Import of New and High-tech Products Increases Rapidly The proportion of new and high-tech products in the total import continues to increase.Ever since 1991,the proportion of new and high-tech products in the total i...Import of New and High-tech Products Increases Rapidly The proportion of new and high-tech products in the total import continues to increase.Ever since 1991,the proportion of new and high-tech products in the total import has experienced a continuous growth.It took up only 14.8% of the total import in 1991.The figure reached 20.8% in 1998,and further rose to that of 26.3% in 2001.From January to June this year,the import of new and hightech products totaled 34.540 billion USD,up 18.1% over the same per...展开更多
Product innovation is an important strategy for high-tech firms, especially for small and medium enterprises. This paper proposes that the technological strategies for SMEs are dynamic and during different phase, ther...Product innovation is an important strategy for high-tech firms, especially for small and medium enterprises. This paper proposes that the technological strategies for SMEs are dynamic and during different phase, there is different innovation strategy which leads to various market performances. In particular, through the case study of Weili Electronics Co., Ltd, we fred that organizational learning abilities play a fundamental role in strategic decision. In addition, the frameworks for the determinants of technological strategies in three stages are established to illustrate the evolutionary processes of product innovation in Weili Electronics Co., Ltd.展开更多
As a Chinese proverb declares,"The beginningof wisdom is to call things by their right names."For an entrepreneur,the beginning of his success isto call his brand by a right name.A brand needs agood name as ...As a Chinese proverb declares,"The beginningof wisdom is to call things by their right names."For an entrepreneur,the beginning of his success isto call his brand by a right name.A brand needs agood name as much as the mankind does.A展开更多
Intercropping is one of the most vital practice to improve land utilization rate in China that has limited arable land resource. However, the traditional intercropping systems have many disadvantages including illogic...Intercropping is one of the most vital practice to improve land utilization rate in China that has limited arable land resource. However, the traditional intercropping systems have many disadvantages including illogical field lay-out of crops, low economic value, and labor deficiency, which cannot balance the crop production and agricultural sustainability. In view of this, we developed a novel soybean strip intercropping model using maize as the partner, the regular maize-soybean strip intercropping mainly popularized in northern China and maize-soybean relay-strip intercropping principally extended in southwestern China. Compared to the traditional maize-soybean intercropping systems, the main innovation of field lay-out style in our present intercropping systems is that the distance of two adjacent maize rows are shrunk as a narrow strip, and a strip called wide strip between two adjacent narrow strips is expanded reserving for the growth of two or three rows of soybean plants. The distance between outer rows of maize and soybean strips are expanded enough for light use efficiency improvement and tractors working in the soybean strips. Importantly, optimal cultivar screening and increase of plant density achieved a high yield of both the two crops in the intercropping systems and increased land equivalent ratio as high as 2.2. Annually alternative rotation of the adjacent maize-and soybean-strips increased the grain yield of next seasonal maize, improved the absorption of nitrogen, phosphorus, and potasium of maize, while prevented the continuous cropping obstacles. Extra soybean production was obtained without affecting maize yield in our strip intercropping systems, which balanced the high crop production and agricultural sustainability.展开更多
Paddy field is an important land use in subtropical China. Development of high soil fertility and productivity is the management goal of paddy field, Fertilization and management practices have not only influenced the...Paddy field is an important land use in subtropical China. Development of high soil fertility and productivity is the management goal of paddy field, Fertilization and management practices have not only influenced the status of organic matter and nutrients in the soil but also affected the environmental quality. This article investigates the contents of organic carbon and the nutrients, and the change over the last 20 years in highly productive paddy soils and their environmental application. Field soils were sampled and the analytical results were compared with the corresponding values in the Second Soil Survey in Yujiang County of Jiangxi Province, China. The results showed that surface soils at a depth of 0-10 cm in highly productive paddy fields in Yujiang County of Jiangxi Province had contents of organic carbon (20.2 ±3.88) g kg^-1, total nitrogen (2.09±0.55) g kg^-1, and available phosphorus (42.7 ±32.7) mg kg^-1, respectively, which were all at very rich levels. Over the last 20 years, the organic carbon pool of the highly productive paddy soils reached a steady state. Total N and available P significantly increased, whereas available K changed a little. The amount and percentage of P immobilization in the surface soil (0-10 cm) of highly productive paddy fields were (142.7 ~ 41.1) mg kg-~ and (36.2~ 10.4)% of added P, and CEC (7.93 ~ 1.32) cmol kg-~. These two parameters were not higher than the mean values of paddy soils and upland red soils in the areas. Results also showed that fertilizer P in highly productive paddy soils had a high mobility and was prone to move toward a water body, which is the main source of nutrients causing eutrophication. Because of a weak K-fixing capacity, the available K content was not high in highly productive paddy soils. This suggests that attention should be paid to the K balance and the increase of soil K pool.展开更多
It is known that “Fish Oil” is the raw material that has lot of benefits for health, because fish oil consists of several necessary unsaturated fatty acids, particularly Omega-3 and Docosahexanoic acid (DHA). Omega-...It is known that “Fish Oil” is the raw material that has lot of benefits for health, because fish oil consists of several necessary unsaturated fatty acids, particularly Omega-3 and Docosahexanoic acid (DHA). Omega-3 can decrease triglyceride level, and then it can increase HDL cholesterol level. In addition, DHA can support brain cell synthesis and also nervous system for human.展开更多
