Purification is a primary application of zone melting, in which the improvement of efficiency, production yield and minimum achievable impurity level are always the research focus due to the increasing demand for high...Purification is a primary application of zone melting, in which the improvement of efficiency, production yield and minimum achievable impurity level are always the research focus due to the increasing demand for high purity metals. This paper has systematically outlined the whole development of related research on zone refining of metals including basic theories, variants of zone refining, parametric optimization, numerical models, and high purity analytical methods. The collection of this information could be of good value to improve the refining efficiency and the production of high purity metals by zone refining.展开更多
The corrosion resistance behavior of a highly dispersed MgO-MgAl2O4-ZrO2 composite refractory material is examined by testing with high-basicity and low-basicity RH(Ruhrstahl-Hereaeus)slags.The composite material exhi...The corrosion resistance behavior of a highly dispersed MgO-MgAl2O4-ZrO2 composite refractory material is examined by testing with high-basicity and low-basicity RH(Ruhrstahl-Hereaeus)slags.The composite material exhibits greater resistance to the RH slags than the traditional MgO-Cr2O3 composite,MgO-ZrO2 composite,and MgO-MgAl2O4-ZrO2 composite.On the basis of the microstructural analysis and mechanisms calculations,the corrosion resistance behavior of the MgO-MgAl2O4-ZrO2 composite is attributable to its highly dispersed structure,which helps protect the high activity of ZrO2.When in contact with the slag,ZrO2 reacts with CaO to form the stable phase CaZrO3,which protects MgAl2O4 against corrosion,thereby enhancing the corrosion resistance of the composite.展开更多
A new kind of flocculants, named Polymer Silicate Phosphate Ferric Sulfate(PSPFS), was synthesized by ferrous sulfate used as the main material and activated silicic acid as additive. In this paper, High-Viscosity Oil...A new kind of flocculants, named Polymer Silicate Phosphate Ferric Sulfate(PSPFS), was synthesized by ferrous sulfate used as the main material and activated silicic acid as additive. In this paper, High-Viscosity Oil Refining wastewater from Liaohe Petrochemical Corporation was the treatment object. Overall, the in-fluencing factors and synthesis technology conditions of PSPFS were determined by experiments. First of all, the conditions of influencing factors were showed as follows: the mass percent concentration of ferrous sulfate 55%,concentration of sodium silicate 15% , the molar ratio of ferrous sulfate and hydrogen peroxide 1.2:1, oxidation temperature 40 degree Celsius, oxidation time 4 hours, polymerization temperature 60 de-gree Celsius and polymerization time 2 hours. Secondly, the optimal ratios of components were determined by uniform design method. The molar ratio of Fe/Si is 5.0:1, Fe/H2SO4 is 3.2:1, and Fe/P is 18.0:1. At last, the optimal experimental condition was determined as follows: the dosing quantity 200mg/L, pH value 5.5~9, temperature 25~45℃, stirring time 2 min, and standing time 3 min, according to the result of floc-culation experiments with PSPFS. Besides, the result of the comparative experiments showed that the effi-ciency of PSPFS was much better than the reference flocculants.展开更多
Very high cycle fatigue behaviors of two bainite/martensite dual-phase steels were investigated.One of the steels was cyclic rapid heat treated and its microstructures were refined. Fatigue strength of the steel is 22...Very high cycle fatigue behaviors of two bainite/martensite dual-phase steels were investigated.One of the steels was cyclic rapid heat treated and its microstructures were refined. Fatigue strength of the steel is 225 MPa higher than that without refining.Observation of fracture surfaces show that the fatigue cracks initiate at bainites for non-refined steel and at non-metallic inclusions for the refined steel.The size of inclusions is much smaller than that of bainites which results in the improvement of fatigue strength.展开更多
The effect of forging passes on the refinement of high purity aluminum during multi-forging was investigated. The attention was focused on the structure uniformity due to deformation uniformity and the grain refinemen...The effect of forging passes on the refinement of high purity aluminum during multi-forging was investigated. The attention was focused on the structure uniformity due to deformation uniformity and the grain refinement limitation with very high strains. The results show that the fine grain zone in the center of sample expands gradually with the increase of forging passes. When the forging passes reach 6, an X-shape fine grain zone is initially formed. With a further increase of the passes, this X-shape zone tends to spread the whole sample. Limitation in the structural refinement is observed with increasing strains during multi-forging process at the room temperature. The grains size in the center is refined to a certain size (110 μm as forging passes reach 12, and there is no further grain refinement in the center with increasing the forging passes to 24. However, the size of the coarse grains near the surface is continuously decreased with increasing the forging passes to 24.展开更多
