainly due to scaling and spalling. 展开更多
关键词 concrete pavements DURABILITY aircraft deicer freeze-thaw cycles high performance concrete
下载PDF
Carbonation Resistance of Sulphoaluminate Cement-based High Performance Concrete 被引量:4
2
作者 张德成 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2009年第4期663-666,共4页
The influences of water/cement ratio and admixtures on carbonation resistance of sulphoaluminate cement-based high performance concrete (HPC) were investigated. The experimental results show that with the decreasing... The influences of water/cement ratio and admixtures on carbonation resistance of sulphoaluminate cement-based high performance concrete (HPC) were investigated. The experimental results show that with the decreasing water/cement ratio, the carbonation depth of sulphoaluminate cement-based HPC is decreased remarkably, and the carbonation resistance capability is also improved with the adding admixtures. The morphologies and structure characteristics of sulphoaluminate cement hydration products before and after carbonation were analyzed using SEM and XRD. The analysis results reveal that the main hydration product of sulphoaluminate cement, that is ettringite (AFt), decomposes after carbonation. 展开更多
关键词 sulphoaluminate cement CARBONATION high performance concrete (HPC) ADMIXTURE ETTRINGITE
下载PDF
Preparation of High Performance Non-dispersible Concrete 被引量:1
3
作者 姜丛盛 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2004年第2期67-69,共3页
A new-type underwater non-dispersible concrete admixture NDA was prepared,its function mechanism was analyzed,and C40 high performance non-dispersible underwater concrete was manufactured by applying NDA.The results i... A new-type underwater non-dispersible concrete admixture NDA was prepared,its function mechanism was analyzed,and C40 high performance non-dispersible underwater concrete was manufactured by applying NDA.The results indicate that NDA has a suitable workability,low strength loss,and excellent anti-dispersion;the fresh non-dispersible underwater concrete with NDA has high anti-dispersion,excellent workability such as self-compacting and not bleeding;hardened non-dispersible underwater concrete with NDA has a high strength,high durability such as high anti-abrasion,impermeability and anticorrosion. 展开更多
关键词 non-dispersible underwater concrete high performance ANTI-WASHOUT
下载PDF
STUDY ON OPTIMIZATION OF HIGH PERFORMANCE CONCRETE ADMIXTURES 被引量:7
4
作者 刘俊龙 麻海燕 +2 位作者 李强 陈树东 张云清 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2011年第2期206-210,共5页
Influences of admixtures on the workability and strength of high performance concrete (HPC) are in- vestigated. The types of investigated admixtures include naphthalene series high range water reducing agent, polyca... Influences of admixtures on the workability and strength of high performance concrete (HPC) are in- vestigated. The types of investigated admixtures include naphthalene series high range water reducing agent, polycarboxlic series high range water reduce agent and sodium sulfate hardening accelerating agent. Two kinds of curing condition, namely steam curing condition and standard curing condition, are adopted. The result shows that HPC, added with polycarboxlic series of high performance water reducer, has high workability and strength, while sodium sulfate accelerating agent causes poor workability and low strength. Thus for vapor-cured HPC and its formulations, naphthalene series high range water reducing agent with less sodium sulfate should be given pri- ority. Therefore, the differences of curing conditions should be considered when selecting HPC admixtures. 展开更多
关键词 high performance concrete high performance water reducer hardening accelerating agent SLUMP compressive strength
下载PDF
Anti-chloride permeability and anti-chloride corrodibility of a green high performance concrete admixture in concrete 被引量:1
5
作者 郑永保 《Journal of Chongqing University》 CAS 2003年第2期43-45,共3页