Background:In-feed antibiotics are being phased out in livestock production worldwide.Alternatives to antibiotics are urgently needed to maintain animal health and production performance.Host defense peptides(HDPs)are...Background:In-feed antibiotics are being phased out in livestock production worldwide.Alternatives to antibiotics are urgently needed to maintain animal health and production performance.Host defense peptides(HDPs)are known for their broad-spectrum antimicrobial and immunomodulatory capabilities.Enhancing the synthesis of endogenous HDPs represents a promising antibiotic alternative strategy to disease control and prevention.Methods:To identify natural products with an ability to stimulate the synthesis of endogenous HDPs,we performed a high-throughput screening of 1261 natural products using a newly-established stable luciferase reporter cell line known as IPEC-J2/pBD3-luc.The ability of the hit compounds to induce HDP genes in porcine IPEC-J2 intestinal epithelial cells,3D4/31 macrophages,and jejunal explants were verified using RT-qPCR.Augmentation of the antibacterial activity of porcine 3D4/31 macrophages against a Gram-negative bacterium(enterotoxigenic E.coli)and a Gram-positive bacterium(Staphylococcus aureus)were further confirmed with four selected HDP-inducing compounds.Results:A total of 48 natural products with a minimum Z-score of 2.0 were identified after high-throughput screening,with 21 compounds giving at least 2-fold increase in luciferase activity in a follow-up dose-response experiment.Xanthohumol and deoxyshikonin were further found to be the most potent in inducing pBD3 mRNA expression,showing a minimum 10-fold increase in IPEC-J2,3D4/31 cells,and jejunal explants.Other compounds such as isorhapontigenin and calycosin also enhanced pBD3 mRNA expression by at least 10-fold in both IPEC-J2 cells and jejunal explants,but not 3D4/31 cells.In addition to pBD3,other porcine HDP genes such as pBD2,PG1-5,and pEP2C were induced to different magnitudes by xanthohumol,deoxyshikonin,isorhapontigenin,and calycosin,although clear gene-and cell type-specific patterns of regulation were observed.Desirably,these four compounds had a minimum effect on the expression of several representative inflammatory cytokine genes.Furthermore,when used at HDP-inducing concentrations,these compounds showed no obvious direct antibacterial activity,but significantly augmented the antibacterial activity of 3D4/31 macrophages(P<0.05)against both Gram-negative and Gram-positive bacteria.Conclusions:Our results indicate that these newly-identified natural HDP-inducing compounds have the potential to be developed as novel alternatives to antibiotics for prophylactic and therapeutic treatment of infectious diseases in livestock production.展开更多
Development strategy for heavy-oil reservoirs is one of the important research interests in China National Offshore Oil Corp. (CNOOC) that plans a highly effective development for heavy oil fields in multilayered fl...Development strategy for heavy-oil reservoirs is one of the important research interests in China National Offshore Oil Corp. (CNOOC) that plans a highly effective development for heavy oil fields in multilayered fluvial reservoirs because of their significant influence on marine oil and even on China's petroleum production. The characteristics analysis of multilayered fluvial reservoirs in the heavy oil fields in Bohai Bay indicates that large amounts ofoil were trapped in the channel, point bar and channel bar sands. The reserves distribution of 8 oilfields illustrates that the reserves trapped in the main sands, which is 20%-40% of all of the sand bodies, account for 70%-90% of total reserves of the heavy oil fields. The cumulative production from high productivity wells (50% of the total wells) was 75%-90% of the production of the overall oilfield, while only 3%-10% of the total production was from the low productivity wells (30% of the total wells). And the high productivity wells were drilled in the sands with high reserves abundance. Based on the above information the development strategy was proposed, which includes reserves production planning, selection of well configuration, productivity design, and development modification at different stages.展开更多
Electrochemical CO reduction reaction(CORR) provides a promising approach for producing valuable multicarbon products(C_(2+)), while the low solubility of CO in aqueous solution and high energy barrier of C–C couplin...Electrochemical CO reduction reaction(CORR) provides a promising approach for producing valuable multicarbon products(C_(2+)), while the low solubility of CO in aqueous solution and high energy barrier of C–C coupling as well as the competing hydrogen evolution reaction(HER) largely limit the efficiency for C_(2+)production in CORR. Here we report an overturn on the Faradaic efficiency of CORR from being HER-dominant to C_(2+)formation-dominant over a wide potential window, accompanied by a significant activity enhancement over a Moss-like Cu catalyst via pressuring CO. With the CO pressure rising from 1 to 40 atm, the C_(2+)Faradaic efficiency and partial current density remarkably increase from 22.8%and 18.9 mA cm^(-2)to 89.7% and 116.7 mA cm^(-2), respectively. Experimental and theoretical investigations reveal that high pressure-induced high CO coverage on metallic Cu surface weakens the Cu–C bond via reducing electron transfer from Cu to adsorbed CO and restrains hydrogen adsorption, which significantly facilitates the C–C coupling while suppressing HER on the predominant Cu(111) surface, thereby boosting the CO electroreduction to C_(2+)activity.展开更多
[Objective] To investigate the optimal determination conditions of melamine in animal blood products by high performance liquid chromatography (HPLC). [ Method] The blood samples were extracted with ultrasonic in 1%...[Objective] To investigate the optimal determination conditions of melamine in animal blood products by high performance liquid chromatography (HPLC). [ Method] The blood samples were extracted with ultrasonic in 1% trichloroacetic acid (TDA) and acetonitrile. After purifying by solide phase extraction (SPE), the samples were analyzed by H PLC. r Result I The optimal conditions of HPLC were as follows: the chromatographic column was Zorbax SB-CS; the mobile phase was ion-pairs buffer-acetonitrile (95/5, V/V) ; the flow rate was 1.0 ml/min; the column temperature was 25 ℃ and the UV detection wavelength was 235 nm. The determined melamine concentration range was 0.001 -0.050 mg/ml; the linear correlation coefficient was 0.999 4; the concentration limit of melamine was 0.1 mg/kg; the average recovery rate of the melamine were 97.60% - 100.65%, and the relative standard deviation (RSD) was 1.23% -3.04%.[ Conclusion] The HPLC is simple, accurate and repeatable for determination of the melamine in animal blood products.展开更多
