A crystalline polyferric sulfate(PFS) adsorbent was synthesized by oxidizing and precipitating ferrous ions in air atmospheric conditions. The morphology, structure, specific surface area(SSA), and adsorptive efficacy...A crystalline polyferric sulfate(PFS) adsorbent was synthesized by oxidizing and precipitating ferrous ions in air atmospheric conditions. The morphology, structure, specific surface area(SSA), and adsorptive efficacy of the adsorbent to As(Ⅲ) were characterized by scanning electron microscope(SEM) and transmission electron microscopy(TEM) images, X-ray diffraction(XRD) patterns, Fourier-transform infrared(FTIR) spectra, BET SSA analyses, and adsorption experiments. The adsorbent showed a near-spherical aggregate structure and had good crystallinity. A significant amount of α-goethite co-precipitated with PFS in the case of the initial ferrous concentration of 1 mol/L and increased SSA of the adsorbent. The stability region of ferric compounds in the process was drawn and applied to analyze the iron behavior during the synthesis. The adsorption of As(Ⅲ) in high As(Ⅲ)-containing solutions fitted the Langmuir isotherm model adequately. The absorbent with co-precipitation of α-goethite showed good adsorbability for As(Ⅲ) and good filtering performance in the high As(Ⅲ)-containing solution of 10–100 mg/L under acidic, neutral, and alkaline conditions(pH 2.09–9.01). After the adsorption process, the stability of the residues bearing As(Ⅲ) was evaluated by toxic characteristic leaching procedure(TCLP) tests. The results indicated that the residues were extremely stable, and the concentrations of arsenic in the leaching solutions were less than 0.01 mg/L.展开更多
The current research was investigated the mechanism of coal demineralization and the effect of leaching parameters on high ash coal and study the characterization of pre and post-treated coal. The two high ash Indian ...The current research was investigated the mechanism of coal demineralization and the effect of leaching parameters on high ash coal and study the characterization of pre and post-treated coal. The two high ash Indian coal selected from Mahanadi Coalfield Limited, Odisha, pulverized to 375, 230 and 180 gm particle size were undergone simultaneous acid and alkali treatment at a different concentration, temperature and time. The percent demineralization was increased with decrease the size of the particle and rises with leaching parameters. The investigation suggested 180 μm particle size offers efficient demineralization for both coals at 30% NaOH and 30% H2SO4 concentration. The alkali leaching leads to obtaining the demineralization 46% and 42% whereas acid treatment resulted in 34% and 32% of the original coal samples. The extent of demineralization was improved the calorific value of coal. Besides, the degree of demineralization was proved from the FTIR, XRF and FESEM-EDX analysis results. FTIR analysis result showed that the peak intensity of mineral band decreased by the leaching effect and the degree of demineralization was significantly obtained to large extent by the X-ray Fluorescence spectrometer; which elucidates major minerals removed from coal by the leaching effect of acid and alkali solution.展开更多
This overview discusses old and new results as to the controversy on the past glacier extension in High Asia, which has been debated for 35 years now. This paper makes an attempt to come closer to a solution. H.v. Wis...This overview discusses old and new results as to the controversy on the past glacier extension in High Asia, which has been debated for 35 years now. This paper makes an attempt to come closer to a solution. H.v. Wissmann's interpretation (1959) of a small-scale glaciation contrasts with M. Kuhle's reconstruction (1974) of a large-scale glaciation with a 2.4 million km2 extended Qinghai-Xizang (Tibetan) inland glaciation and a Himalaya-Karakorum icestream network. Both opinions find support but also contradiction in the International and Chinese literature (Academia Sinica). The solution of this question is of supraregional importance because of the subtropical position of the concerned areas. In case of large albedo-intensive ice surfaces, a global cooling would be the energetical consequence and, furthermore, a breakdown of the summer monsoon. The current and interglacial heat-low above the very effective heating panel of the Qinghai-Xizang (Tibetan) Plateau exceeding 4000 m, which gives rise to this monsoon circulation, would be replaced by the cold-high of an inland ice. In addition, the plate-tectonically created Pleistocene history of the uplift of High Asia — should the occasion arise up to beyond the snowline (ELA) —would attain a paleoclimatically great, perhaps global importance. In case of a heavy superimposed ice load, the question would come up as to the glacio-isostatic interruption of this primary uplift. The production of the loesses sedimentated in NE-China and their very probable glacial genesis as well as an eustatic lowering of the sea-level by 5 to 7 m in the maximum case of glaciation are immediately tied up with the question of glaciation we want to discuss. Not the least, the problems of biotopes of the sanctuary-centres of flora and fauna, i.e., interglacial re-settlement, are also dependent on it. On the basis of this Quaternary- geomorphological-glaciological connection, future contributions are requested on the past glaciation, the current and glacial permafrost table and periglacial development, the history of uplift, and the development of Ice Age lakes and loess, but also on the development of vegetation and fauna in High Asia.展开更多
The gold sulfide concentrate with a high As content in Liangshan District, Sichuan Province, China, is a potentially important resource. This paper describes experiments of dearsenification of gold concentrate in a we...The gold sulfide concentrate with a high As content in Liangshan District, Sichuan Province, China, is a potentially important resource. This paper describes experiments of dearsenification of gold concentrate in a weakly reduced atmosphere in a rotary pipe furnace. The results showed that the optimal parameters were a temperature range of 650-700℃, 15%-16% CO2 of gas and a reaction time of 30-40 min. The removal rate of arsenic and sulfur was over 95% and 25%-28%, respectively. With further oxidization and roasting, residue sulfur in the roasted materials was dropped to below 4%, and the cyanide leaching recovery of gold was over 92%.展开更多