The effects of green high performance concrete (GHPC) admixture on the anti-chloride permeability and anti- chloride corrodibility of concrete are studied by a series of experiments designed on the basis of the diffus... The effects of green high performance concrete (GHPC) admixture on the anti-chloride permeability and anti- chloride corrodibility of concrete are studied by a series of experiments designed on the basis of the diffusion principle and electro-chemical principle. The GHPC admixture consists of fly ash, gangue, slag, red mud, etc., of which the mass fraction of industrial residues is over 96 %. The anti-permeabilities and anti-corrodibilities of the tested GHPC and normal concrete (NC) are evaluated by the Diffusion Coefficients of chloride which was obtained by measuring the concentration of chloride in the tested systems by the voltage difference method. It is found that the adoption of GHPC admixture greatly improves the anti-chloride permeability and anti-chloride corrodibility by modifying the inner structure and contracting the porosity of concrete to the reduce considerably the diffusion rate of chloride. The admixture is desirable regarding its engineering performances as well as economical and environmental interests. 展开更多
关键词 green high performance concrete admixture anti-permeability anti-corrodibility voltage difference method
下载PDF
INFLUENCE OF MINERAL ADMIXTURES ON MECHANICAL PROPERTIES OF HIGH-PERFORMANCE CONCRETE 被引量:4
6
作者 Ma, Baoguo Li, Jinzong Peng, Jun 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 1999年第2期1-7,共7页
The improvements of the mechanical properties, including bulk density of fresh mixtures, elastic modulus, and compressive strengths of four high-performance concrete mixtures, made with the addition of fly ash, refine... The improvements of the mechanical properties, including bulk density of fresh mixtures, elastic modulus, and compressive strengths of four high-performance concrete mixtures, made with the addition of fly ash, refined ground blast - furnace microslag (microslag) and silica fume are studied. The concrete mixtures were determined based on the dispersion testing results. The study indicates that the elastic modulus at 28 and 91 days, and compressive strengths of the concretes are improved a lot when fly ash and microslag by 25 percent by weight of cement are added into the mixtures individually. The improvement is especially evident when silica fume by 5 percent and fly ash by 25 percent by weight of cement are added together into the mixture, while the fresh concrete mixture keeps a good workability. Through the analysis of chemically combined water ratios of the four mixtures at various hydration ages, it is found that the addition of all these mineral mixtures are beneficial to the hydration process, especially, at later stages, which might be one of the reasons for the improvement of mechanical properties. (Author abstract) 4 Refs. 展开更多
关键词 high-performance concrete mineral admixture mechanical properties
下载PDF
Development of Optimal Structural System for Hybrid Cable-Stayed Bridges Using Ultra High Performance Concrete 被引量:1
7
作者 Hee Seok Kim Young Jin Kim +1 位作者 Won Jong Chin Hyejin Yoon 《Engineering(科研)》 2013年第9期720-728,共9页
This study developed an optimal structural system for the hybrid cable-stayed bridge expected to have a durable lifetime of 200 years and of which major structural members are made of ultra high performance concrete (... This study developed an optimal structural system for the hybrid cable-stayed bridge expected to have a durable lifetime of 200 years and of which major structural members are made of ultra high performance concrete (UHPC) with 200 MPa-class compressive strength. This innovative cable-stayed bridge system makes it possible to reduce each of the construction and maintenance costs by 20% compared to the conventional concrete cable-stayed bridge by improving significantly the weight and durability of the bridge. Therefore, detail design is carried out considering a real 800 m cable-stayed bridge and the optimal structure of the hybrid cable-stayed bridge is proposed and verified. 展开更多
关键词 HYBRID CABLE-STAYED Bridge Ultra high performance concrete (UHPC) OPTIMAL Structural System DURABILITY
下载PDF
Creep experimental test and analysis of high-performance concrete in bridge 被引量:1
8
作者 陈志华 袁健 《Journal of Central South University》 SCIE EI CAS 2008年第S1期577-581,共5页
