Extreme high temperature(EHT)events are among the most impact-related consequences related to climate change,especially for China,a nation with a large population that is vulnerable to the climate warming.Based on the...Extreme high temperature(EHT)events are among the most impact-related consequences related to climate change,especially for China,a nation with a large population that is vulnerable to the climate warming.Based on the latest Coupled Model Intercomparison Project Phase 6(CMIP6),this study assesses future EHT changes across China at five specific global warming thresholds(1.5℃-5℃).The results indicate that global mean temperature will increase by 1.5℃/2℃ before 2030/2050 relative to pre-industrial levels(1861-1900)under three future scenarios(SSP1-2.6,SSP2-4.5,and SSP5-8.5),and warming will occur faster under SSP5-8.5 compared to SSP1-2.6 and SSP2-4.5.Under SSP5-8.5,global warming will eventually exceed 5℃ by 2100,while under SSP1-2.6,it will stabilize around 2℃ after 2050.In China,most of the areas where warming exceeds global average levels will be located in Tibet and northern China(Northwest China,North China and Northeast China),covering 50%-70%of the country.Furthermore,about 0.19-0.44 billion people(accounting for 16%-41%of the national population)will experience warming above the global average.Compared to present-day(1995-2014),the warmest day(TXx)will increase most notably in northern China,while the number of warm days(TX90p)and warm spell duration indicator(WSDI)will increase most profoundly in southern China.For example,relative to the present-day,TXx will increase by 1℃-5℃ in northern China,and TX90p(WSDI)will increase by 25-150(10-80)days in southern China at 1.5℃-5℃ global warming.Compared to 2℃-5℃,limiting global warming to 1.5℃ will help avoid about 36%-87%of the EHT increases in China.展开更多
The true stress-sWain relationships of Ti-5A1-2Sn-2Zr-4Mo-4Cr(TC17) alloy with a wide range of strain rates were investigated by tmiaxial quasi-static and dynamic compression tests, respectively. Quasi- static compr...The true stress-sWain relationships of Ti-5A1-2Sn-2Zr-4Mo-4Cr(TC17) alloy with a wide range of strain rates were investigated by tmiaxial quasi-static and dynamic compression tests, respectively. Quasi- static compression tests were carried out with Instron 8874 test machine, while dynamic compression tests were performed with the split Hopkinson pressure bar (SHPB) which was installed with heating device and synchro- assembly system. The dynamic mechanical behaviors tests of TC17 were carded out from room temperature to 800 ℃ at intervals of 200 ℃ and at high sWain rates (5 500-1 9200 s-l). The stress-strain curves considering temperature-sWain rate coupling actions were obtained. The Johnson-Cook constitutive model was developed through data fitting of the stress-sWain curves. The material constants in the developed constitutive model can be determined using isothermal and adiabatic stress-strain curves at different strain rates. The Johnson-Cook constitutive model provided satisfied prediction of the plastic flow stress for TC17 alloy.展开更多
We established a model for the chemical reaction kinetics of biomass pyrolysis via the hightemperature thermal cracking of liquid products. We divided the condensable volatiles into two groups, based on the characteri...We established a model for the chemical reaction kinetics of biomass pyrolysis via the hightemperature thermal cracking of liquid products. We divided the condensable volatiles into two groups, based on the characteristics of the liquid prdoducts., tar and biomass oil. The effects of temperature, residence time, particle size, velocity, pressure, and other parameters on biomass pyrolysis and high-temperature tar cracking were investigated numerically, and the results were compared with experimental data. The simulation results showed a large endothermic pyrolysis reaction effect on temperature and the reaction process. The pyrolysis reaction zone had a constant temperature period in several layers near the center of large biomass particles. A purely physical heating process was observed before and after this period, according to the temperature index curve.展开更多
基金supported by the National Key Research and Development Program of China(2017YFA0603804)the National Natural Science Foundation of China(41831174 and 41430528)+1 种基金the Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX19_1026)Guwei ZHANG was supported by the China Scholarship Council(NO.201908320503)。
文摘Extreme high temperature(EHT)events are among the most impact-related consequences related to climate change,especially for China,a nation with a large population that is vulnerable to the climate warming.Based on the latest Coupled Model Intercomparison Project Phase 6(CMIP6),this study assesses future EHT changes across China at five specific global warming thresholds(1.5℃-5℃).The results indicate that global mean temperature will increase by 1.5℃/2℃ before 2030/2050 relative to pre-industrial levels(1861-1900)under three future scenarios(SSP1-2.6,SSP2-4.5,and SSP5-8.5),and warming will occur faster under SSP5-8.5 compared to SSP1-2.6 and SSP2-4.5.Under SSP5-8.5,global warming will eventually exceed 5℃ by 2100,while under SSP1-2.6,it will stabilize around 2℃ after 2050.In China,most of the areas where warming exceeds global average levels will be located in Tibet and northern China(Northwest China,North China and Northeast China),covering 50%-70%of the country.Furthermore,about 0.19-0.44 billion people(accounting for 16%-41%of the national population)will experience warming above the global average.Compared to present-day(1995-2014),the warmest day(TXx)will increase most notably in northern China,while the number of warm days(TX90p)and warm spell duration indicator(WSDI)will increase most profoundly in southern China.For example,relative to the present-day,TXx will increase by 1℃-5℃ in northern China,and TX90p(WSDI)will increase by 25-150(10-80)days in southern China at 1.5℃-5℃ global warming.Compared to 2℃-5℃,limiting global warming to 1.5℃ will help avoid about 36%-87%of the EHT increases in China.
基金Funded by the National Basic Research Program of China(No.2009CB724401)the Major Science and Technology Program of High-end CNC Machine Tools and Basic Manufacturing Equipment(No.2012ZX04003-041)
文摘The true stress-sWain relationships of Ti-5A1-2Sn-2Zr-4Mo-4Cr(TC17) alloy with a wide range of strain rates were investigated by tmiaxial quasi-static and dynamic compression tests, respectively. Quasi- static compression tests were carried out with Instron 8874 test machine, while dynamic compression tests were performed with the split Hopkinson pressure bar (SHPB) which was installed with heating device and synchro- assembly system. The dynamic mechanical behaviors tests of TC17 were carded out from room temperature to 800 ℃ at intervals of 200 ℃ and at high sWain rates (5 500-1 9200 s-l). The stress-strain curves considering temperature-sWain rate coupling actions were obtained. The Johnson-Cook constitutive model was developed through data fitting of the stress-sWain curves. The material constants in the developed constitutive model can be determined using isothermal and adiabatic stress-strain curves at different strain rates. The Johnson-Cook constitutive model provided satisfied prediction of the plastic flow stress for TC17 alloy.
文摘We established a model for the chemical reaction kinetics of biomass pyrolysis via the hightemperature thermal cracking of liquid products. We divided the condensable volatiles into two groups, based on the characteristics of the liquid prdoducts., tar and biomass oil. The effects of temperature, residence time, particle size, velocity, pressure, and other parameters on biomass pyrolysis and high-temperature tar cracking were investigated numerically, and the results were compared with experimental data. The simulation results showed a large endothermic pyrolysis reaction effect on temperature and the reaction process. The pyrolysis reaction zone had a constant temperature period in several layers near the center of large biomass particles. A purely physical heating process was observed before and after this period, according to the temperature index curve.