In coordination with Global Cryosphere Watch (GCW) initiated by World Meteorology Administration (WMO), a regional ob- servation network is proposed based on existing stations/sites over High Asia and cryospberic ...In coordination with Global Cryosphere Watch (GCW) initiated by World Meteorology Administration (WMO), a regional ob- servation network is proposed based on existing stations/sites over High Asia and cryospberic elements required by GCW. Thus, High Asian Cryosphere (HAC) network is preliminary designed, composing of seven "supersites", each containing several refer- ence sites. The network covers major mountain ranges in High Asia, such as East Tianshan, Qilian, Tanggula, Nyainqentanglha, Himalayas as well as the central and eastern Qinghai-Xizang (Tibet) Plateau. Although multiple cryospberic elements were ob- served at the existing HAC network, many others, which are required by Integrated Global Observation System-Cryosphere Theme (IGOS-Cryosphere), are not yet included. More comprehensive observations are necessary to be included into "supersites" of HAC, so that the basic requirements for validation of satellite data, assimilation and coupled regional models can be met.展开更多
It is difficult to access exfoliated sepiolite(Sep)fibers with high aspect ratio from Sep ore.The traditional method used to purify Sep ore also reduces its aspect ratio.In this study,impurities in the Sep ore were re...It is difficult to access exfoliated sepiolite(Sep)fibers with high aspect ratio from Sep ore.The traditional method used to purify Sep ore also reduces its aspect ratio.In this study,impurities in the Sep ore were removed by acid activation followed by a cetyltrimethylammonium chloride(C16)treatment to organically modify the purified Sep by cation exchange.Then,the organically-modified Sep(O-Sep)was stripped and processed by an ultrasonic cell crusher to obtain Sep microfibers at a specific frequency for a given period.These Sep samples had relatively high aspect ratio,compared with the Sep fibers gotten by traditional method.Scanning electron microscopy(SEM)and transmission electron microscopy(TEM)demonstrate the micro-morphology of exfoliated Sep samples in an intuitive way.Moreover,pure inorganic membrane prepared only with the exfoliated Sep fibers exhibited excellent flexibility,further demonstrating the excellent properties of Sep fibers with high aspect ratio.展开更多
Glaciers play an important role in the global water cycling especially in the balance of fresh water on our planet, which exhibits a significant impact on global changes. This paper describes the role of glaciers in t...Glaciers play an important role in the global water cycling especially in the balance of fresh water on our planet, which exhibits a significant impact on global changes. This paper describes the role of glaciers in the water cycle and global changes and that of High Asian glaciers and their fluctuations, and introduces the global monitoring project on glacier mass balance and the progress in corresponding research in China.展开更多
The interdecadal variation of the summer western Pacific subtropical high(WPSH)during1948–2009 is investigated in this study.Compared with most previous works,which focused on the 500 h Pa geopotential height,the int...The interdecadal variation of the summer western Pacific subtropical high(WPSH)during1948–2009 is investigated in this study.Compared with most previous works,which focused on the 500 h Pa geopotential height,the interdecadal variation of the horizontal winds,relative vorticity,and eddy geopotential height over the western Pacific are all analyzed.The weakened anticyclone and decreased negative relative vorticity at middle-low levels over the western Pacific suggest that the WPSH weakened during 1979–2009 relative to1948–78.After subtracting the zonal belt mean height between 0°and 40°N,the 500 hP a eddy geopotential height with significant negative anomalies over the western Pacific can correctly depict this weakened interdecadal variation of the WPSH.The illusory westward extension signal reflected by the 500 h Pa geopotential height may derive from the significant increment of the geopotential height at middle and lower latitudes in the late 1970s under global warming.展开更多
EI Nino (EN) episodes can be classified based on their time of onset as spring onset EN (SPEN) events and summer onset EN (SUEN) events. To evaluate the different influences of SPEN and SUEN events on the South ...EI Nino (EN) episodes can be classified based on their time of onset as spring onset EN (SPEN) events and summer onset EN (SUEN) events. To evaluate the different influences of SPEN and SUEN events on the South Asian high (SAH), this study compared the seasonal evolution of the SAH (SESAH) associated with SPEN and SUEN events through analysis of geopotential height and zonal wind data derived from NCEP-NCAR Reanalysis-1 and sea surface temperature data obtained from the Hadley Center. The main features of the SESAH during an EN event are similar to its climatological characteristics. Climatologically, the SAH forms in May, strengthens, and moves northwestward in June and July. It does not change much in August, but then it returns south and weakens during September and October. However, its lifespan is shorter and its intensity weaker during EN periods. Furthermore, there are significant differences between the SESAH during SPEN and SUEN events. During a SPEN episode, the movement of the SAH to the northwest during May and June is slower than during a SUEN event, i.e. the SPEN SAH has a shorter lifespan. In comparison with the SUEN SAH, the SPEN SAH in July and September tends more towards the Tibetan high mode rather than the Iranian high mode. The SPEN SAH in October moves southeastward faster than the SUEN SAH, which also indicates that the SAH has a shorter lifespan during a SPEN event than during a SUEN episode.展开更多