In order to further study the influence of high-yield-water on the productivity of CBM (coalbed methane) wells and the expulsion and production method carried out in CBM wells, by means of analyzing and researching ...In order to further study the influence of high-yield-water on the productivity of CBM (coalbed methane) wells and the expulsion and production method carried out in CBM wells, by means of analyzing and researching production characteris- tics and geologic condition of the CBM wells with high water yield in Yanchuannan block located at the eastern margin of Or- dos basin, the mechanism of high water yield decreasing the productivity of CBM well was discussed, and the expulsion and production method for this type of CBM well was proposed. The results show that high water yield would decrease the produc- tivity of CBM wells, and the mechanism is: first, in some circumstances, high water yield could reflect that there was dissipa- tion during the process of coalbed methane reservoir forming, which would lower the gas saturation of coal gas reservoir and reduce the productivity of CBM well; second, a large quantity of coalbed methane dissipated in the form of solution gas, caus- ing the practical reservoir pressure when gas appeared in casing to be lower than critical desorption pressure of the coal bed; finally, the CBM well with high water yield would have higher requirements of discharge and mining installation, system and continuity, and any link with problems would have a great impact on the well's productivity and would increase the difficulty of discharge and mining. In the case of wells with high water yield, the key is to select applicable discharge and mining installa- tion, which should be able to make the bottom hole flowing pressure decline smoothly and fast, and make the wells produce gas as quickly as possible but able to slow down the rate of discharge and mining properly when gas has appeared. In addition, in view of the CBM wells with high water yield, an installation lectotype method based on Darcy's law was proposed, which was found with good accuracy and practicability through field application.展开更多
Marine shale gas resources have great potential in the south of the Sichuan Basin in China.At present,the high-quality shale gas resources at depth of 2000–3500 m are under effective development,and strategic breakth...Marine shale gas resources have great potential in the south of the Sichuan Basin in China.At present,the high-quality shale gas resources at depth of 2000–3500 m are under effective development,and strategic breakthroughs have been made in deeper shale gas resources at depth of 3500–4500 m.To promote the effective production of shale gas in this area,this study examines key factors controlling high shale gas production and presents the next exploration direction in the southern Sichuan Basin based on summarizing the geological understandings from the Lower Silurian Longmaxi Formation shale gas exploration combined with the latest results of geological evaluation.The results show that:(1)The relative sea depth in marine shelf sedimentary environment controls the development and distribution of reservoirs.In the relatively deep water area in deep-water shelf,grade-I reservoirs with a larger continuous thickness develop.The relative depth of sea in marine shelf sedimentary environment can be determined by redox conditions.The research shows that the uranium to thorium mass ratio greater than 1.25 indicates relatively deep water in anoxic reduction environment,and the uranium to thorium mass ratio of 0.75–1.25 indicates semi-deep water in weak reduction and weak oxidation environment,and the uranium to thorium mass ratio less than 0.75 indicates relatively shallow water in strong oxidation environment.(2)The propped fractures in shale reservoirs subject to fracturing treatment are generally 10–12 m high,if grade-I reservoirs are more than 10 m in continuous thickness,then all the propped section would be high-quality reserves;in this case,the longer the continuous thickness of penetrated grade-I reservoirs,the higher the production will be.(3)The shale gas reservoirs at 3500–4500 m depth in southern Sichuan are characterized by high formation pressure,high pressure coefficient,well preserved pores,good pore structure and high proportion of free gas,making them the most favorable new field for shale gas exploration;and the pressure coefficient greater than 1.2 is a necessary condition for shale gas wells to obtain high production.(4)High production wells in the deep shale gas reservoirs are those in areas where Long11-Long13 sub-beds are more than 10 m thick,with 1500 m long horizontal section,grade-I reservoirs penetration rate of over 90%,and fractured by dense cutting+high intensity sand injection+large displacement+large liquid volume.(5)The relatively deep-water area in the deep-water shelf and the area at depth of 3500–4500 m well overlap in the southern Sichuan,and the overlapping area is the most favorable shale gas exploration and development zones in the southern Sichuan in the future.With advancement in theory and technology,annual shale gas production in the southern Sichuan is expected to reach 450×108 m3.展开更多
The quality and safety of agricultural products are closely related to human health.They also play an important role in enhancing the competitiveness of China’s agricultural products market,shaping the brand value of...The quality and safety of agricultural products are closely related to human health.They also play an important role in enhancing the competitiveness of China’s agricultural products market,shaping the brand value of agricultural products,and promoting the high-quality development of agriculture.At present,there are still a series of problems in the quality and safety of agricultural products.Relevant departments of the state should strengthen guidance and supervision,improve the quality and safety awareness and management level of agricultural product producers,and encourage producers to participate in the product certification and process certification of agricultural products.In addition,it is necessary to take effective control measures in accordance with the certification requirements,to evaluate their effectiveness,so as to improve the quality and safety of agricultural products and promote the high-quality development of China’s agriculture.展开更多
As the classical transient flow model cannot simulate the water hammer effect of gas well, a transient flow mathematical model of multiphase flow gas well is established based on the mechanism of water hammer effect a...As the classical transient flow model cannot simulate the water hammer effect of gas well, a transient flow mathematical model of multiphase flow gas well is established based on the mechanism of water hammer effect and the theory of multiphase flow. With this model, the transient flow of gas well can be simulated by segmenting the curved part of tubing and calculating numerical solution with the method of characteristic curve. The results show that the higher the opening coefficient of the valve when closed, the larger the peak value of the wellhead pressure, the more gentle the pressure fluctuation, and the less obvious the pressure mutation area will be. On the premise of not exceeding the maximum shut-in pressure of the tubing, adopting large opening coefficient can reduce the impact of the pressure wave. The higher the cross-section liquid holdup, the greater the pressure wave speed, and the shorter the propagation period will be. The larger the liquid holdup, the larger the variation range of pressure, and the greater the pressure will be. In actual production, the production parameters can be adjusted to get the appropriate liquid holdup, control the magnitude and range of fluctuation pressure, and reduce the impact of water hammer effect. When the valve closing time increases, the maximum fluctuating pressure value of the wellhead decreases, the time of pressure peak delays, and the pressure mutation area gradually disappears. The shorter the valve closing time, the faster the pressure wave propagates. Case simulation proves that the transient flow model of gas well can optimize the reasonable valve opening coefficient and valve closing time, reduce the harm of water hammer impact on the wellhead device and tubing, and ensure the integrity of the wellbore.展开更多
