Sumian 29, a genetically modified cotton variety, was approved by Autho- rized Committee of Crop Varieties of Jiangsu Province in 2013. Yield performance, cultivation characteristics of Sumian 29, and its selection an...Sumian 29, a genetically modified cotton variety, was approved by Autho- rized Committee of Crop Varieties of Jiangsu Province in 2013. Yield performance, cultivation characteristics of Sumian 29, and its selection and breeding process were introduced in the paper. Regional tests from 2010 to 2011 in Jiangsu Province showed that seed cotton yield and lint yield averaged 4 185 and 1 737 kg/hm2, and increased by 10.6% and 8.5% respectively, when compared with control (Siza 3). In production test, seed cotton yield and lint yield of Sumian 29 averaged 4 176 and 1 744.5 kg/hm2, respectively. Sumian 29 had high resistance to cotton bollworm, and also resistance to Fusarium wilt and Verticillium wilt of cotton. All of its fiber qualities achieved National Standard III and above. Sumian 29 has good application prospects.展开更多
The field experiments were carried out to investigate the dynamics and models of N, P and K absorption for the cotton plants with a lint of 3 000 kg ha-1 in Xinjiang. The main results were as follows: The contents of ...The field experiments were carried out to investigate the dynamics and models of N, P and K absorption for the cotton plants with a lint of 3 000 kg ha-1 in Xinjiang. The main results were as follows: The contents of N, P2O5, K2O in cotton leaves, stems, squares and bolls decreased obviously with the time over the whole growth duration and the falling extent was greater in high-yield cotton than in CK. Contents of N in leaves, squares and bolls, in particular in the leaves of fruit-bearing shoot was higher in high-yield cotton than in CK. Contents of P2O5 in squares and bolls and that of K2O in stems were higher in high-yield cotton than in CK during the whole growing period. The accumulations of N, P2O5 and K2O in the cotton plants could be described with a logistic curve equation. There was the fastest nutrient uptake at about 90 d for N, 92 d for P2O5 and 85 d for K2O after emergence, respectively. Total nutrient accumulation of N, P2O5 and K2O was 385.8, 244. 7 and 340.3 kg ha-1, respectively. Approximately 12. 5 kg N, 8. 0 kg P2O5 and 11.1 kg K2O were needed for producing 100 kg lint with the leaves and stems under the super high yield condition of 3 000 kg ha-1 in Xinjiang.展开更多
[ Objective] The purpose was to study the correlation between main agronomic traits and single plant lint yield in upland cotton with high quality. [ Method] Twenty-four upland cotton lines with high quality were anal...[ Objective] The purpose was to study the correlation between main agronomic traits and single plant lint yield in upland cotton with high quality. [ Method] Twenty-four upland cotton lines with high quality were analyzed for single plant lint yield and 10 agronomic traits in a randomized, complete block at the agriculture experimental station of JXAU, Nanchang, China in 2007. They were divided into three types ( high, medium, low yield) based on single plant lint yield by Ward's method. A total of 11 traits of three types were compared. Correlation a- nalysis and stepwise regression analysis of 10 agronomic traits to single plant lint yield were carried out. [ Result] There existed statistically sig- nificant difference in bolls per plant, ~int percentage, lint index, fruit node numbers, growth period for three yield types. The high yield type ex- hibited the highest bolls per plant, lint percentage and lint index, the lowest fruit node numbers and the shortest growth period. Bolls per plant, boll weight and single plant lint yield were significantly and positively correlated. Fruit node numbers and single plant lint yield were significantly and negatively correlated. Bolls per plant, boll weight, and fruiting position number were the most important factors influencing single plant lint yield of upland cotton lines with high quality. [ Conclusion ] The results will have certain significance for the development of upland cotton variety with high quality.展开更多
Delta-12 oleate desaturase gene (FAD2-1) which converts oleic acid into linoleic acid, is the key enzyme determining the fatty acid composition of cottonseed oil. By employing RT-PCR method, full length cDNA of cott...Delta-12 oleate desaturase gene (FAD2-1) which converts oleic acid into linoleic acid, is the key enzyme determining the fatty acid composition of cottonseed oil. By employing RT-PCR method, full length cDNA of cotton delta-12 oleate desat- urase gene GhFAD2-1 containing an open reading frame of 1 158 bp was cloned for constructing RNAi vector. A 515 bp long specific fragment of this gene was se- lected for constructing ihpRNA vector under the control of a seed-specific promoter NAPIN, named pFGC1008-NAPIN-FAD2-1; meanwhile miRNA gene-silencing vector pCAMBIA1302-amiRNA-FAD2-1 targeting GhFAD2-1 was also constructed.展开更多