High-aspect-ratio metallic surface microstructures are increasingly demanded in breakthrough applications,such as high-performance heat transfer enhancement and surface plasmon devices.However,the fast and cost-effect...High-aspect-ratio metallic surface microstructures are increasingly demanded in breakthrough applications,such as high-performance heat transfer enhancement and surface plasmon devices.However,the fast and cost-effective fabrication of high-aspect-ratio microstructures on metallic surfaces remains challenging for existing techniques.This study proposes a novel cutting-based process,namely elliptical vibration chiseling(EV-chiseling),for the high-efficiency texturing of surface microstructures with an ultrahigh aspect ratio.Unlike conventional cutting,EV-chiseling superimposes a microscale EV on a backward-moving tool.The tool chisels into the material in each vibration cycle to generate an upright chip with a high aspect ratio through material deformation.Thanks to the tool’s backward movement,the chip is left on the material surface to form a microstructure rather than falling off.Since one microstructure is generated in one vibration cycle,the process can be highly efficient using ultrafast(>1 kHz)tool vibration.A finite element analysis model is established to explore the process mechanics of EV-chiseling.Next,a mechanistic model of the microstructured surface generation is developed to describe the microstructures’aspect ratio dependency on the process parameters.Then,surface texturing tests are performed on copper to verify the efficacy of EV-chiseling.Uniformed micro ribs with a spacing of 1–10μm and an aspect ratio of 2–5 have been successfully textured on copper.Compared with the conventional EV-cutting that uses a forward-moving tool,EV-chiseling can improve the aspect ratio of textured microstructure by up to 40 times.The experimental results also verify the accuracy of the developed surface generation model of microstructures.Finally,the effects of elliptical trajectory,depth of cut,tool shape,and tool edge radius on the surface generation of micro ribs have been discussed.展开更多
Following publication of the original article[1],the authors noticed a mistake in the Supplementary file,more specifically in figures S11 and S12 where they used by mistake the same sub-figures.The original article[1]...Following publication of the original article[1],the authors noticed a mistake in the Supplementary file,more specifically in figures S11 and S12 where they used by mistake the same sub-figures.The original article[1]has been corrected.展开更多
Microwave-assisted mechanical excavation has great application prospects in mines and tunnels,but there are few field experiments on microwave-assisted rock breaking.This paper takes the Sishanling iron mine as the re...Microwave-assisted mechanical excavation has great application prospects in mines and tunnels,but there are few field experiments on microwave-assisted rock breaking.This paper takes the Sishanling iron mine as the research object and adopts the self-developed high-power microwave-induced fracturing test system for hard rock to conduct field experiments of microwave-induced fracturing of iron ore.The heating and reflection evolution characteristics of ore under different microwave parameters(antenna type,power,and working distance)were studied,and the optimal microwave parameters were obtained.Subsequently,the ore was irradiated with the optimal microwave parameters,and the cracking effect of the ore under the action of the high-power open microwave was analyzed.The results show that the reflection coefficient(standing wave ratio)can be rapidly(<5 s)and automatically adjusted below the preset threshold value(1.6)as microwave irradiation is performed.When using a right-angle horn antenna with a working distance of 5 cm,the effect of automatic reflection adjustment reaches the best among other antenna types and working distances.When the working distance is the same,the average temperature of the irradiation surface and the area of the high-temperature area under the action of the two antennas(right-angled and equal-angled horn antenna)are basically the same and decrease with the increase of working distance.The optimal microwave parameters are:a right-angle horn antenna with a working distance of 5 cm.Subsequently,in further experiments,the optimal parameters were used to irradiate for 20 s and 40 s at a microwave power of 60 kW,respectively.The surface damage extended 38 cm×30 cm and 53 cm×30 cm,respectively,and the damage extended to a depth of about 50 cm.The drilling speed was increased by 56.2%and 66.5%,respectively,compared to the case when microwaves were not used.展开更多
Background Adequate level of carbohydrates in aquafeeds help to conserve protein and reduce cost. However, studies have indicated that high-carbohydrate(HC) diet disrupt the homeostasis of the gut–liver axis in large...Background Adequate level of carbohydrates in aquafeeds help to conserve protein and reduce cost. However, studies have indicated that high-carbohydrate(HC) diet disrupt the homeostasis of the gut–liver axis in largemouth bass, resulting in decreased intestinal acetate and butyrate level.Method Herein, we had concepted a set of feeding experiment to assess the effects of dietary sodium acetate(SA) and sodium butyrate(SB) on liver health and the intestinal microbiota in largemouth bass fed an HC diet. The experimental design comprised 5 isonitrogenous and isolipidic diets, including LC(9% starch), HC(18% starch), HCSA(18% starch;2 g/kg SA), HCSB(18% starch;2 g/kg SB), and HCSASB(18% starch;1 g/kg SA + 1 g/kg SB). Juvenile largemouth bass with an initial body weight of 7.00 ± 0.20 g were fed on these diets for 56 d.Results We found that dietary SA and SB reduced hepatic triglyceride accumulation by activating autophagy(ATG101, LC3B and TFEB), promoting lipolysis(CPT1α, HSL and AMPKα), and inhibiting adipogenesis(FAS, ACCA, SCD1 and PPARγ). In addition, SA and SB decreased oxidative stress in the liver(CAT, GPX1α and SOD1) by activating the Keap1-Nrf2 pathway. Meanwhile, SA and SB alleviated HC-induced inflammation by downregulating the expression of pro-inflammatory factors(IL-1β, COX2 and Hepcidin1) through the NF-κB pathway. Importantly, SA and SB increased the abundance of bacteria that produced acetic acid and butyrate(Clostridium_sensu_stricto_1). Combined with the KEGG analysis, the results showed that SA and SB enriched carbohydrate metabolism and amino acid metabolism pathways, thereby improving the utilization of carbohydrates. Pearson correlation analysis indicated that growth performance was closely related to hepatic lipid deposition, autophagy, antioxidant capacity, inflammation, and intestinal microbial composition.Conclusions In conclusion, dietary SA and SB can reduce hepatic lipid deposition;and alleviate oxidative stress and inflammation in largemouth bass fed on HC diet. These beneficial effects may be due to the altered composition of the gut microbiota caused by SA and SB. The improvement effects of SB were stronger than those associated with SA.展开更多