From 1980’s decade,the introduction of carbon composite materials in structural applications has been consistently increased in the successive generations of civil aircraft from Single Aisle to Middle-long Range to a...From 1980’s decade,the introduction of carbon composite materials in structural applications has been consistently increased in the successive generations of civil aircraft from Single Aisle to Middle-long Range to achieve a culminant point with more than 50%in structure weight in recent commercial civil aircraft.This evolution,done through successive iterations,has been possible by combining in the same time the improvement of intrinsic composite material performances and its transformation into prepreg production technologies together with the development of new manufacturing process for material lay-up automation at composite shop-floor manufacturer of aircraft composite parts.New challenges are still coming to continuously develop materials and technologies in order to pursue the production more cost-effective composite parts.Associated to higher aircraft production rate for single aisle,new challenges may force material and aircraft designers and producers to furthermore drive new products and processes introduction and new ways of transformation within in next decade of composite aircraft designs.We propose to illustrate these trends using past and recent developments and our return of experience from Hexcel on Civil Aircraft programs.展开更多
1 Scope This standard specifies the classification, shape and dimension, technical requirements, test methods, quality appraisal procedure, packing, marking, transportation, storage, and quality certificate of high a...1 Scope This standard specifies the classification, shape and dimension, technical requirements, test methods, quality appraisal procedure, packing, marking, transportation, storage, and quality certificate of high alumina insulating bricks.展开更多
Improving processor frequency to strengthen massive data processing capability will lead to incremen-tal server marginal costs and bring about a series of problems such as power consumption,managementcomplexity,etc.Ba...Improving processor frequency to strengthen massive data processing capability will lead to incremen-tal server marginal costs and bring about a series of problems such as power consumption,managementcomplexity,etc.Based on the field programmable gate array(FPGA),TCP offload engine(TOE),zero-copy and other key technologies,this paper describes the design and realization of a reconfigurable accel-erator board.In this board,TCP/IP protocol will be moved to high-speed reconfigurable acceleratorboard.The packets will be labeled according to the protocol and submitted to the upper data processingsoftware after IP-quintuple filtering in hardware.Reconfigurable accelerator board obtains higher perfor-mance speed-up compared with ordinary NIC card.展开更多
The process of the epoxy-bonded Sm_2TM_(17) magnets includes:(1)after melting,the ingots are treated by solid soluiion,and then aged and pulverized;(2)the obtained alloy powder is mixed with epoxy resin bind- er;(3)th...The process of the epoxy-bonded Sm_2TM_(17) magnets includes:(1)after melting,the ingots are treated by solid soluiion,and then aged and pulverized;(2)the obtained alloy powder is mixed with epoxy resin bind- er;(3)the mixture is pressed in a magnetic field;(4)the compacts are cured.When the SmCo_(4.9)Fe_(2.7)Cu_(0.54)Zr_(0.13) alloy is heat treated and pressed with optimum pressing parameters,the high quality bonded magnets with B_r=8250 G,_iH_c=13000 Oe,and(BH)_(max)=16MGOe can be obtained.The stability of the magnets is studied also.The irreversible loss of O.C.(open circuit)remanence B_r in the temperature range between 25 and 150℃,is less than 4%.The average temperature coefficient at temperatures between 25 and 70℃ is-0.03%/℃.The magnets obtained have heat resistance up to 130℃ even in long-term service, and have good corrosion resistance in acid,alkali and salt solutions.展开更多
The RR soybean was quantitatively detected by ABI Prism 7300 sequence detector with PCR primers and fluorescence probes were designed according to the sequences of endogenous Lectin gene and exogenous CP4-EPSPS gene, ...The RR soybean was quantitatively detected by ABI Prism 7300 sequence detector with PCR primers and fluorescence probes were designed according to the sequences of endogenous Lectin gene and exogenous CP4-EPSPS gene, and the PCR systems were based on SYBR Green I and TaqMan. The standard curve of ACt between CP4-EPSPS gene and Lectin gene of the RR soybean in standard materials was generated and a linear regression equation was obtained. Quantification methods were optimized through two different real-time PCR chemistries, i.e. SYBR Green I and TaqMan, and the RR soybean contents were quantified in five standard samples and seven highly processed products by the two assays. Both methods are proved to be specific, highly sensitive and reliable for both identification and quantification of soybean DNA. The results indicate that the two optimized PCR system can be used for the practical quantitative detection of RR soybean in highly processed products.展开更多
Combining a progressive tandem junction design with a unique Si nanowire(SiNW)framework paves the way for the development of high‐onset‐potential photocathodes and enhancement of solar hydrogen production.Herein,a r...Combining a progressive tandem junction design with a unique Si nanowire(SiNW)framework paves the way for the development of high‐onset‐potential photocathodes and enhancement of solar hydrogen production.Herein,a radial tandem junction(RTJ)thin film water‐splitting photo‐cathode has been demonstrated experimentally for the first time.The photocathode is directly fab‐ricated on vapor‐liquid‐solid‐grown SiNWs and consists of two radially stacked p‐i‐n junctions,featuring hydrogenated amorphous silicon(a‐Si:H)as the outer absorber layer,which absorbs short wavelengths,and hydrogenated amorphous silicon germanium(a‐SiGe:H)as the inner layer,which absorbs long wavelengths.The randomly distributed SiNW framework enables highly efficient light‐trapping,which facilitates the use of very thin absorber layers of a‐Si:H(~50 nm)and a‐SiGe:H(~40 nm).In a neutral electrolyte(pH=7),the three‐dimensional(3D)RTJ photocathode delivers a high photocurrent onset of 1.15 V vs.the reversible hydrogen electrode(RHE),accompanied by a photocurrent of 2.98 mA/cm^(2) at 0 V vs.RHE,and an overall applied‐bias photon‐to‐current effi‐ciency of 1.72%.These results emphasize the promising role of 3D radial tandem technology in developing a new generation of durable,low‐cost,high‐onset‐potential photocathodes capable of large‐scale implementation。展开更多
文摘Import of New and High-tech Products Increases Rapidly The proportion of new and high-tech products in the total import continues to increase.Ever since 1991,the proportion of new and high-tech products in the total import has experienced a continuous growth.It took up only 14.8% of the total import in 1991.The figure reached 20.8% in 1998,and further rose to that of 26.3% in 2001.From January to June this year,the import of new and hightech products totaled 34.540 billion USD,up 18.1% over the same per...