Factors that have effect on concrete creep include mixture composition,curing conditions,ambient exposure conditions,and element geometry.Considering concrete mixtures influence and in order to improve the prediction ... Factors that have effect on concrete creep include mixture composition,curing conditions,ambient exposure conditions,and element geometry.Considering concrete mixtures influence and in order to improve the prediction of prestress loss in important structures,an experimental test under laboratory conditions was carried out to investigate compression creep of two high performance concrete mixtures used for prestressed members in one bridge.Based on the experimental results,a power exponent function of creep degree for structural numerical analysis was used to model the creep degree of two HPCs,and two series of parameters of this function for two HPCs were calculated with evolution program optimum method.The experimental data was compared with CEB-FIP 90 and ACI 209(92) models,and the two code models both overestimated creep degrees of the two HPCs.So it is recommended that the power exponent function should be used in this bridge structure analysis. 展开更多
关键词 CEMENT concrete CREEP high-performance concrete(HPC)
下载PDF
Seismic Performance of High-Strength Short Concrete Column with High-Strength Stirrups Constraints 被引量:2
9
作者 Hongyan Ding Yuan Liu +1 位作者 Chao Han Yaohua Guo 《Transactions of Tianjin University》 EI CAS 2017年第4期360-369,共10页
The seismic performance of four short concrete columns was investigated under low cycle and repeated loads, including the failure characteristics, hysteretic behavior, rigidity degeneracy and steel-bar stress. The inf... The seismic performance of four short concrete columns was investigated under low cycle and repeated loads, including the failure characteristics, hysteretic behavior, rigidity degeneracy and steel-bar stress. The influences of reinforcement strength, stirrup ratio and shear span ratio were also compared. Test results reveal that the restriction effect of stirrups can improve the peak stress, so the bearing capacity of specimen can be improved; for the high-strength short concrete column with high-strength stirrups, it was more reasonable to use ultimate displacement angle to reflect the ductility of the specimen, and the yield strength of high-strength stirrups should be devalued when calculating the stirrup characteristic value; the seismic performance of short column would be improved with the increase of volume–stirrup ratio and shear span ratio; the high-strength stirrups and high-strength longitudinal reinforcements did not yield when the load acting on the specimen reached the peak value, which brought adequate safety stock to these short columns. © 2017, Tianjin University and Springer-Verlag Berlin Heidelberg. 展开更多
关键词 Columns (structural) concrete construction concreteS HYSTERESIS Reinforced concrete Reinforcement Seismic waves SEISMOLOGY Shear flow
下载PDF
SULFATE RESISTANCE MECHANISM OF HIGH- PERFORMANCE CONCRETE CONTAINING NCI 被引量:2
10
作者 MA Baoguo Wuhan University of Technology 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 1999年第1期6-15,共10页
It is found that the incorporation of Nitrite Corrosion Inhibitor (NCI) greatly weakens the resistance of mixtures to sulfate attack. To study the mechanism of this phenomenon, in this paper, the influence of NCI add... It is found that the incorporation of Nitrite Corrosion Inhibitor (NCI) greatly weakens the resistance of mixtures to sulfate attack. To study the mechanism of this phenomenon, in this paper, the influence of NCI addition on the cement paste and microstructure change of high performance concrete specimens is studied by means of quantitative XRD, SEM tests. The results demonstrate that the incorporation of NCI accelerates the formation of calcium hydroxide and ettringite crystals, and weakens the pore refinement effect caused by the secondary hydration reaction of fly ash and microsilica. At the age up to one year, the relative crystal quantity in mixture containing NCI is always higher than that in control mixture. The reasons for the degradation in sulfate resistance of mixtures may be attributed to the increase and stability of the calcium hydroxide and ettringite crystals formed and the weakening of secondary hydration reaction. Based on the results, conclusion can be drawn that NCI should be used cautiously in practical engineering where high resistance to sulfate attack is required. (Author abstract) 7 Refs. 展开更多