Enzymatic hydrolysis of proteins can enhance their emulsifying properties and antioxidant activities.However,the problem related to the hydrolysis of proteins was the generation of the bitter taste.Recently,high hydro...Enzymatic hydrolysis of proteins can enhance their emulsifying properties and antioxidant activities.However,the problem related to the hydrolysis of proteins was the generation of the bitter taste.Recently,high hydrostatic pressure(HHP)treatment has attracted much interest and has been used in several studies on protein modification.Hence,the study aimed to investigate the effects of enzymatic hydrolysis by Corolase PP under different pressure treatments(0.1,100,200,and 300 MPa for 1-5 h at 50℃)on the emulsifying property,antioxidant activity,and bitterness of soybean protein isolate hydrolysate(SPIH).As observed,the hydrolysate obtained at 200 MPa for 4 h had the highest emulsifying activity index(47.49 m^(2)/g)and emulsifying stability index(92.98%),and it had higher antioxidant activities(44.77%DPPH free radical scavenging activity,31.12%superoxide anion radical scavenging activity,and 61.50%copper ion chelating activity).At the same time,the enhancement of emulsion stability was related to the increase of zeta potential and the decrease of mean particle size.In addition,the hydrolysate obtained at 200 MPa for 4 h had a lower bitterness value and showed better palatability.This study has a broad application prospect in developing food ingredients and healthy foods.展开更多
Silicon(Si)is widely used as a lithium‐ion‐battery anode owing to its high capacity and abundant crustal reserves.However,large volume change upon cycling and poor conductivity of Si cause rapid capacity decay and p...Silicon(Si)is widely used as a lithium‐ion‐battery anode owing to its high capacity and abundant crustal reserves.However,large volume change upon cycling and poor conductivity of Si cause rapid capacity decay and poor fast‐charging capability limiting its commercial applications.Here,we propose a multilevel carbon architecture with vertical graphene sheets(VGSs)grown on surfaces of subnanoscopically and homogeneously dispersed Si–C composite nanospheres,which are subsequently embedded into a carbon matrix(C/VGSs@Si–C).Subnanoscopic C in the Si–C nanospheres,VGSs,and carbon matrix form a three‐dimensional conductive and robust network,which significantly improves the conductivity and suppresses the volume expansion of Si,thereby boosting charge transport and improving electrode stability.The VGSs with vast exposed edges considerably increase the contact area with the carbon matrix and supply directional transport channels through the entire material,which boosts charge transport.The carbon matrix encapsulates VGSs@Si–C to decrease the specific surface area and increase tap density,thus yielding high first Coulombic efficiency and electrode compaction density.Consequently,C/VGSs@Si–C delivers excellent Li‐ion storage performances under industrial electrode conditions.In particular,the full cells show high energy densities of 603.5 Wh kg^(−1)and 1685.5 Wh L^(−1)at 0.1 C and maintain 80.7%of the energy density at 3 C.展开更多
Herein,we report the design,fabrication,and performance of two wireless energy harvesting devices based on highly flexible graphene macroscopic films(FGMFs).We first demonstrate that benefiting from the high conductiv...Herein,we report the design,fabrication,and performance of two wireless energy harvesting devices based on highly flexible graphene macroscopic films(FGMFs).We first demonstrate that benefiting from the high conductivity of up to 1×10^(6)S m^(-1)and good resistive stability of FGMFs even under extensive bending,the FGMFs-based rectifying circuit(GRC)exhibits good flexibility and RF-to-DC efficiency of 53%at 2.1 GHz.Moreover,we further expand the application of FGMFs to a flexible wideband monopole rectenna and a 2.45 GHz wearable rectenna for harvesting wireless energy.The wideband rectenna at various bending conditions produces a maximum conversion efficiency of 52%,46%,and 44%at the 5th Generation(5G)2.1 GHz,Industrial Long-Term Evolution(LTE)2.3 GHz,and Scientific Medical(ISM)2.45 GHz,respectively.A 2.45 GHz GRC is optimized and integrated with an AMC-backed wearable antenna.The proposed 2.45 GHz wearable rectenna shows a maximum conversion efficiency of 55.7%.All the results indicate that the highly flexible graphene-film-based rectennas have great potential as a wireless power supplier for smart Internet of Things(loT)applications.展开更多
21-4N(5Cr21Mn9Ni4N)is extensively employed in the production of engine valves,operating under severe conditions.Apart from withstanding high-temperature gas corrosion,it must also endure the impact of cylinder explosi...21-4N(5Cr21Mn9Ni4N)is extensively employed in the production of engine valves,operating under severe conditions.Apart from withstanding high-temperature gas corrosion,it must also endure the impact of cylinder explosion pressure.The predominant failure mode of 21-4N valves is abrasive wear.Surface coatings serve as an effective approach to prevent such failures.In this investigation,Laser cladding technology was utilized to fabricate AlCoCrFeNiTi high entropy alloy coatings onto the surfaces of 21-4N valves.According to the findings,the cladding zone has a normal dendritic microstructure,a good substrate-to-cladding layer interaction,and no obvious flaws.In terms of hardness,the cladding demonstrates an average hardness of 620 HV.The hardness has increased by 140%compared to the substrate.The average hardness of the cladding remains at approximately 520 HV even at elevated temperatures.Regarding frictional wear performance,between 400℃and 800℃,the cladding layer exhibits an average friction coefficient of 0.4,with the primary wear mechanisms being abrasive wear,adhesive wear,and a minor degree of plastic deformation.展开更多
The hybrid carrier(HC)system rooted in the carrier fusion concept is gradually garnering attention.In this paper,we study the extended hybrid carrier(EHC)multiple access scheme to ensure reliable wireless communicatio...The hybrid carrier(HC)system rooted in the carrier fusion concept is gradually garnering attention.In this paper,we study the extended hybrid carrier(EHC)multiple access scheme to ensure reliable wireless communication.By employing the EHC modulation,a power layered multiplexing framework is realized,which exhibits enhanced interference suppression capability owing to the more uniform energy distribution design.The implementation method and advantage mechanism are explicated respectively for the uplink and downlink,and the performance analysis under varying channel conditions is provided.In addition,considering the connectivity demand,we explore the non-orthogonal multiple access(NOMA)method of the EHC system and develop the EHC sparse code multiple access scheme.The proposed scheme melds the energy spread superiority of EHC with the access capacity of NOMA,facilitating superior support for massive connectivity in high mobility environments.Simulation results have verified the feasibility and advantages of the proposed scheme.Compared with existing HC multiple access schemes,the proposed scheme exhibits robust bit error rate performance and can better guarantee multiple access performance in complex scenarios of nextgeneration communications.展开更多