文摘Product innovation is an important strategy for high-tech firms, especially for small and medium enterprises. This paper proposes that the technological strategies for SMEs are dynamic and during different phase, there is different innovation strategy which leads to various market performances. In particular, through the case study of Weili Electronics Co., Ltd, we fred that organizational learning abilities play a fundamental role in strategic decision. In addition, the frameworks for the determinants of technological strategies in three stages are established to illustrate the evolutionary processes of product innovation in Weili Electronics Co., Ltd.
文摘As a Chinese proverb declares,"The beginningof wisdom is to call things by their right names."For an entrepreneur,the beginning of his success isto call his brand by a right name.A brand needs agood name as much as the mankind does.A
基金supported by the National Natural Science Foundation of China (31401308, 31371555 and 31671445)
文摘Intercropping is one of the most vital practice to improve land utilization rate in China that has limited arable land resource. However, the traditional intercropping systems have many disadvantages including illogical field lay-out of crops, low economic value, and labor deficiency, which cannot balance the crop production and agricultural sustainability. In view of this, we developed a novel soybean strip intercropping model using maize as the partner, the regular maize-soybean strip intercropping mainly popularized in northern China and maize-soybean relay-strip intercropping principally extended in southwestern China. Compared to the traditional maize-soybean intercropping systems, the main innovation of field lay-out style in our present intercropping systems is that the distance of two adjacent maize rows are shrunk as a narrow strip, and a strip called wide strip between two adjacent narrow strips is expanded reserving for the growth of two or three rows of soybean plants. The distance between outer rows of maize and soybean strips are expanded enough for light use efficiency improvement and tractors working in the soybean strips. Importantly, optimal cultivar screening and increase of plant density achieved a high yield of both the two crops in the intercropping systems and increased land equivalent ratio as high as 2.2. Annually alternative rotation of the adjacent maize-and soybean-strips increased the grain yield of next seasonal maize, improved the absorption of nitrogen, phosphorus, and potasium of maize, while prevented the continuous cropping obstacles. Extra soybean production was obtained without affecting maize yield in our strip intercropping systems, which balanced the high crop production and agricultural sustainability.
基金supported by the National Natural Science Foundation of China(40471066)the Knowledge Innovation Program of the Chinese Academy of Sciences(KZCX1-SW-01-05).
文摘Paddy field is an important land use in subtropical China. Development of high soil fertility and productivity is the management goal of paddy field, Fertilization and management practices have not only influenced the status of organic matter and nutrients in the soil but also affected the environmental quality. This article investigates the contents of organic carbon and the nutrients, and the change over the last 20 years in highly productive paddy soils and their environmental application. Field soils were sampled and the analytical results were compared with the corresponding values in the Second Soil Survey in Yujiang County of Jiangxi Province, China. The results showed that surface soils at a depth of 0-10 cm in highly productive paddy fields in Yujiang County of Jiangxi Province had contents of organic carbon (20.2 ±3.88) g kg^-1, total nitrogen (2.09±0.55) g kg^-1, and available phosphorus (42.7 ±32.7) mg kg^-1, respectively, which were all at very rich levels. Over the last 20 years, the organic carbon pool of the highly productive paddy soils reached a steady state. Total N and available P significantly increased, whereas available K changed a little. The amount and percentage of P immobilization in the surface soil (0-10 cm) of highly productive paddy fields were (142.7 ~ 41.1) mg kg-~ and (36.2~ 10.4)% of added P, and CEC (7.93 ~ 1.32) cmol kg-~. These two parameters were not higher than the mean values of paddy soils and upland red soils in the areas. Results also showed that fertilizer P in highly productive paddy soils had a high mobility and was prone to move toward a water body, which is the main source of nutrients causing eutrophication. Because of a weak K-fixing capacity, the available K content was not high in highly productive paddy soils. This suggests that attention should be paid to the K balance and the increase of soil K pool.
文摘It is known that “Fish Oil” is the raw material that has lot of benefits for health, because fish oil consists of several necessary unsaturated fatty acids, particularly Omega-3 and Docosahexanoic acid (DHA). Omega-3 can decrease triglyceride level, and then it can increase HDL cholesterol level. In addition, DHA can support brain cell synthesis and also nervous system for human.