Magnesium(Mg) alloys, as the lightest metal engineering materials, have broad application prospects.However, the strength and ductility of traditional Mg alloys are still relativity low and difficult to improve simult...Magnesium(Mg) alloys, as the lightest metal engineering materials, have broad application prospects.However, the strength and ductility of traditional Mg alloys are still relativity low and difficult to improve simultaneously.Refining grain size via the deformation process based on the grain boundary strengthening and the transition of deformation mechanisms is one of the feasible strategies to prepare Mg alloys with high strength and high ductility.In this review, the effects of grain size on the strength and ductility of Mg alloys are summarized, and fine-grained Mg alloys with high strength and high ductility developed by various severe plastic deformation technologies and improved traditional deformation technologies are introduced.Although some achievements have been made, the effects of grain size on various Mg alloys are rarely discussed systematically and some key mechanisms are unclear or lack direct microscopic evidence.This review can be used as a reference for further development of high-performance fine-grained Mg alloys.展开更多
Laboratory and industrial studies were carried out to investigate non-metallic inclusions in high strength alloy steel refined by high basicity and high Al_2O_3 slag.It was found that the steel/slag reaction time larg...Laboratory and industrial studies were carried out to investigate non-metallic inclusions in high strength alloy steel refined by high basicity and high Al_2O_3 slag.It was found that the steel/slag reaction time largely affected non-metallic inclusions.With the reaction time increased from 30 min to 90 min in laboratory study,MgO-Al_2O_3 spinels were gradually changed into CaO-MgO-Al_2O_3 system inclusions surrounded by softer CaO-Al_2O_3 surface layers.By using high basicity slag which contained as much as 41%Al_2O_3 in the laboratory study,ratio of low melting temperature CaO-MgO-Al_2O_3 system inclusions was remarkably increased to above 80%.In the industrial experiment,during the secondary refining,the inclusions changed in order of 'Al_2O_3→MgO-Al_2O_3→CaO-MgO-Al_2O_3'.Through the LF and RH refining,most inclusions could be transferred to lower melting temperature CaO-Al_2O_3 and CaO-MgO-Al_2O_3 system inclusions.展开更多
In the present work, scandium elements with a series of contents(0.06 wt.%, 0.10 wt.%, 0.14 wt.%,0.17 wt.%, 0.20 wt.% and 0.25 wt.%) were added in a high Zn-containing Al-Zn-Mg-Cu-Zr alloy and the corresponding as-cas...In the present work, scandium elements with a series of contents(0.06 wt.%, 0.10 wt.%, 0.14 wt.%,0.17 wt.%, 0.20 wt.% and 0.25 wt.%) were added in a high Zn-containing Al-Zn-Mg-Cu-Zr alloy and the corresponding as-cast microstructure characteristics including grains and phases were thoroughly investigated. The results indicated that fine grain boundaries existed in these alloys and fine MgZn2phases discontinuously distributed on them. Besides,AlZnMgCu eutectic phases and Sc, Zr-containing phases with flocculent morphology were observed. As scandium contents vary from 0.06 wt.% to 0.17 wt.%, the average grain size continuously decreased and its equiaxial characteristics were strengthened. Meanwhile, the content of AlZnMgCu eutectic phase showed a decrease trend. When scandium contents were 0.20 wt.% and 0.25 wt.%, no further enhancement on grain refinement was observed, so as to the reduction of AlZnMgCu eutectic phase content. Besides, Sc, Zr-containing phases with blocky morphology were observed and the alloy with a scandium content of 0.25 wt.% possessed a larger amount of blocky Sc, Zr-containing phase than the alloy with a scandium content of 0.20 wt.%. Grain refinement and reduction of AlZnMgCu eutectic phase content associated with scandium addition were discussed.展开更多
In this article, based on the Taylor expansions of generating functions and stepwise refinement procedure, authors suggest a algorithm for finding the Lie and high (generalized) symmetries of partial differential equa...In this article, based on the Taylor expansions of generating functions and stepwise refinement procedure, authors suggest a algorithm for finding the Lie and high (generalized) symmetries of partial differential equations (PDEs). This algorithm transforms the problem having to solve over-determining PDEs commonly encountered and difficulty part in standard methods into one solving to algebraic equations to which one easy obtain solution. so, it reduces significantly the difficulties of the problem and raise computing efficiency. The whole procedure of the algorithm is carried out automatically by using any computer algebra system. In general, this algorithm can yields many more important symmetries for PDEs.展开更多
In high intensity focused ultrasound(HIFU)treatment,it is crucial to accurately identify denatured and normal biological tissues.In this paper,a novel method based on compressed sensing(CS)and refined composite multi-...In high intensity focused ultrasound(HIFU)treatment,it is crucial to accurately identify denatured and normal biological tissues.In this paper,a novel method based on compressed sensing(CS)and refined composite multi-scale fuzzy entropy(RCMFE)is proposed.First,CS is used to denoise the HIFU echo signals.Then the multi-scale fuzzy entropy(MFE)and RCMFE of the denoised HIFU echo signals are calculated.This study analyzed 90 cases of HIFU echo signals,including 45 cases in normal status and 45 cases in denatured status,and the results show that although both MFE and RCMFE can be used to identify denatured tissues,the intra-class distance of RCMFE on each scale factor is smaller than MFE,and the inter-class distance is larger than MFE.Compared with MFE,RCMFE can calculate the complexity of the signal more accurately and improve the stability,compactness,and separability.When RCMFE is selected as the characteristic parameter,the RCMFE difference between denatured and normal biological tissues is more evident than that of MFE,which helps doctors evaluate the treatment effect more accurately.When the scale factor is selected as 16,the best distinguishing effect can be obtained.展开更多