Femtosecond laser-induced periodic surface structures(LIPSS)have been extensively studied over the past few decades.In particular,the period and groove width of high-spatial-frequency LIPSS(HSFL)is much smaller than t...Femtosecond laser-induced periodic surface structures(LIPSS)have been extensively studied over the past few decades.In particular,the period and groove width of high-spatial-frequency LIPSS(HSFL)is much smaller than the diffraction limit,making it a useful method for efficient nanomanufacturing.However,compared with the low-spatial-frequency LIPSS(LSFL),the structure size of the HSFL is smaller,and it is more easily submerged.Therefore,the formation mechanism of HSFL is complex and has always been a research hotspot in this field.In this study,regular LSFL with a period of 760 nm was fabricated in advance on a silicon surface with two-beam interference using an 800 nm,50 fs femtosecond laser.The ultrafast dynamics of HSFL formation on the silicon surface of prefabricated LSFL under single femtosecond laser pulse irradiation were observed and analyzed for the first time using collinear pump-probe imaging method.In general,the evolution of the surface structure undergoes five sequential stages:the LSFL begins to split,becomes uniform HSFL,degenerates into an irregular LSFL,undergoes secondary splitting into a weakly uniform HSFL,and evolves into an irregular LSFL or is submerged.The results indicate that the local enhancement of the submerged nanocavity,or the nanoplasma,in the prefabricated LSFL ridge led to the splitting of the LSFL,and the thermodynamic effect drove the homogenization of the splitting LSFL,which evolved into HSFL.展开更多
Cubic boron nitride and hexagonal boron nitride are the two predominant crystalline structures of boron nitride.They can interconvert under varying pressure and temperature conditions.However,this transformation requi...Cubic boron nitride and hexagonal boron nitride are the two predominant crystalline structures of boron nitride.They can interconvert under varying pressure and temperature conditions.However,this transformation requires overcoming significant potential barriers in dynamics,which poses great difficulty in determining the c-BN/h-BN phase boundary.This study used high-pressure in situ differential thermal measurements to ascertain the temperature of h-BN/c-BN conversion within the commonly used pressure range(3-6 GPa)for the industrial synthesis of c-BN to constrain the P-T phase boundary of h-BN/c-BN in the pressure-temperature range as much as possible.Based on the analysis of the experimental data,it is determined that the relationship between pressure and temperature conforms to the following equation:P=a+1/bT.Here,P denotes the pressure(GPa)and T is the temperature(K).The coefficients are a=-3.8±0.8 GPa and b=229.8±17.1 GPa/K.These findings call into question existing high-pressure and high-temperature phase diagrams of boron nitride,which seem to overstate the phase boundary temperature between c-BN and h-BN.The BN phase diagram obtained from this study can provide critical temperature and pressure condition guidance for the industrial synthesis of c-BN,thus optimizing synthesis efficiency and product performance.展开更多
基金financially supported by the National Natural Science Foundation of China(No.51574285)
文摘A crystalline polyferric sulfate(PFS) adsorbent was synthesized by oxidizing and precipitating ferrous ions in air atmospheric conditions. The morphology, structure, specific surface area(SSA), and adsorptive efficacy of the adsorbent to As(Ⅲ) were characterized by scanning electron microscope(SEM) and transmission electron microscopy(TEM) images, X-ray diffraction(XRD) patterns, Fourier-transform infrared(FTIR) spectra, BET SSA analyses, and adsorption experiments. The adsorbent showed a near-spherical aggregate structure and had good crystallinity. A significant amount of α-goethite co-precipitated with PFS in the case of the initial ferrous concentration of 1 mol/L and increased SSA of the adsorbent. The stability region of ferric compounds in the process was drawn and applied to analyze the iron behavior during the synthesis. The adsorption of As(Ⅲ) in high As(Ⅲ)-containing solutions fitted the Langmuir isotherm model adequately. The absorbent with co-precipitation of α-goethite showed good adsorbability for As(Ⅲ) and good filtering performance in the high As(Ⅲ)-containing solution of 10–100 mg/L under acidic, neutral, and alkaline conditions(pH 2.09–9.01). After the adsorption process, the stability of the residues bearing As(Ⅲ) was evaluated by toxic characteristic leaching procedure(TCLP) tests. The results indicated that the residues were extremely stable, and the concentrations of arsenic in the leaching solutions were less than 0.01 mg/L.
文摘The current research was investigated the mechanism of coal demineralization and the effect of leaching parameters on high ash coal and study the characterization of pre and post-treated coal. The two high ash Indian coal selected from Mahanadi Coalfield Limited, Odisha, pulverized to 375, 230 and 180 gm particle size were undergone simultaneous acid and alkali treatment at a different concentration, temperature and time. The percent demineralization was increased with decrease the size of the particle and rises with leaching parameters. The investigation suggested 180 μm particle size offers efficient demineralization for both coals at 30% NaOH and 30% H2SO4 concentration. The alkali leaching leads to obtaining the demineralization 46% and 42% whereas acid treatment resulted in 34% and 32% of the original coal samples. The extent of demineralization was improved the calorific value of coal. Besides, the degree of demineralization was proved from the FTIR, XRF and FESEM-EDX analysis results. FTIR analysis result showed that the peak intensity of mineral band decreased by the leaching effect and the degree of demineralization was significantly obtained to large extent by the X-ray Fluorescence spectrometer; which elucidates major minerals removed from coal by the leaching effect of acid and alkali solution.