基金supported by the National Natural Science Foundation of China(31972576)the Beijing Natural Science Foundation(6202004)+2 种基金the Special Program on Science and Technology Innovation Capacity Building of BAAFS(KJCX20180414 and KJCX201914)the USDA National Institute of Food and Agriculture(2018-68003-27462 and 2018-33610-28252)the Oklahoma Center for the Advancement of Science and Technology(AR19-27)。
文摘Background:In-feed antibiotics are being phased out in livestock production worldwide.Alternatives to antibiotics are urgently needed to maintain animal health and production performance.Host defense peptides(HDPs)are known for their broad-spectrum antimicrobial and immunomodulatory capabilities.Enhancing the synthesis of endogenous HDPs represents a promising antibiotic alternative strategy to disease control and prevention.Methods:To identify natural products with an ability to stimulate the synthesis of endogenous HDPs,we performed a high-throughput screening of 1261 natural products using a newly-established stable luciferase reporter cell line known as IPEC-J2/pBD3-luc.The ability of the hit compounds to induce HDP genes in porcine IPEC-J2 intestinal epithelial cells,3D4/31 macrophages,and jejunal explants were verified using RT-qPCR.Augmentation of the antibacterial activity of porcine 3D4/31 macrophages against a Gram-negative bacterium(enterotoxigenic E.coli)and a Gram-positive bacterium(Staphylococcus aureus)were further confirmed with four selected HDP-inducing compounds.Results:A total of 48 natural products with a minimum Z-score of 2.0 were identified after high-throughput screening,with 21 compounds giving at least 2-fold increase in luciferase activity in a follow-up dose-response experiment.Xanthohumol and deoxyshikonin were further found to be the most potent in inducing pBD3 mRNA expression,showing a minimum 10-fold increase in IPEC-J2,3D4/31 cells,and jejunal explants.Other compounds such as isorhapontigenin and calycosin also enhanced pBD3 mRNA expression by at least 10-fold in both IPEC-J2 cells and jejunal explants,but not 3D4/31 cells.In addition to pBD3,other porcine HDP genes such as pBD2,PG1-5,and pEP2C were induced to different magnitudes by xanthohumol,deoxyshikonin,isorhapontigenin,and calycosin,although clear gene-and cell type-specific patterns of regulation were observed.Desirably,these four compounds had a minimum effect on the expression of several representative inflammatory cytokine genes.Furthermore,when used at HDP-inducing concentrations,these compounds showed no obvious direct antibacterial activity,but significantly augmented the antibacterial activity of 3D4/31 macrophages(P<0.05)against both Gram-negative and Gram-positive bacteria.Conclusions:Our results indicate that these newly-identified natural HDP-inducing compounds have the potential to be developed as novel alternatives to antibiotics for prophylactic and therapeutic treatment of infectious diseases in livestock production.
文摘Development strategy for heavy-oil reservoirs is one of the important research interests in China National Offshore Oil Corp. (CNOOC) that plans a highly effective development for heavy oil fields in multilayered fluvial reservoirs because of their significant influence on marine oil and even on China's petroleum production. The characteristics analysis of multilayered fluvial reservoirs in the heavy oil fields in Bohai Bay indicates that large amounts ofoil were trapped in the channel, point bar and channel bar sands. The reserves distribution of 8 oilfields illustrates that the reserves trapped in the main sands, which is 20%-40% of all of the sand bodies, account for 70%-90% of total reserves of the heavy oil fields. The cumulative production from high productivity wells (50% of the total wells) was 75%-90% of the production of the overall oilfield, while only 3%-10% of the total production was from the low productivity wells (30% of the total wells). And the high productivity wells were drilled in the sands with high reserves abundance. Based on the above information the development strategy was proposed, which includes reserves production planning, selection of well configuration, productivity design, and development modification at different stages.
基金financial support from the National Key R&D Program of China (Nos. 2022YFA1504500, 2022YFA1503100)the National Natural Science Foundation of China (Nos. 21988101, 21890753, 22225204, 92145301, 22002160 and 22272174)+4 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB36030200)the CAS Project for Young Scientists in Basic Research (No. YSBR-028)the Fundamental Research Funds for the Central Universities (No. 20720220008)the Dalian National Lab for Clean Energy (DNL Cooperation Fund 202001)the Innovation Research Fund Project of DICP (No. DICP I202016)。
文摘Electrochemical CO reduction reaction(CORR) provides a promising approach for producing valuable multicarbon products(C_(2+)), while the low solubility of CO in aqueous solution and high energy barrier of C–C coupling as well as the competing hydrogen evolution reaction(HER) largely limit the efficiency for C_(2+)production in CORR. Here we report an overturn on the Faradaic efficiency of CORR from being HER-dominant to C_(2+)formation-dominant over a wide potential window, accompanied by a significant activity enhancement over a Moss-like Cu catalyst via pressuring CO. With the CO pressure rising from 1 to 40 atm, the C_(2+)Faradaic efficiency and partial current density remarkably increase from 22.8%and 18.9 mA cm^(-2)to 89.7% and 116.7 mA cm^(-2), respectively. Experimental and theoretical investigations reveal that high pressure-induced high CO coverage on metallic Cu surface weakens the Cu–C bond via reducing electron transfer from Cu to adsorbed CO and restrains hydrogen adsorption, which significantly facilitates the C–C coupling while suppressing HER on the predominant Cu(111) surface, thereby boosting the CO electroreduction to C_(2+)activity.
基金supported by the Shanghai Key Development Project of Agriculture Science and Technology (2009 No.6-3)
文摘[Objective] To investigate the optimal determination conditions of melamine in animal blood products by high performance liquid chromatography (HPLC). [ Method] The blood samples were extracted with ultrasonic in 1% trichloroacetic acid (TDA) and acetonitrile. After purifying by solide phase extraction (SPE), the samples were analyzed by H PLC. r Result I The optimal conditions of HPLC were as follows: the chromatographic column was Zorbax SB-CS; the mobile phase was ion-pairs buffer-acetonitrile (95/5, V/V) ; the flow rate was 1.0 ml/min; the column temperature was 25 ℃ and the UV detection wavelength was 235 nm. The determined melamine concentration range was 0.001 -0.050 mg/ml; the linear correlation coefficient was 0.999 4; the concentration limit of melamine was 0.1 mg/kg; the average recovery rate of the melamine were 97.60% - 100.65%, and the relative standard deviation (RSD) was 1.23% -3.04%.[ Conclusion] The HPLC is simple, accurate and repeatable for determination of the melamine in animal blood products.