关键词 nitrite corrosion inhibitor high-performance concrete MICROSTRUCTURE sulfate resistance
下载PDF
Design of Eco-friendly Ultra-high Performance Concrete with Supplementary Cementitious Materials and Coarse Aggregate 被引量:4
11
作者 JIANG Jinyang ZHOU Wenjing +4 位作者 CHU Hongyan WANG Fengjuan WANG Liguo FENG Taotao GUO Dong 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2019年第6期1350-1359,共10页
Aiming to investigate the mix design of eco-friendly UHPC with supplementary cementitious materials and coarser aggregates, we comprehensively studied the workability, microstructure, porosity, compressive strength, f... Aiming to investigate the mix design of eco-friendly UHPC with supplementary cementitious materials and coarser aggregates, we comprehensively studied the workability, microstructure, porosity, compressive strength, flexural strength, and Young’s modulus of UHPC. Relationship between compressive strength and Young’s modulus was obtained eventually. It is found that the compressive strength, flexural strength, and Young’s modulus of UHPC increase by 19.01%, 10.81%, and 5.99%, respectively, when 40 wt% cement is replaced with supplementary cementitious materials. The relationship between compressive strength and Young’s modulus of UHPC is an exponential form. 展开更多
关键词 ultra-high perform ance concrete ECO-FRIENDLY POROSITY compressive strength flexural strength Young’s modulus
下载PDF
Influence of shrinkage-reducing admixture on drying shrinkage and mechanical properties of high-performance concrete 被引量:5
12
作者 Nguyen Quangphu Jiang Linhua +2 位作者 Liu Jiaping Tian Qian Do Tienquan 《Water Science and Engineering》 EI CAS 2008年第4期67-74,共8页
High-performance concrete (HPC) has specific performance advantages over conventional concrete in strength and durability. HPC mixtures are usually produced with water/binder mass ratios (mW/mB) in the range of 0.... High-performance concrete (HPC) has specific performance advantages over conventional concrete in strength and durability. HPC mixtures are usually produced with water/binder mass ratios (mW/mB) in the range of 0.2-0.4, so volume changes of concrete as a result of drying, chemical reactions, and temperature change cannot be avoided. For these reasons, shrinkage and cracking are frequent phenomena. It is necessary to add some types of admixture for reduction of shrinkage and cracking of HPC. This study used a shrinkage-reducing admixture (SRA) for that purpose. Concrete was prepared with two different mW/mB (0.22 and 0.40) and four different mass fractions of SRA to binder (w(SRA) = 0%, 1%, 2%, and 4%). The mineral admixtures used for concrete mixes were: 25% fly ash (FA) and 25% slag by mass of binder for the mixture with mW/mB = 0.40, and 15% silica fume (SF) and 25% FA for the mixture with mW/mB = 0.22. Tests were conducted on 24 prismatic specimens, and shrinkage strains were measured through 120 days of drying. Compressive strength, splitting strength, and static modulus of elasticity were also determined. The results show that the SRA effectively reduces some mechanical properties of HPC. The reductions in compressive strength, splitting tensile strength, and elastic modulus of the concrete were 7%-24%, 9%-19%, and 5%-12%, respectively, after 90 days, compared to concrete mixtures without SRA. SRA can also help reduce drying shrinkage of concrete. The shrinkage strains of HPC with SRA were only as high as 41% of the average free shrinkage of concrete without SRA after 120 days of drying. 展开更多
关键词 high-performance concrete shrinkage-reducing admixture compressive strength elastic modulus splitting tensile strength drying shrinkage
下载PDF
Spalling and Mechanical Properties of Fiber Reinforced High-performance Concrete Subjected to Fire 被引量:3
13
作者 董香军 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2008年第5期743-749,共7页