文摘This overview discusses old and new results as to the controversy on the past glacier extension in High Asia, which has been debated for 35 years now. This paper makes an attempt to come closer to a solution. H.v. Wissmann's interpretation (1959) of a small-scale glaciation contrasts with M. Kuhle's reconstruction (1974) of a large-scale glaciation with a 2.4 million km2 extended Qinghai-Xizang (Tibetan) inland glaciation and a Himalaya-Karakorum icestream network. Both opinions find support but also contradiction in the International and Chinese literature (Academia Sinica). The solution of this question is of supraregional importance because of the subtropical position of the concerned areas. In case of large albedo-intensive ice surfaces, a global cooling would be the energetical consequence and, furthermore, a breakdown of the summer monsoon. The current and interglacial heat-low above the very effective heating panel of the Qinghai-Xizang (Tibetan) Plateau exceeding 4000 m, which gives rise to this monsoon circulation, would be replaced by the cold-high of an inland ice. In addition, the plate-tectonically created Pleistocene history of the uplift of High Asia — should the occasion arise up to beyond the snowline (ELA) —would attain a paleoclimatically great, perhaps global importance. In case of a heavy superimposed ice load, the question would come up as to the glacio-isostatic interruption of this primary uplift. The production of the loesses sedimentated in NE-China and their very probable glacial genesis as well as an eustatic lowering of the sea-level by 5 to 7 m in the maximum case of glaciation are immediately tied up with the question of glaciation we want to discuss. Not the least, the problems of biotopes of the sanctuary-centres of flora and fauna, i.e., interglacial re-settlement, are also dependent on it. On the basis of this Quaternary- geomorphological-glaciological connection, future contributions are requested on the past glaciation, the current and glacial permafrost table and periglacial development, the history of uplift, and the development of Ice Age lakes and loess, but also on the development of vegetation and fauna in High Asia.
文摘The gold sulfide concentrate with a high As content in Liangshan District, Sichuan Province, China, is a potentially important resource. This paper describes experiments of dearsenification of gold concentrate in a weakly reduced atmosphere in a rotary pipe furnace. The results showed that the optimal parameters were a temperature range of 650-700℃, 15%-16% CO2 of gas and a reaction time of 30-40 min. The removal rate of arsenic and sulfur was over 95% and 25%-28%, respectively. With further oxidization and roasting, residue sulfur in the roasted materials was dropped to below 4%, and the cyanide leaching recovery of gold was over 92%.
基金supported by Chinese 973 Project (2007CB411503)Chinese COPES(GYHY200706005)Hundred Talent Project of Chinese Academy of Sciences
文摘In coordination with Global Cryosphere Watch (GCW) initiated by World Meteorology Administration (WMO), a regional ob- servation network is proposed based on existing stations/sites over High Asia and cryospberic elements required by GCW. Thus, High Asian Cryosphere (HAC) network is preliminary designed, composing of seven "supersites", each containing several refer- ence sites. The network covers major mountain ranges in High Asia, such as East Tianshan, Qilian, Tanggula, Nyainqentanglha, Himalayas as well as the central and eastern Qinghai-Xizang (Tibet) Plateau. Although multiple cryospberic elements were ob- served at the existing HAC network, many others, which are required by Integrated Global Observation System-Cryosphere Theme (IGOS-Cryosphere), are not yet included. More comprehensive observations are necessary to be included into "supersites" of HAC, so that the basic requirements for validation of satellite data, assimilation and coupled regional models can be met.
基金Fundamental Research Funds for the Central Universities of ministry of Education of China(No.2232020G-04)National Key Research&Development Program of China(No.2018YFC1801500)。
文摘It is difficult to access exfoliated sepiolite(Sep)fibers with high aspect ratio from Sep ore.The traditional method used to purify Sep ore also reduces its aspect ratio.In this study,impurities in the Sep ore were removed by acid activation followed by a cetyltrimethylammonium chloride(C16)treatment to organically modify the purified Sep by cation exchange.Then,the organically-modified Sep(O-Sep)was stripped and processed by an ultrasonic cell crusher to obtain Sep microfibers at a specific frequency for a given period.These Sep samples had relatively high aspect ratio,compared with the Sep fibers gotten by traditional method.Scanning electron microscopy(SEM)and transmission electron microscopy(TEM)demonstrate the micro-morphology of exfoliated Sep samples in an intuitive way.Moreover,pure inorganic membrane prepared only with the exfoliated Sep fibers exhibited excellent flexibility,further demonstrating the excellent properties of Sep fibers with high aspect ratio.
文摘Glaciers play an important role in the global water cycling especially in the balance of fresh water on our planet, which exhibits a significant impact on global changes. This paper describes the role of glaciers in the water cycle and global changes and that of High Asian glaciers and their fluctuations, and introduces the global monitoring project on glacier mass balance and the progress in corresponding research in China.