文摘In order to further study the influence of high-yield-water on the productivity of CBM (coalbed methane) wells and the expulsion and production method carried out in CBM wells, by means of analyzing and researching production characteris- tics and geologic condition of the CBM wells with high water yield in Yanchuannan block located at the eastern margin of Or- dos basin, the mechanism of high water yield decreasing the productivity of CBM well was discussed, and the expulsion and production method for this type of CBM well was proposed. The results show that high water yield would decrease the produc- tivity of CBM wells, and the mechanism is: first, in some circumstances, high water yield could reflect that there was dissipa- tion during the process of coalbed methane reservoir forming, which would lower the gas saturation of coal gas reservoir and reduce the productivity of CBM well; second, a large quantity of coalbed methane dissipated in the form of solution gas, caus- ing the practical reservoir pressure when gas appeared in casing to be lower than critical desorption pressure of the coal bed; finally, the CBM well with high water yield would have higher requirements of discharge and mining installation, system and continuity, and any link with problems would have a great impact on the well's productivity and would increase the difficulty of discharge and mining. In the case of wells with high water yield, the key is to select applicable discharge and mining installa- tion, which should be able to make the bottom hole flowing pressure decline smoothly and fast, and make the wells produce gas as quickly as possible but able to slow down the rate of discharge and mining properly when gas has appeared. In addition, in view of the CBM wells with high water yield, an installation lectotype method based on Darcy's law was proposed, which was found with good accuracy and practicability through field application.
基金Supported by the China National Science and Technology Major Project(2016ZX05062)the PetroChina Science and Technology Major Project(2016E-0611)
文摘Marine shale gas resources have great potential in the south of the Sichuan Basin in China.At present,the high-quality shale gas resources at depth of 2000–3500 m are under effective development,and strategic breakthroughs have been made in deeper shale gas resources at depth of 3500–4500 m.To promote the effective production of shale gas in this area,this study examines key factors controlling high shale gas production and presents the next exploration direction in the southern Sichuan Basin based on summarizing the geological understandings from the Lower Silurian Longmaxi Formation shale gas exploration combined with the latest results of geological evaluation.The results show that:(1)The relative sea depth in marine shelf sedimentary environment controls the development and distribution of reservoirs.In the relatively deep water area in deep-water shelf,grade-I reservoirs with a larger continuous thickness develop.The relative depth of sea in marine shelf sedimentary environment can be determined by redox conditions.The research shows that the uranium to thorium mass ratio greater than 1.25 indicates relatively deep water in anoxic reduction environment,and the uranium to thorium mass ratio of 0.75–1.25 indicates semi-deep water in weak reduction and weak oxidation environment,and the uranium to thorium mass ratio less than 0.75 indicates relatively shallow water in strong oxidation environment.(2)The propped fractures in shale reservoirs subject to fracturing treatment are generally 10–12 m high,if grade-I reservoirs are more than 10 m in continuous thickness,then all the propped section would be high-quality reserves;in this case,the longer the continuous thickness of penetrated grade-I reservoirs,the higher the production will be.(3)The shale gas reservoirs at 3500–4500 m depth in southern Sichuan are characterized by high formation pressure,high pressure coefficient,well preserved pores,good pore structure and high proportion of free gas,making them the most favorable new field for shale gas exploration;and the pressure coefficient greater than 1.2 is a necessary condition for shale gas wells to obtain high production.(4)High production wells in the deep shale gas reservoirs are those in areas where Long11-Long13 sub-beds are more than 10 m thick,with 1500 m long horizontal section,grade-I reservoirs penetration rate of over 90%,and fractured by dense cutting+high intensity sand injection+large displacement+large liquid volume.(5)The relatively deep-water area in the deep-water shelf and the area at depth of 3500–4500 m well overlap in the southern Sichuan,and the overlapping area is the most favorable shale gas exploration and development zones in the southern Sichuan in the future.With advancement in theory and technology,annual shale gas production in the southern Sichuan is expected to reach 450×108 m3.
文摘The quality and safety of agricultural products are closely related to human health.They also play an important role in enhancing the competitiveness of China’s agricultural products market,shaping the brand value of agricultural products,and promoting the high-quality development of agriculture.At present,there are still a series of problems in the quality and safety of agricultural products.Relevant departments of the state should strengthen guidance and supervision,improve the quality and safety awareness and management level of agricultural product producers,and encourage producers to participate in the product certification and process certification of agricultural products.In addition,it is necessary to take effective control measures in accordance with the certification requirements,to evaluate their effectiveness,so as to improve the quality and safety of agricultural products and promote the high-quality development of China’s agriculture.
基金Supported by National Science and Technology Major Project of the Ministry of Science and Technology of China(2016ZX05026-002,2016ZX05028-001,2016ZX05024-005)
文摘As the classical transient flow model cannot simulate the water hammer effect of gas well, a transient flow mathematical model of multiphase flow gas well is established based on the mechanism of water hammer effect and the theory of multiphase flow. With this model, the transient flow of gas well can be simulated by segmenting the curved part of tubing and calculating numerical solution with the method of characteristic curve. The results show that the higher the opening coefficient of the valve when closed, the larger the peak value of the wellhead pressure, the more gentle the pressure fluctuation, and the less obvious the pressure mutation area will be. On the premise of not exceeding the maximum shut-in pressure of the tubing, adopting large opening coefficient can reduce the impact of the pressure wave. The higher the cross-section liquid holdup, the greater the pressure wave speed, and the shorter the propagation period will be. The larger the liquid holdup, the larger the variation range of pressure, and the greater the pressure will be. In actual production, the production parameters can be adjusted to get the appropriate liquid holdup, control the magnitude and range of fluctuation pressure, and reduce the impact of water hammer effect. When the valve closing time increases, the maximum fluctuating pressure value of the wellhead decreases, the time of pressure peak delays, and the pressure mutation area gradually disappears. The shorter the valve closing time, the faster the pressure wave propagates. Case simulation proves that the transient flow model of gas well can optimize the reasonable valve opening coefficient and valve closing time, reduce the harm of water hammer impact on the wellhead device and tubing, and ensure the integrity of the wellbore.