Mg−Zn−Cu−Zr−Ca samples were solidified under high pressures of 2-6 GPa.Scanning electron microscopy and electron backscatter diffraction were used to study the distribution of Ca in the microstructure and its effect o...Mg−Zn−Cu−Zr−Ca samples were solidified under high pressures of 2-6 GPa.Scanning electron microscopy and electron backscatter diffraction were used to study the distribution of Ca in the microstructure and its effect on the solidification structure.The mechanical properties of the samples were investigated through compression tests.The results show that Ca is mostly dissolved in the matrix and the Mg_(2)Ca phase is formed under high pressure,but it is mainly segregated among dendrites under atmospheric pressure.The Mg_(2)Ca particles are effective heterogeneous nuclei ofα-Mg crystals,which significantly increases the number of crystal nuclei and refines the solidification structure of the alloy,with the grain size reduced to 22μm at 6 GPa.As no Ca segregating among the dendrites exists,more Zn is dissolved in the matrix.Consequently,the intergranular second phase changes from MgZn with a higher Zn/Mg ratio to Mg7Zn3 with a lower Zn/Mg ratio.The volume fraction of the intergranular second phase also increases to 22%.Owing to the combined strengthening of grain refinement,solid solution,and dispersion,the compression strength of the Mg-Zn-Cu-Zr-Ca alloy solidified under 6 GPa is up to 520 MPa.展开更多
For further knowledge about the refining performance of AlTiC master alloys, Al5.5Ti0.25C and Al6.5Ti0.5C master alloys containing high Ti and C content were prepared and used in grain refining experiments of 99.8% co...For further knowledge about the refining performance of AlTiC master alloys, Al5.5Ti0.25C and Al6.5Ti0.5C master alloys containing high Ti and C content were prepared and used in grain refining experiments of 99.8% commercial pure aluminum(CPAl). Their performance was compared with two types of Al5Ti1B refiners whose performance was nowadays considered to be the best. These two types of master alloys show similar refining efficiency at the addition level of 0.2%. However, at the addition level of 0.5%, there still exists great performance difference between AlTiC and Al5TiB alloys in grain refinement of 99.98% and 99.995% high purity aluminum(HPAl). The growth of columnar grains is fully suppressed due to the refinement of AlTiC at the addition level of 0.5%. Also, at the same addition level, the grain refining experiments of Al3Ti0.15C and Al5Ti0.2C master alloys which have found initial commercial applications are conducted in the above-mentioned three types of pure aluminum. According to the experimental results, these two refiners of different compositions are both nonideal. The second phase particles extracted from each refiner were observed through TEM, while the nuclei of grains after grain refinement were observed through SEM. The results were analyzed through computation and comparison of the constitutional-supercooling parameter and the growth-restriction parameter whose values were determined by solute element in aluminum melt with different purity. Apparently, AlTiC master alloys with high content of Ti and C element have great refining potential.展开更多
The desulfurization ability of refining slag with relative lower basicity (B) and Al2O3 content (B = 3.5-5.0; 20wt%-25wt% Al2O3) was studied. Firstly, the component activities and sulfide capacity (Cs) of the sl...The desulfurization ability of refining slag with relative lower basicity (B) and Al2O3 content (B = 3.5-5.0; 20wt%-25wt% Al2O3) was studied. Firstly, the component activities and sulfide capacity (Cs) of the slag were calculated. Then slag-metal equilibrium experiments were carried out to measure the equilibrium sulfur distribution (Ls). Based on the laboratorial experiments, slag composition was optimized for a better desulfurization ability, which was verified by industrial trials in a steel plant. The obtained results indicated that an MgO-saturated CaO-Al2O3-SiO2-MgO system with the basicity of about 3.5-5.0 and the Al2O3 content in the range of 20wt%-25wt% has high activity of CaO (αCaO), with no deterioration of Cs compared with conventional desulfurization slag. The measured Ls between high-strength low-alloyed (HSLA) steel and slag with a basicity of about 3.5 and an Al2O3 content of about 20wt% and between HSLA steel and slag with a basicity of about 5.0 and an Al2O3 content of about 25wt% is 350 and 275, respectively. The new slag with a basicity of about 3.5-5.0 and an Al2O3 content of about 20wt% has strong desulfurization ability. In particular, the key for high-efficiency desulfurization is to keep oxygen potential in the reaction system as low as possible, which was also verified by industrial trials.展开更多