Worldwide, scarce water resources and substantial food demands require efficient water use and high yield.This study investigated whether irrigation frequency can be used to adjust soil moisture to increase grain yiel...Worldwide, scarce water resources and substantial food demands require efficient water use and high yield.This study investigated whether irrigation frequency can be used to adjust soil moisture to increase grain yield and water use efficiency(WUE) of high-yield maize under conditions of mulching and drip irrigation.A field experiment was conducted using three irrigation intervals in 2016: 6, 9, and 12 days(labeled D6, D9, and D12) and five irrigation intervals in 2017: 3, 6, 9, 12, and 15 days(D3, D6, D9, D12, and D15).In Xinjiang, an optimal irrigation quota is 540 mm for high-yield maize.The D3, D6, D9, D12, and D15 irrigation intervals gave grain yields of 19.7, 19.1–21.0, 18.8–20.0, 18.2–19.2, and 17.2 Mg ha^-1 and a WUE of 2.48, 2.53–2.80, 2.47–2.63, 2.34–2.45, and 2.08 kg m-3, respectively.Treatment D6 led to the highest soil water storage, but evapotranspiration and soil-water evaporation were lower than other treatments.These results show that irrigation interval D6 can help maintain a favorable soil-moisture environment in the upper-60-cm soil layer, reduce soilwater evaporation and evapotranspiration, and produce the highest yield and WUE.In this arid region and in other regions with similar soil and climate conditions, a similar irrigation interval would thus be beneficial for adjusting soil moisture to increase maize yield and WUE under conditions of mulching and drip irrigation.展开更多
[Objective] The study aimed to find a possible way to combat or alleviate the negative effects caused by high temperature and water deficit at the growth stage of peak boll-setting.[Method] With Bt transgenic cotton G...[Objective] The study aimed to find a possible way to combat or alleviate the negative effects caused by high temperature and water deficit at the growth stage of peak boll-setting.[Method] With Bt transgenic cotton GK22 as the test cultivar,a potted experiment was carried out to investigate the effects of the regulation of external substances(the water solutions of pix,urea and their mixture) on the physiological parameters,insecticidal protein content,yield and yield component of cotton plants in artificial climate chambers treated with high temperature and water deficit.[Result] The application of external pix,urea or their mixture was effective in stabilizing the physiological parameters of cotton plants,insecticidal protein content,yield and yield components.Compared with the exclusive application of pix and urea,the mixture of pix and urea played the most effective role in stabilizing the content of chlorophyll,soluble sugar and insecticidal protein,alleviating the increase of the content of free amino acids and proline,and increasing boll number per plant,boll weight and seed cotton yield.[Conclusion] The water solutions of pix,urea or their mixtures can be used to combat or alleviate the stress of high temperature and water deficit if they are sprayed onto cotton plants prior to stress occurrence.展开更多
基金Supported by the S&T Support Program of Jiangsu Province(BE2013380)the Agricultural Science and Technology Innovation Program of Jiangsu Province(CX(12)3068)the Key Program for Genetically Modified Organism Breeding(2012ZX-08013009-003)~~
文摘Sumian 29, a genetically modified cotton variety, was approved by Autho- rized Committee of Crop Varieties of Jiangsu Province in 2013. Yield performance, cultivation characteristics of Sumian 29, and its selection and breeding process were introduced in the paper. Regional tests from 2010 to 2011 in Jiangsu Province showed that seed cotton yield and lint yield averaged 4 185 and 1 737 kg/hm2, and increased by 10.6% and 8.5% respectively, when compared with control (Siza 3). In production test, seed cotton yield and lint yield of Sumian 29 averaged 4 176 and 1 744.5 kg/hm2, respectively. Sumian 29 had high resistance to cotton bollworm, and also resistance to Fusarium wilt and Verticillium wilt of cotton. All of its fiber qualities achieved National Standard III and above. Sumian 29 has good application prospects.
基金supported by the National Key Technologies R&D Program in 10th Five-year Plan of China(2001BA507A)the National Natural Sicence Foundation of China(39760040).
文摘The field experiments were carried out to investigate the dynamics and models of N, P and K absorption for the cotton plants with a lint of 3 000 kg ha-1 in Xinjiang. The main results were as follows: The contents of N, P2O5, K2O in cotton leaves, stems, squares and bolls decreased obviously with the time over the whole growth duration and the falling extent was greater in high-yield cotton than in CK. Contents of N in leaves, squares and bolls, in particular in the leaves of fruit-bearing shoot was higher in high-yield cotton than in CK. Contents of P2O5 in squares and bolls and that of K2O in stems were higher in high-yield cotton than in CK during the whole growing period. The accumulations of N, P2O5 and K2O in the cotton plants could be described with a logistic curve equation. There was the fastest nutrient uptake at about 90 d for N, 92 d for P2O5 and 85 d for K2O after emergence, respectively. Total nutrient accumulation of N, P2O5 and K2O was 385.8, 244. 7 and 340.3 kg ha-1, respectively. Approximately 12. 5 kg N, 8. 0 kg P2O5 and 11.1 kg K2O were needed for producing 100 kg lint with the leaves and stems under the super high yield condition of 3 000 kg ha-1 in Xinjiang.