Spalling and mechanical properties of FRHPC subjected to fire were tested on notched beams. The results confirm that the internal vapor pressure is the leading reason for spalling of high-performance concrete (HPC).... Spalling and mechanical properties of FRHPC subjected to fire were tested on notched beams. The results confirm that the internal vapor pressure is the leading reason for spalling of high-performance concrete (HPC). At the same time, the temperature-increasing velocity and constrained conditions of concrete element also play significant roles in spalling. Steel fibers cannot reduce the risk of spalling, although they have obvious beneficial effects on the mechanical properties of concrete before and after exposure to fire. Polypropylene (PP) fibers are very useful in preventing HPC from spalling, however, they have negative effects on the strengths. By using hybrid fibers (steel fibers+PP fibers), both good anti-spalling performance and improved mechanical properties come true, which may provide necessary safe guarantee for the rescue work and structure repair after fire disaster. 展开更多
关键词 fiber reinforced high-performance concrete (FRHPC) FIRE SPALLING compressive strength flexural toughness
下载PDF
Assessment of early-age cracking of high-performance concrete in restrained ring specimens 被引量:2
14
作者 Quang-phu NGUYEN Lin-hua JIANG Qiao ZHU 《Water Science and Engineering》 EI CAS 2010年第1期113-120,共8页
High-performance concrete (HPC) is stronger and more durable than conventional concrete. However, shrinkage and shrinkage cracking are common phenomena in HPC, especially early-age cracking. This study assessed earl... High-performance concrete (HPC) is stronger and more durable than conventional concrete. However, shrinkage and shrinkage cracking are common phenomena in HPC, especially early-age cracking. This study assessed early-age cracking of HPC for two mixtures using restrained ring tests. The two mixtures were produced with water/binder mass ratio (mw/mB) of 0.22 and 0.40, respectively. The results show that, with greater steel thickness, the higher degree of restraint resulted in a higher interface pressure and earlier cracking. With steel thickness of 6 mm, 19 mm, and 30 mm, the age of cracking were, respectively, 12 days, 8 days, and 5.4 days with the mw/mB = 0.22 mixture; and 22.5 days, 12.6 days, and 7.1 days with the mw/mB= 0.40 mixture. Cases of the same steel thickness show that the ring specimens with a thicker concrete wall crack later. With the mw/mB = 0.22 mixture, concrete walls with thicknesses of 37.5 mm, 75 mm, and 112.5 mm cracked at 3.4 days, 8.0 days, and 9.8 days, respectively; with the mw/mB = 0.40 mixture, the ages of cracking were 7.1 days, 12.6 days, and 16.0 days, respectively. 展开更多
关键词 high-performance concrete SHRINKAGE early-age cracking restrained ring test
下载PDF
FAILURE MODE AND CONSTITUTIVE MODEL OF PLAIN HIGH-STRENGTH HIGH-PERFORMANCE CONCRETE UNDER BIAXIAL COMPRESSION AFTER EXPOSURE TO HIGH TEMPERATURES 被引量:2
15
作者 Zhenjun He Yupu Song 《Acta Mechanica Solida Sinica》 SCIE EI 2008年第2期149-159,共11页
An orthotropic constitutive relationship with temperature parameters for plain highstrength high-performance concrete (HSHPC) under biaxial compression is developed. It is based on the experiments performed for char... An orthotropic constitutive relationship with temperature parameters for plain highstrength high-performance concrete (HSHPC) under biaxial compression is developed. It is based on the experiments performed for characterizing the strength and deformation behavior at two strength levels of HSHPC at 7 different stress ratios including a=σs : σ3=0.00:-1,-0.20:-1,-0.30 : -1,-0.40:-1,-0.50:-1,-0.75:-1,-1.00:-1, after the exposure to normal and high temperatures of 20, 200, 300, 400, 500 and 600℃, and using a large static-dynamic true triaxial machine. The biaxial tests were performed on 100 mm×100 mm×100 mm cubic specimens, and friction-reducing pads were used consisting of three layers of plastic membrane with glycerine in-between for the compressive loading plane. Based on the experimental results, failure modes of HSHPC specimens were described. The principal static compressive strengths, strains at the peak stress and stress-strain curves were measured; and the influence of the temperature and stress ratios on them was also analyzed. The experimental results showed that the uniaxial compressive strength of plain HSHPC after exposure to high temperatures does not decrease dramatically with the increase of temperature. The ratio of the biaxial to its uniaxial compressive strength depends on the stress ratios and brittleness-stiffness of HSHPC after exposure to different temperature levels. Comparison of the stress-strain results obtained from the theoretical model and the experimental data indicates good agreement. 展开更多