文摘From 1980’s decade,the introduction of carbon composite materials in structural applications has been consistently increased in the successive generations of civil aircraft from Single Aisle to Middle-long Range to achieve a culminant point with more than 50%in structure weight in recent commercial civil aircraft.This evolution,done through successive iterations,has been possible by combining in the same time the improvement of intrinsic composite material performances and its transformation into prepreg production technologies together with the development of new manufacturing process for material lay-up automation at composite shop-floor manufacturer of aircraft composite parts.New challenges are still coming to continuously develop materials and technologies in order to pursue the production more cost-effective composite parts.Associated to higher aircraft production rate for single aisle,new challenges may force material and aircraft designers and producers to furthermore drive new products and processes introduction and new ways of transformation within in next decade of composite aircraft designs.We propose to illustrate these trends using past and recent developments and our return of experience from Hexcel on Civil Aircraft programs.
文摘1 Scope This standard specifies the classification, shape and dimension, technical requirements, test methods, quality appraisal procedure, packing, marking, transportation, storage, and quality certificate of high alumina insulating bricks.
基金the National High Technology Research and Development Programme of China(No2007AA01Z115)
文摘Improving processor frequency to strengthen massive data processing capability will lead to incremen-tal server marginal costs and bring about a series of problems such as power consumption,managementcomplexity,etc.Based on the field programmable gate array(FPGA),TCP offload engine(TOE),zero-copy and other key technologies,this paper describes the design and realization of a reconfigurable accel-erator board.In this board,TCP/IP protocol will be moved to high-speed reconfigurable acceleratorboard.The packets will be labeled according to the protocol and submitted to the upper data processingsoftware after IP-quintuple filtering in hardware.Reconfigurable accelerator board obtains higher perfor-mance speed-up compared with ordinary NIC card.
文摘The process of the epoxy-bonded Sm_2TM_(17) magnets includes:(1)after melting,the ingots are treated by solid soluiion,and then aged and pulverized;(2)the obtained alloy powder is mixed with epoxy resin bind- er;(3)the mixture is pressed in a magnetic field;(4)the compacts are cured.When the SmCo_(4.9)Fe_(2.7)Cu_(0.54)Zr_(0.13) alloy is heat treated and pressed with optimum pressing parameters,the high quality bonded magnets with B_r=8250 G,_iH_c=13000 Oe,and(BH)_(max)=16MGOe can be obtained.The stability of the magnets is studied also.The irreversible loss of O.C.(open circuit)remanence B_r in the temperature range between 25 and 150℃,is less than 4%.The average temperature coefficient at temperatures between 25 and 70℃ is-0.03%/℃.The magnets obtained have heat resistance up to 130℃ even in long-term service, and have good corrosion resistance in acid,alkali and salt solutions.
基金Supported by the Innovative Team Funds of Northeast Agricultural University (CXT004-3-2)Foundation of Heilongjiang Educational Committee(11511030)
文摘The RR soybean was quantitatively detected by ABI Prism 7300 sequence detector with PCR primers and fluorescence probes were designed according to the sequences of endogenous Lectin gene and exogenous CP4-EPSPS gene, and the PCR systems were based on SYBR Green I and TaqMan. The standard curve of ACt between CP4-EPSPS gene and Lectin gene of the RR soybean in standard materials was generated and a linear regression equation was obtained. Quantification methods were optimized through two different real-time PCR chemistries, i.e. SYBR Green I and TaqMan, and the RR soybean contents were quantified in five standard samples and seven highly processed products by the two assays. Both methods are proved to be specific, highly sensitive and reliable for both identification and quantification of soybean DNA. The results indicate that the two optimized PCR system can be used for the practical quantitative detection of RR soybean in highly processed products.
文摘Combining a progressive tandem junction design with a unique Si nanowire(SiNW)framework paves the way for the development of high‐onset‐potential photocathodes and enhancement of solar hydrogen production.Herein,a radial tandem junction(RTJ)thin film water‐splitting photo‐cathode has been demonstrated experimentally for the first time.The photocathode is directly fab‐ricated on vapor‐liquid‐solid‐grown SiNWs and consists of two radially stacked p‐i‐n junctions,featuring hydrogenated amorphous silicon(a‐Si:H)as the outer absorber layer,which absorbs short wavelengths,and hydrogenated amorphous silicon germanium(a‐SiGe:H)as the inner layer,which absorbs long wavelengths.The randomly distributed SiNW framework enables highly efficient light‐trapping,which facilitates the use of very thin absorber layers of a‐Si:H(~50 nm)and a‐SiGe:H(~40 nm).In a neutral electrolyte(pH=7),the three‐dimensional(3D)RTJ photocathode delivers a high photocurrent onset of 1.15 V vs.the reversible hydrogen electrode(RHE),accompanied by a photocurrent of 2.98 mA/cm^(2) at 0 V vs.RHE,and an overall applied‐bias photon‐to‐current effi‐ciency of 1.72%.These results emphasize the promising role of 3D radial tandem technology in developing a new generation of durable,low‐cost,high‐onset‐potential photocathodes capable of large‐scale implementation。