文摘[ Objective] The purpose was to study the correlation between main agronomic traits and single plant lint yield in upland cotton with high quality. [ Method] Twenty-four upland cotton lines with high quality were analyzed for single plant lint yield and 10 agronomic traits in a randomized, complete block at the agriculture experimental station of JXAU, Nanchang, China in 2007. They were divided into three types ( high, medium, low yield) based on single plant lint yield by Ward's method. A total of 11 traits of three types were compared. Correlation a- nalysis and stepwise regression analysis of 10 agronomic traits to single plant lint yield were carried out. [ Result] There existed statistically sig- nificant difference in bolls per plant, ~int percentage, lint index, fruit node numbers, growth period for three yield types. The high yield type ex- hibited the highest bolls per plant, lint percentage and lint index, the lowest fruit node numbers and the shortest growth period. Bolls per plant, boll weight and single plant lint yield were significantly and positively correlated. Fruit node numbers and single plant lint yield were significantly and negatively correlated. Bolls per plant, boll weight, and fruiting position number were the most important factors influencing single plant lint yield of upland cotton lines with high quality. [ Conclusion ] The results will have certain significance for the development of upland cotton variety with high quality.
文摘Delta-12 oleate desaturase gene (FAD2-1) which converts oleic acid into linoleic acid, is the key enzyme determining the fatty acid composition of cottonseed oil. By employing RT-PCR method, full length cDNA of cotton delta-12 oleate desat- urase gene GhFAD2-1 containing an open reading frame of 1 158 bp was cloned for constructing RNAi vector. A 515 bp long specific fragment of this gene was se- lected for constructing ihpRNA vector under the control of a seed-specific promoter NAPIN, named pFGC1008-NAPIN-FAD2-1; meanwhile miRNA gene-silencing vector pCAMBIA1302-amiRNA-FAD2-1 targeting GhFAD2-1 was also constructed.
基金research support from the National Key Research and Development Program of China (2016YFD0300110, 2016YFD0300101)the National Basic Research Program of China (2015CB150401)+2 种基金the National Natural Science Foundation of China (31360302)the Science and Technology Program of the Sixth Division of Xinjiang Construction Corps in China (1703)the Agricultural Science and Technology Innovation Program for financial support.
文摘Worldwide, scarce water resources and substantial food demands require efficient water use and high yield.This study investigated whether irrigation frequency can be used to adjust soil moisture to increase grain yield and water use efficiency(WUE) of high-yield maize under conditions of mulching and drip irrigation.A field experiment was conducted using three irrigation intervals in 2016: 6, 9, and 12 days(labeled D6, D9, and D12) and five irrigation intervals in 2017: 3, 6, 9, 12, and 15 days(D3, D6, D9, D12, and D15).In Xinjiang, an optimal irrigation quota is 540 mm for high-yield maize.The D3, D6, D9, D12, and D15 irrigation intervals gave grain yields of 19.7, 19.1–21.0, 18.8–20.0, 18.2–19.2, and 17.2 Mg ha^-1 and a WUE of 2.48, 2.53–2.80, 2.47–2.63, 2.34–2.45, and 2.08 kg m-3, respectively.Treatment D6 led to the highest soil water storage, but evapotranspiration and soil-water evaporation were lower than other treatments.These results show that irrigation interval D6 can help maintain a favorable soil-moisture environment in the upper-60-cm soil layer, reduce soilwater evaporation and evapotranspiration, and produce the highest yield and WUE.In this arid region and in other regions with similar soil and climate conditions, a similar irrigation interval would thus be beneficial for adjusting soil moisture to increase maize yield and WUE under conditions of mulching and drip irrigation.
基金Supported by the National Natural Science Foundation of China(3077127231171483)+1 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutions,Jiangsu Innovation Project for Agriculture Science and Technology [cx(11)2054 ]Jiangsu Agriculture Science and Technology Support Program(SBE2010307)
文摘[Objective] The study aimed to find a possible way to combat or alleviate the negative effects caused by high temperature and water deficit at the growth stage of peak boll-setting.[Method] With Bt transgenic cotton GK22 as the test cultivar,a potted experiment was carried out to investigate the effects of the regulation of external substances(the water solutions of pix,urea and their mixture) on the physiological parameters,insecticidal protein content,yield and yield component of cotton plants in artificial climate chambers treated with high temperature and water deficit.[Result] The application of external pix,urea or their mixture was effective in stabilizing the physiological parameters of cotton plants,insecticidal protein content,yield and yield components.Compared with the exclusive application of pix and urea,the mixture of pix and urea played the most effective role in stabilizing the content of chlorophyll,soluble sugar and insecticidal protein,alleviating the increase of the content of free amino acids and proline,and increasing boll number per plant,boll weight and seed cotton yield.[Conclusion] The water solutions of pix,urea or their mixtures can be used to combat or alleviate the stress of high temperature and water deficit if they are sprayed onto cotton plants prior to stress occurrence.