关键词 high-strength high-performance concrete (HSHPC) high temperatures uniaxial biaxial compressive strength failure criterion stress-strain relationship
下载PDF
Dynamic Mechanical Behaviour of Ultra-high Performance Fiber Reinforced Concretes 被引量:2
16
作者 赖建中 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2008年第6期938-945,共8页
Ultra-high performance fiber reinforced concretes (UHPFRC) were prepared by replacing 60% of cement with ultra-fine industrial waste powder. The dynamic mechanical behaviour of UHPFRC with different fiber volume fra... Ultra-high performance fiber reinforced concretes (UHPFRC) were prepared by replacing 60% of cement with ultra-fine industrial waste powder. The dynamic mechanical behaviour of UHPFRC with different fiber volume fraction was researched on repeated compressive impact in four kinds of impact modes through split Hopkinson pressure bar (SHPB). The experimental results show that the peak stress and elastic modulus decrease and the strain rate and peak strain increase gradually with the increasing of impact times. The initial material damage increases and the peak stress of the specimen decreases from the second impact with the increasing of the initial incident wave. Standard strength on repeated impact is defined to compare the ability of resistance against repeated impact among different materials. The rate of reduction of standard strength is decreased by fiber reinforcement under repeated impact. The material damage is reduced and the ability of repeated impact resistance of UHPFRC is improved with the increasing of fiber volume fraction. 展开更多
关键词 ultra-high performance fiber reinforced concretes split Hopkinson pressurebar DYNAMIC repeated impact
下载PDF
Multi-powder dam concrete with high performance and low adiabatic temperature rise
17
作者 李新宇 陈文耀 陈炜旻 《中国有色金属学会会刊:英文版》 CSCD 2009年第S3期727-733,共7页
Based on the fluidity, strength, heat of hydration and loop crack resistance experiment of multi-powder paste, the components and proportion of multi-powder were optimized and the concrete properties were studied. The... Based on the fluidity, strength, heat of hydration and loop crack resistance experiment of multi-powder paste, the components and proportion of multi-powder were optimized and the concrete properties were studied. The multi-powder consists of limestone powder, slag, fly ash and moderate heat Portland cement (PMH cement). The results show that the compressive strength of the multi-powder paste and mortar is close to those of PMH cement, fly ash paste and mortar currently used in dam concrete, yet the flexural strength is relatively higher. The multi-powder paste is featured by larger fluidity, lower heat of hydration and delayed cracking time. In comparison, less unit water consumption and cement is used in multi-powder concrete, and under premise of equal mechanical performance, deformation, thermal performance and durability, the adiabatic temperature rise at 28 d is reduced by 2 ℃. In this way, the crack resistance is improved and it is feasible both technically and economically to produce HPC for dam concrete. 展开更多
关键词 multi-powder PASTE dam concrete high performance concrete crack resistance ADIABATIC temperature RISE
下载PDF
Strength Regularity and Failure Criterion of High-Strength High-Performance Concrete under Multiaxial Compression 被引量:1
18
作者 何振军 宋玉普 《Journal of Southwest Jiaotong University(English Edition)》 2008年第2期144-149,共6页