Microstructure evolution and dislocation configurations in nanostructured Al–Mg alloys processed by high pressure torsion (HPT) were analyzed by transmission electron microscopy (TEM) and high-resolution TEM (HR...Microstructure evolution and dislocation configurations in nanostructured Al–Mg alloys processed by high pressure torsion (HPT) were analyzed by transmission electron microscopy (TEM) and high-resolution TEM (HRTEM). The results show that the grains less than 100 nm have sharp grain boundaries (GBs) and are completely free of dislocations. In contrast, a high density of dislocation as high as 1017 m^-2 exists within the grains larger than 200 nm and these larger grains are usually separated into subgrains and dislocation cells. The dislocations are 60° full dislocations with Burgers vectors of 1/2〈110〉and most of them appear as dipoles and loops. The microtwins and stacking faults (SFs) formed by the Shockley partials from the dissociation of both the 60° mixed dislocation and 0° screw dislocation in ultrafine grains were simultaneously observed by HRTEM in the HPT Al–Mg alloys. These results suggest that partial dislocation emissions, as well as the activation of partial dislocations could also become a deformation mechanism in ultrafine-grained aluminum during severe plastic deformation. The grain refinement mechanism associated with the very high local dislocation density, the dislocation cells and the non-equilibrium GBs, as well as the SFs and microtwins in the HPT Al-Mg alloys were proposed.展开更多
Defibrator is a very important machine in the wood industry for producing fiberboard. The refiner plates are the key parts of defibrator that directly act with the wood, and broken easily. The working life of the refi...Defibrator is a very important machine in the wood industry for producing fiberboard. The refiner plates are the key parts of defibrator that directly act with the wood, and broken easily. The working life of the refiner plates is of significance to the wood industry. It may affect refining quality, production efficiency, and power consumption. In this paper, the abrasion resistance of the refiner plate made of different materials, the stainless steels and high chromium cast irons, were tested and compared. The results showed that abrasion resistance of refiner plate made of high chromium cast irons was better than that of the stainless steel materials. Although the two kinds of materials have the same compositions, their abrasion resistances have ap-parent difference. The main reason is that the material microstructures have very important effects on their performance. The refiner plates made of developed high chromium cast irons don抰 demand the complex heat treatment. This can simplify the producing process, save the cost of production, decrease labor strength, and increase the production efficiency.展开更多
The effect of niobium on the formation of NbC phase and solidification structure in high carbon equivalent grey cast iron was investigated.The experimental results indicated that an increase in the niobium content is ...The effect of niobium on the formation of NbC phase and solidification structure in high carbon equivalent grey cast iron was investigated.The experimental results indicated that an increase in the niobium content is favorable to refining the graphite and eutectic cell;and the pearlite lamellar spacing is reduced.Based on the thermodynamic calculation the formation of NbC is prior to the eutectic reaction.The reduction in the pearlite lamellar spacing is mainly attributed to the decrease of eutectic temperature with the addition of niobium.Additionally,properties including hardness and wear resistance were improved after the addition of niobium.展开更多
Fluxing of 5 g bulk melt Ni77Si13B10 permits high undercoolings to be attained prior to nu-cleation onset.Investigations of grain refinement in the bulk undercooled alloy as a function ofundercooling,recalescence beha...Fluxing of 5 g bulk melt Ni77Si13B10 permits high undercoolings to be attained prior to nu-cleation onset.Investigations of grain refinement in the bulk undercooled alloy as a function ofundercooling,recalescence behavior and cooling rate have been reported.A significant inhomo-geneity of reduction in grain size of a bulk sample is observed,which is caused by the different so-lidification conditions:(1)recalescence process,and(2)the followed plateau in which the heatrelease and extraction rates are equal.It is concluded that the homogeneous refined microstructurecan be achieved if the initial undercooling prior to nucleation,or cooling rate after recalescence isfurther increased.展开更多
Aging precipitation and solid solution heat treatment were carried out on three steels which have chromium content of 18%, manganese content of 12%, 15%, 18%, and nitrogen content of 0.43%, 0.53%, 0.67%, respectively....Aging precipitation and solid solution heat treatment were carried out on three steels which have chromium content of 18%, manganese content of 12%, 15%, 18%, and nitrogen content of 0.43%, 0.53%, 0.67%, respectively. The mechanisms of precipitation and solid solution of high nitrogen anstenitic stainless steel were studied using the scanning electron microscopy, transmission electron microscopy, electron probe micro analysis and mechanical testing. The results show that, Cr2N is the primary precipitate in the tested stainless steels instead of Cr23C6. Cr2N nucleates at austenitic grain boundaries and grows towards inner grains with a lameUar morphology. By means of pre-precipitation of Cr2N at 800 ~C, the microstructure of the steels at solid solution state can be refined, thus improving the strength and plasticity. After the proposed treatment, the tensile strength, the proof strength and the elongation of the tested steel reach 881 MPa, 542 MPa and 54%, respectively.展开更多
文摘Purification is a primary application of zone melting, in which the improvement of efficiency, production yield and minimum achievable impurity level are always the research focus due to the increasing demand for high purity metals. This paper has systematically outlined the whole development of related research on zone refining of metals including basic theories, variants of zone refining, parametric optimization, numerical models, and high purity analytical methods. The collection of this information could be of good value to improve the refining efficiency and the production of high purity metals by zone refining.