基金supported by the National Natural Science Foundation of China(Grant No.41475039)the National Key Basic Research Program of China(Grant No.2015CB-953601)a China Postdoctoral Science Foundation-funded project(Grant No.2015M570500)
文摘The interdecadal variation of the summer western Pacific subtropical high(WPSH)during1948–2009 is investigated in this study.Compared with most previous works,which focused on the 500 h Pa geopotential height,the interdecadal variation of the horizontal winds,relative vorticity,and eddy geopotential height over the western Pacific are all analyzed.The weakened anticyclone and decreased negative relative vorticity at middle-low levels over the western Pacific suggest that the WPSH weakened during 1979–2009 relative to1948–78.After subtracting the zonal belt mean height between 0°and 40°N,the 500 hP a eddy geopotential height with significant negative anomalies over the western Pacific can correctly depict this weakened interdecadal variation of the WPSH.The illusory westward extension signal reflected by the 500 h Pa geopotential height may derive from the significant increment of the geopotential height at middle and lower latitudes in the late 1970s under global warming.
基金supported by the National Natural Science Foundation of China[grant numbers 41641042,41675039,41305039,91537213,41375047,41375092,41475140,41575057]the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘EI Nino (EN) episodes can be classified based on their time of onset as spring onset EN (SPEN) events and summer onset EN (SUEN) events. To evaluate the different influences of SPEN and SUEN events on the South Asian high (SAH), this study compared the seasonal evolution of the SAH (SESAH) associated with SPEN and SUEN events through analysis of geopotential height and zonal wind data derived from NCEP-NCAR Reanalysis-1 and sea surface temperature data obtained from the Hadley Center. The main features of the SESAH during an EN event are similar to its climatological characteristics. Climatologically, the SAH forms in May, strengthens, and moves northwestward in June and July. It does not change much in August, but then it returns south and weakens during September and October. However, its lifespan is shorter and its intensity weaker during EN periods. Furthermore, there are significant differences between the SESAH during SPEN and SUEN events. During a SPEN episode, the movement of the SAH to the northwest during May and June is slower than during a SUEN event, i.e. the SPEN SAH has a shorter lifespan. In comparison with the SUEN SAH, the SPEN SAH in July and September tends more towards the Tibetan high mode rather than the Iranian high mode. The SPEN SAH in October moves southeastward faster than the SUEN SAH, which also indicates that the SAH has a shorter lifespan during a SPEN event than during a SUEN episode.
基金support for this research provided by the National Natural Science Foundation of China(Grant No.52105458)Beijing Natural Science Foundation(Grant No.3222009)+1 种基金Huaneng Group Science and Technology Research Project(No:HNKJ22-H105)China Postdoctoral Science Foundation(Grant No.2022M711807)。
文摘High-aspect-ratio metallic surface microstructures are increasingly demanded in breakthrough applications,such as high-performance heat transfer enhancement and surface plasmon devices.However,the fast and cost-effective fabrication of high-aspect-ratio microstructures on metallic surfaces remains challenging for existing techniques.This study proposes a novel cutting-based process,namely elliptical vibration chiseling(EV-chiseling),for the high-efficiency texturing of surface microstructures with an ultrahigh aspect ratio.Unlike conventional cutting,EV-chiseling superimposes a microscale EV on a backward-moving tool.The tool chisels into the material in each vibration cycle to generate an upright chip with a high aspect ratio through material deformation.Thanks to the tool’s backward movement,the chip is left on the material surface to form a microstructure rather than falling off.Since one microstructure is generated in one vibration cycle,the process can be highly efficient using ultrafast(>1 kHz)tool vibration.A finite element analysis model is established to explore the process mechanics of EV-chiseling.Next,a mechanistic model of the microstructured surface generation is developed to describe the microstructures’aspect ratio dependency on the process parameters.Then,surface texturing tests are performed on copper to verify the efficacy of EV-chiseling.Uniformed micro ribs with a spacing of 1–10μm and an aspect ratio of 2–5 have been successfully textured on copper.Compared with the conventional EV-cutting that uses a forward-moving tool,EV-chiseling can improve the aspect ratio of textured microstructure by up to 40 times.The experimental results also verify the accuracy of the developed surface generation model of microstructures.Finally,the effects of elliptical trajectory,depth of cut,tool shape,and tool edge radius on the surface generation of micro ribs have been discussed.
文摘Following publication of the original article[1],the authors noticed a mistake in the Supplementary file,more specifically in figures S11 and S12 where they used by mistake the same sub-figures.The original article[1]has been corrected.
基金financial support from the National Natural Science Foundation of China(Grant No.41827806)the Liaoning Provincial Science and Technology Program of China(Grant No.2022JH2/101300109).
文摘Microwave-assisted mechanical excavation has great application prospects in mines and tunnels,but there are few field experiments on microwave-assisted rock breaking.This paper takes the Sishanling iron mine as the research object and adopts the self-developed high-power microwave-induced fracturing test system for hard rock to conduct field experiments of microwave-induced fracturing of iron ore.The heating and reflection evolution characteristics of ore under different microwave parameters(antenna type,power,and working distance)were studied,and the optimal microwave parameters were obtained.Subsequently,the ore was irradiated with the optimal microwave parameters,and the cracking effect of the ore under the action of the high-power open microwave was analyzed.The results show that the reflection coefficient(standing wave ratio)can be rapidly(<5 s)and automatically adjusted below the preset threshold value(1.6)as microwave irradiation is performed.When using a right-angle horn antenna with a working distance of 5 cm,the effect of automatic reflection adjustment reaches the best among other antenna types and working distances.When the working distance is the same,the average temperature of the irradiation surface and the area of the high-temperature area under the action of the two antennas(right-angled and equal-angled horn antenna)are basically the same and decrease with the increase of working distance.The optimal microwave parameters are:a right-angle horn antenna with a working distance of 5 cm.Subsequently,in further experiments,the optimal parameters were used to irradiate for 20 s and 40 s at a microwave power of 60 kW,respectively.The surface damage extended 38 cm×30 cm and 53 cm×30 cm,respectively,and the damage extended to a depth of about 50 cm.The drilling speed was increased by 56.2%and 66.5%,respectively,compared to the case when microwaves were not used.