Multiaxial compression tests were performed on 100 mm×100 mm×100 mm high-strength high-performance concrete (HSI-IPC) cubes and normal strength concrete (NSC) cubes. The failure modes of specimens were p... Multiaxial compression tests were performed on 100 mm×100 mm×100 mm high-strength high-performance concrete (HSI-IPC) cubes and normal strength concrete (NSC) cubes. The failure modes of specimens were presented, the static compressive strengths in principal directions were measured, the influence of the stress ratios was analyzed. The experimental results show that the ultimate strengths for HSHPC and NSC under multiaxial compression are greater than the uniaxial compressive strengths at all stress ratios, and the multiaxial strength is dependent on the brittleness and stiffness of concrete, the stress state and the stress ratios. In addition, the Kupfer-Gersfle and Ottosen's failure criteria for plain HSHPC and NSC under multiaxial compressive loading were modified. 展开更多
关键词 high-strength high-performance concrete (HSHPC) Normal strength concrete (NSC) Stress ratio Multiaxial corn- pressive slxength Failure criterion
下载PDF
Seismic Performance of Steel Reinforced Ultra High-strength Concrete Columns 被引量:1
19
作者 贾金青 《四川大学学报(工程科学版)》 EI CAS CSCD 北大核心 2009年第3期216-222,230,共8页
The seismic performance of steel reinforced ultra-high-strength concrete columns(SRSHC) with various shear-span ratios(λ) were studied through a series of experiments.The concrete compressive cube strength value of e... The seismic performance of steel reinforced ultra-high-strength concrete columns(SRSHC) with various shear-span ratios(λ) were studied through a series of experiments.The concrete compressive cube strength value of experimental specimens ranged from 92.9 MPa to 108.1 MPa.The main experimental variables affecting seismic performance of specimens were axial load ratio and stirrup reinforcement ratio.The columns(λ=2.75) subjected to low cyclic reversed lateral loads failed mainly in the flexural-shear mode failure and columns(λ≤2.0) subjected to low cyclic reversed lateral loads failed mainly in the shear mode failure.Shear force-displacement hysteretic curves and skeleton curves were drawn.Coefficient of the specimen displacement ductility was calculated.Experimental results indicate that ductility decreases with axial pressure ratio increasing,and increases with stirrup reinforcement ratio increasing.Limit values of axial pressure ratio and minimum stirrup reinforcement ratio of columns are proposed to satisfy definite ductility requirement.The suggested values provide a reference for engineering application and for the amendment of the current Chinese design code of steel reinforced concrete composite structures. 展开更多
关键词 建筑结构 建筑物 抗震设计 混凝土结构
下载PDF
Flexural Bond Behavior of Rebar in Ultra-High Performance Concrete Beams Considering Lap-Splice Length and Cover Depth
20
作者 Seongjun Kim Jungwoo Lee +1 位作者 Changbin Joh Imjong Kwahk 《Engineering(科研)》 2016年第3期116-129,共14页
This study intends to find out the correlation between the cover depth and the bond characteristics of UHPC through pull-out tests of UHPC specimens with different cover depths and bond tests of rebar using flexural m... This study intends to find out the correlation between the cover depth and the bond characteristics of UHPC through pull-out tests of UHPC specimens with different cover depths and bond tests of rebar using flexural members. In this experimental study, specimens are fabricated with the lap-splice length as test variable in relation with the calculation of the lap-splice length for 180- MPa UHPC. Moreover, specimens are also fabricated with the cover depth as test variable to evaluate the effect of the cover depth on the UHPC flexural members. The load-displacement curves are analyzed for each of these test variables to compute the lap-splice length proposed in the K-UHPC structural design guideline and to evaluate the influence of the cover depth on the flexural members. As a result, the stability of the structural behavior can be significantly enhanced by increasing slightly the cover depth specification of the current UHPC Structure Design Guideline from the maximum value between 1.5 times of rebar diameter and 20 mm to the maximum value between 1.5 times of rebar diameter and 25 mm. 展开更多
关键词 Bond Behavior Ultra high performance concrete (UHPC) Lap-Splice Length Cover Depth Flexural Bond Test Full-Out Test
下载PDF
上一页 1 2 249 下一页 到第
使用帮助 返回顶部