基金financially supported by the National Natural Science Foundation of China (No.51872023)
文摘The corrosion resistance behavior of a highly dispersed MgO-MgAl2O4-ZrO2 composite refractory material is examined by testing with high-basicity and low-basicity RH(Ruhrstahl-Hereaeus)slags.The composite material exhibits greater resistance to the RH slags than the traditional MgO-Cr2O3 composite,MgO-ZrO2 composite,and MgO-MgAl2O4-ZrO2 composite.On the basis of the microstructural analysis and mechanisms calculations,the corrosion resistance behavior of the MgO-MgAl2O4-ZrO2 composite is attributable to its highly dispersed structure,which helps protect the high activity of ZrO2.When in contact with the slag,ZrO2 reacts with CaO to form the stable phase CaZrO3,which protects MgAl2O4 against corrosion,thereby enhancing the corrosion resistance of the composite.
文摘A new kind of flocculants, named Polymer Silicate Phosphate Ferric Sulfate(PSPFS), was synthesized by ferrous sulfate used as the main material and activated silicic acid as additive. In this paper, High-Viscosity Oil Refining wastewater from Liaohe Petrochemical Corporation was the treatment object. Overall, the in-fluencing factors and synthesis technology conditions of PSPFS were determined by experiments. First of all, the conditions of influencing factors were showed as follows: the mass percent concentration of ferrous sulfate 55%,concentration of sodium silicate 15% , the molar ratio of ferrous sulfate and hydrogen peroxide 1.2:1, oxidation temperature 40 degree Celsius, oxidation time 4 hours, polymerization temperature 60 de-gree Celsius and polymerization time 2 hours. Secondly, the optimal ratios of components were determined by uniform design method. The molar ratio of Fe/Si is 5.0:1, Fe/H2SO4 is 3.2:1, and Fe/P is 18.0:1. At last, the optimal experimental condition was determined as follows: the dosing quantity 200mg/L, pH value 5.5~9, temperature 25~45℃, stirring time 2 min, and standing time 3 min, according to the result of floc-culation experiments with PSPFS. Besides, the result of the comparative experiments showed that the effi-ciency of PSPFS was much better than the reference flocculants.
文摘Very high cycle fatigue behaviors of two bainite/martensite dual-phase steels were investigated.One of the steels was cyclic rapid heat treated and its microstructures were refined. Fatigue strength of the steel is 225 MPa higher than that without refining.Observation of fracture surfaces show that the fatigue cracks initiate at bainites for non-refined steel and at non-metallic inclusions for the refined steel.The size of inclusions is much smaller than that of bainites which results in the improvement of fatigue strength.
基金Projects(51204053,51074048,51204048)supported by the National Natural Science Foundation of ChinaProject(20110491518)supported by China Postdoctoral Science FoundationProject(2012CB619506)supported by the National Basic Research Program of China
文摘The effect of forging passes on the refinement of high purity aluminum during multi-forging was investigated. The attention was focused on the structure uniformity due to deformation uniformity and the grain refinement limitation with very high strains. The results show that the fine grain zone in the center of sample expands gradually with the increase of forging passes. When the forging passes reach 6, an X-shape fine grain zone is initially formed. With a further increase of the passes, this X-shape zone tends to spread the whole sample. Limitation in the structural refinement is observed with increasing strains during multi-forging process at the room temperature. The grains size in the center is refined to a certain size (110 μm as forging passes reach 12, and there is no further grain refinement in the center with increasing the forging passes to 24. However, the size of the coarse grains near the surface is continuously decreased with increasing the forging passes to 24.
基金supported by the National Natural Science Foundation of China (Nos.51871069 and 52071093)the Fundamental Research Funds for the Central Universities (No.3072020CF1009)+2 种基金the Science and Technology Innovation Major Project of Ningbo City, China (No.2019B10103)the Domain Foundation of Equipment Advance Research of 13th Five-year Plan (No.61409220118)the Open Funds of the State Key Laboratory of Rare Earth Resource Utilization (No.RERU2020008)。
文摘Magnesium(Mg) alloys, as the lightest metal engineering materials, have broad application prospects.However, the strength and ductility of traditional Mg alloys are still relativity low and difficult to improve simultaneously.Refining grain size via the deformation process based on the grain boundary strengthening and the transition of deformation mechanisms is one of the feasible strategies to prepare Mg alloys with high strength and high ductility.In this review, the effects of grain size on the strength and ductility of Mg alloys are summarized, and fine-grained Mg alloys with high strength and high ductility developed by various severe plastic deformation technologies and improved traditional deformation technologies are introduced.Although some achievements have been made, the effects of grain size on various Mg alloys are rarely discussed systematically and some key mechanisms are unclear or lack direct microscopic evidence.This review can be used as a reference for further development of high-performance fine-grained Mg alloys.
文摘Laboratory and industrial studies were carried out to investigate non-metallic inclusions in high strength alloy steel refined by high basicity and high Al_2O_3 slag.It was found that the steel/slag reaction time largely affected non-metallic inclusions.With the reaction time increased from 30 min to 90 min in laboratory study,MgO-Al_2O_3 spinels were gradually changed into CaO-MgO-Al_2O_3 system inclusions surrounded by softer CaO-Al_2O_3 surface layers.By using high basicity slag which contained as much as 41%Al_2O_3 in the laboratory study,ratio of low melting temperature CaO-MgO-Al_2O_3 system inclusions was remarkably increased to above 80%.In the industrial experiment,during the secondary refining,the inclusions changed in order of 'Al_2O_3→MgO-Al_2O_3→CaO-MgO-Al_2O_3'.Through the LF and RH refining,most inclusions could be transferred to lower melting temperature CaO-Al_2O_3 and CaO-MgO-Al_2O_3 system inclusions.
基金Projects(2020YFB0311400ZL, 2020YFF0218202) supported by the National Key R&D Program of ChinaProject supported by Youth Fund Project of GRINM Group Co.,Ltd.,China。
文摘In the present work, scandium elements with a series of contents(0.06 wt.%, 0.10 wt.%, 0.14 wt.%,0.17 wt.%, 0.20 wt.% and 0.25 wt.%) were added in a high Zn-containing Al-Zn-Mg-Cu-Zr alloy and the corresponding as-cast microstructure characteristics including grains and phases were thoroughly investigated. The results indicated that fine grain boundaries existed in these alloys and fine MgZn2phases discontinuously distributed on them. Besides,AlZnMgCu eutectic phases and Sc, Zr-containing phases with flocculent morphology were observed. As scandium contents vary from 0.06 wt.% to 0.17 wt.%, the average grain size continuously decreased and its equiaxial characteristics were strengthened. Meanwhile, the content of AlZnMgCu eutectic phase showed a decrease trend. When scandium contents were 0.20 wt.% and 0.25 wt.%, no further enhancement on grain refinement was observed, so as to the reduction of AlZnMgCu eutectic phase content. Besides, Sc, Zr-containing phases with blocky morphology were observed and the alloy with a scandium content of 0.25 wt.% possessed a larger amount of blocky Sc, Zr-containing phase than the alloy with a scandium content of 0.20 wt.%. Grain refinement and reduction of AlZnMgCu eutectic phase content associated with scandium addition were discussed.
文摘In this article, based on the Taylor expansions of generating functions and stepwise refinement procedure, authors suggest a algorithm for finding the Lie and high (generalized) symmetries of partial differential equations (PDEs). This algorithm transforms the problem having to solve over-determining PDEs commonly encountered and difficulty part in standard methods into one solving to algebraic equations to which one easy obtain solution. so, it reduces significantly the difficulties of the problem and raise computing efficiency. The whole procedure of the algorithm is carried out automatically by using any computer algebra system. In general, this algorithm can yields many more important symmetries for PDEs.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11774088 and 11474090)。
文摘In high intensity focused ultrasound(HIFU)treatment,it is crucial to accurately identify denatured and normal biological tissues.In this paper,a novel method based on compressed sensing(CS)and refined composite multi-scale fuzzy entropy(RCMFE)is proposed.First,CS is used to denoise the HIFU echo signals.Then the multi-scale fuzzy entropy(MFE)and RCMFE of the denoised HIFU echo signals are calculated.This study analyzed 90 cases of HIFU echo signals,including 45 cases in normal status and 45 cases in denatured status,and the results show that although both MFE and RCMFE can be used to identify denatured tissues,the intra-class distance of RCMFE on each scale factor is smaller than MFE,and the inter-class distance is larger than MFE.Compared with MFE,RCMFE can calculate the complexity of the signal more accurately and improve the stability,compactness,and separability.When RCMFE is selected as the characteristic parameter,the RCMFE difference between denatured and normal biological tissues is more evident than that of MFE,which helps doctors evaluate the treatment effect more accurately.When the scale factor is selected as 16,the best distinguishing effect can be obtained.
基金financial supports from the National Natural Science Foundation of China(Nos.51675092,51775099)the Natural Science Foundation of Hebei Province,China(Nos.E2018501032,E2018501033)。
文摘Mg−Zn−Cu−Zr−Ca samples were solidified under high pressures of 2-6 GPa.Scanning electron microscopy and electron backscatter diffraction were used to study the distribution of Ca in the microstructure and its effect on the solidification structure.The mechanical properties of the samples were investigated through compression tests.The results show that Ca is mostly dissolved in the matrix and the Mg_(2)Ca phase is formed under high pressure,but it is mainly segregated among dendrites under atmospheric pressure.The Mg_(2)Ca particles are effective heterogeneous nuclei ofα-Mg crystals,which significantly increases the number of crystal nuclei and refines the solidification structure of the alloy,with the grain size reduced to 22μm at 6 GPa.As no Ca segregating among the dendrites exists,more Zn is dissolved in the matrix.Consequently,the intergranular second phase changes from MgZn with a higher Zn/Mg ratio to Mg7Zn3 with a lower Zn/Mg ratio.The volume fraction of the intergranular second phase also increases to 22%.Owing to the combined strengthening of grain refinement,solid solution,and dispersion,the compression strength of the Mg-Zn-Cu-Zr-Ca alloy solidified under 6 GPa is up to 520 MPa.
基金Project (51074033) supported by the National Natural Science Foundation of China
文摘For further knowledge about the refining performance of AlTiC master alloys, Al5.5Ti0.25C and Al6.5Ti0.5C master alloys containing high Ti and C content were prepared and used in grain refining experiments of 99.8% commercial pure aluminum(CPAl). Their performance was compared with two types of Al5Ti1B refiners whose performance was nowadays considered to be the best. These two types of master alloys show similar refining efficiency at the addition level of 0.2%. However, at the addition level of 0.5%, there still exists great performance difference between AlTiC and Al5TiB alloys in grain refinement of 99.98% and 99.995% high purity aluminum(HPAl). The growth of columnar grains is fully suppressed due to the refinement of AlTiC at the addition level of 0.5%. Also, at the same addition level, the grain refining experiments of Al3Ti0.15C and Al5Ti0.2C master alloys which have found initial commercial applications are conducted in the above-mentioned three types of pure aluminum. According to the experimental results, these two refiners of different compositions are both nonideal. The second phase particles extracted from each refiner were observed through TEM, while the nuclei of grains after grain refinement were observed through SEM. The results were analyzed through computation and comparison of the constitutional-supercooling parameter and the growth-restriction parameter whose values were determined by solute element in aluminum melt with different purity. Apparently, AlTiC master alloys with high content of Ti and C element have great refining potential.
基金financially supported by the National Basic Research Program of China (No. 2010CB630806)the State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing (No. 41603015)
文摘The desulfurization ability of refining slag with relative lower basicity (B) and Al2O3 content (B = 3.5-5.0; 20wt%-25wt% Al2O3) was studied. Firstly, the component activities and sulfide capacity (Cs) of the slag were calculated. Then slag-metal equilibrium experiments were carried out to measure the equilibrium sulfur distribution (Ls). Based on the laboratorial experiments, slag composition was optimized for a better desulfurization ability, which was verified by industrial trials in a steel plant. The obtained results indicated that an MgO-saturated CaO-Al2O3-SiO2-MgO system with the basicity of about 3.5-5.0 and the Al2O3 content in the range of 20wt%-25wt% has high activity of CaO (αCaO), with no deterioration of Cs compared with conventional desulfurization slag. The measured Ls between high-strength low-alloyed (HSLA) steel and slag with a basicity of about 3.5 and an Al2O3 content of about 20wt% and between HSLA steel and slag with a basicity of about 5.0 and an Al2O3 content of about 25wt% is 350 and 275, respectively. The new slag with a basicity of about 3.5-5.0 and an Al2O3 content of about 20wt% has strong desulfurization ability. In particular, the key for high-efficiency desulfurization is to keep oxygen potential in the reaction system as low as possible, which was also verified by industrial trials.
基金Project(BK2012715)supported by the Basic Research Program(Natural Science Foundation)of Jiangsu Province,ChinaProject(14KJA430002)supported by the Key University Science Research Project of Jiangsu Province,China+3 种基金Project(50971087)supported by the National Natural Science Foundation of China,ChinaProjects(11JDG070,11JDG140)supported by the Senior Talent Research Foundation of Jiangsu University,ChinaProject(hsm1301)supported by the Foundation of the Jiangsu Province Key Laboratory of High-end Structural Materials,ChinaProject(Kjsmcx2011004)supported by the Foundation of the Jiangsu Province Key Laboratory of Materials Tribology,China
文摘Microstructure evolution and dislocation configurations in nanostructured Al–Mg alloys processed by high pressure torsion (HPT) were analyzed by transmission electron microscopy (TEM) and high-resolution TEM (HRTEM). The results show that the grains less than 100 nm have sharp grain boundaries (GBs) and are completely free of dislocations. In contrast, a high density of dislocation as high as 1017 m^-2 exists within the grains larger than 200 nm and these larger grains are usually separated into subgrains and dislocation cells. The dislocations are 60° full dislocations with Burgers vectors of 1/2〈110〉and most of them appear as dipoles and loops. The microtwins and stacking faults (SFs) formed by the Shockley partials from the dissociation of both the 60° mixed dislocation and 0° screw dislocation in ultrafine grains were simultaneously observed by HRTEM in the HPT Al–Mg alloys. These results suggest that partial dislocation emissions, as well as the activation of partial dislocations could also become a deformation mechanism in ultrafine-grained aluminum during severe plastic deformation. The grain refinement mechanism associated with the very high local dislocation density, the dislocation cells and the non-equilibrium GBs, as well as the SFs and microtwins in the HPT Al-Mg alloys were proposed.
文摘Defibrator is a very important machine in the wood industry for producing fiberboard. The refiner plates are the key parts of defibrator that directly act with the wood, and broken easily. The working life of the refiner plates is of significance to the wood industry. It may affect refining quality, production efficiency, and power consumption. In this paper, the abrasion resistance of the refiner plate made of different materials, the stainless steels and high chromium cast irons, were tested and compared. The results showed that abrasion resistance of refiner plate made of high chromium cast irons was better than that of the stainless steel materials. Although the two kinds of materials have the same compositions, their abrasion resistances have ap-parent difference. The main reason is that the material microstructures have very important effects on their performance. The refiner plates made of developed high chromium cast irons don抰 demand the complex heat treatment. This can simplify the producing process, save the cost of production, decrease labor strength, and increase the production efficiency.
基金supported by CITIC-CBMM R&D project (No.036)Graduate Innovation Fund of Shanghai University (No.SHUCX 102233)
文摘The effect of niobium on the formation of NbC phase and solidification structure in high carbon equivalent grey cast iron was investigated.The experimental results indicated that an increase in the niobium content is favorable to refining the graphite and eutectic cell;and the pearlite lamellar spacing is reduced.Based on the thermodynamic calculation the formation of NbC is prior to the eutectic reaction.The reduction in the pearlite lamellar spacing is mainly attributed to the decrease of eutectic temperature with the addition of niobium.Additionally,properties including hardness and wear resistance were improved after the addition of niobium.
基金Financilly suported by the National Natural Science Foundation of China
文摘Fluxing of 5 g bulk melt Ni77Si13B10 permits high undercoolings to be attained prior to nu-cleation onset.Investigations of grain refinement in the bulk undercooled alloy as a function ofundercooling,recalescence behavior and cooling rate have been reported.A significant inhomo-geneity of reduction in grain size of a bulk sample is observed,which is caused by the different so-lidification conditions:(1)recalescence process,and(2)the followed plateau in which the heatrelease and extraction rates are equal.It is concluded that the homogeneous refined microstructurecan be achieved if the initial undercooling prior to nucleation,or cooling rate after recalescence isfurther increased.
基金Project(50974014) supported by the National Natural Science Foundation of China
文摘Aging precipitation and solid solution heat treatment were carried out on three steels which have chromium content of 18%, manganese content of 12%, 15%, 18%, and nitrogen content of 0.43%, 0.53%, 0.67%, respectively. The mechanisms of precipitation and solid solution of high nitrogen anstenitic stainless steel were studied using the scanning electron microscopy, transmission electron microscopy, electron probe micro analysis and mechanical testing. The results show that, Cr2N is the primary precipitate in the tested stainless steels instead of Cr23C6. Cr2N nucleates at austenitic grain boundaries and grows towards inner grains with a lameUar morphology. By means of pre-precipitation of Cr2N at 800 ~C, the microstructure of the steels at solid solution state can be refined, thus improving the strength and plasticity. After the proposed treatment, the tensile strength, the proof strength and the elongation of the tested steel reach 881 MPa, 542 MPa and 54%, respectively.