基金supported by the Double Support Project (035–2221993229)。
文摘Background Adequate level of carbohydrates in aquafeeds help to conserve protein and reduce cost. However, studies have indicated that high-carbohydrate(HC) diet disrupt the homeostasis of the gut–liver axis in largemouth bass, resulting in decreased intestinal acetate and butyrate level.Method Herein, we had concepted a set of feeding experiment to assess the effects of dietary sodium acetate(SA) and sodium butyrate(SB) on liver health and the intestinal microbiota in largemouth bass fed an HC diet. The experimental design comprised 5 isonitrogenous and isolipidic diets, including LC(9% starch), HC(18% starch), HCSA(18% starch;2 g/kg SA), HCSB(18% starch;2 g/kg SB), and HCSASB(18% starch;1 g/kg SA + 1 g/kg SB). Juvenile largemouth bass with an initial body weight of 7.00 ± 0.20 g were fed on these diets for 56 d.Results We found that dietary SA and SB reduced hepatic triglyceride accumulation by activating autophagy(ATG101, LC3B and TFEB), promoting lipolysis(CPT1α, HSL and AMPKα), and inhibiting adipogenesis(FAS, ACCA, SCD1 and PPARγ). In addition, SA and SB decreased oxidative stress in the liver(CAT, GPX1α and SOD1) by activating the Keap1-Nrf2 pathway. Meanwhile, SA and SB alleviated HC-induced inflammation by downregulating the expression of pro-inflammatory factors(IL-1β, COX2 and Hepcidin1) through the NF-κB pathway. Importantly, SA and SB increased the abundance of bacteria that produced acetic acid and butyrate(Clostridium_sensu_stricto_1). Combined with the KEGG analysis, the results showed that SA and SB enriched carbohydrate metabolism and amino acid metabolism pathways, thereby improving the utilization of carbohydrates. Pearson correlation analysis indicated that growth performance was closely related to hepatic lipid deposition, autophagy, antioxidant capacity, inflammation, and intestinal microbial composition.Conclusions In conclusion, dietary SA and SB can reduce hepatic lipid deposition;and alleviate oxidative stress and inflammation in largemouth bass fed on HC diet. These beneficial effects may be due to the altered composition of the gut microbiota caused by SA and SB. The improvement effects of SB were stronger than those associated with SA.
基金supported by the Doctoral Research Foundation of Bohai University (05013/0520bs006)the Science and Technology Project of“Unveiling and Commanding”Liaoning Province (2021JH1/10400033)the Scientific Research Project from Education Department of Liaoning Province (LJ2020010)。
文摘Enzymatic hydrolysis of proteins can enhance their emulsifying properties and antioxidant activities.However,the problem related to the hydrolysis of proteins was the generation of the bitter taste.Recently,high hydrostatic pressure(HHP)treatment has attracted much interest and has been used in several studies on protein modification.Hence,the study aimed to investigate the effects of enzymatic hydrolysis by Corolase PP under different pressure treatments(0.1,100,200,and 300 MPa for 1-5 h at 50℃)on the emulsifying property,antioxidant activity,and bitterness of soybean protein isolate hydrolysate(SPIH).As observed,the hydrolysate obtained at 200 MPa for 4 h had the highest emulsifying activity index(47.49 m^(2)/g)and emulsifying stability index(92.98%),and it had higher antioxidant activities(44.77%DPPH free radical scavenging activity,31.12%superoxide anion radical scavenging activity,and 61.50%copper ion chelating activity).At the same time,the enhancement of emulsion stability was related to the increase of zeta potential and the decrease of mean particle size.In addition,the hydrolysate obtained at 200 MPa for 4 h had a lower bitterness value and showed better palatability.This study has a broad application prospect in developing food ingredients and healthy foods.
基金Guangdong Basic and Applied Basic Research Foundation,Grant/Award Number:2020A1515110762Research Grants Council of the Hong Kong Special Administrative Region,China,Grant/Award Number:R6005‐20Shenzhen Key Laboratory of Advanced Energy Storage,Grant/Award Number:ZDSYS20220401141000001。
文摘Silicon(Si)is widely used as a lithium‐ion‐battery anode owing to its high capacity and abundant crustal reserves.However,large volume change upon cycling and poor conductivity of Si cause rapid capacity decay and poor fast‐charging capability limiting its commercial applications.Here,we propose a multilevel carbon architecture with vertical graphene sheets(VGSs)grown on surfaces of subnanoscopically and homogeneously dispersed Si–C composite nanospheres,which are subsequently embedded into a carbon matrix(C/VGSs@Si–C).Subnanoscopic C in the Si–C nanospheres,VGSs,and carbon matrix form a three‐dimensional conductive and robust network,which significantly improves the conductivity and suppresses the volume expansion of Si,thereby boosting charge transport and improving electrode stability.The VGSs with vast exposed edges considerably increase the contact area with the carbon matrix and supply directional transport channels through the entire material,which boosts charge transport.The carbon matrix encapsulates VGSs@Si–C to decrease the specific surface area and increase tap density,thus yielding high first Coulombic efficiency and electrode compaction density.Consequently,C/VGSs@Si–C delivers excellent Li‐ion storage performances under industrial electrode conditions.In particular,the full cells show high energy densities of 603.5 Wh kg^(−1)and 1685.5 Wh L^(−1)at 0.1 C and maintain 80.7%of the energy density at 3 C.
基金supported by the National Natural Science Foundation of China(Grant No.62001338)the Open Funds for Sanya Science and Education Park(Grant No.2021KF0018)the Fundamental Research Funds for the Central Universities(Grant No.WUT:2021IVB029)
文摘Herein,we report the design,fabrication,and performance of two wireless energy harvesting devices based on highly flexible graphene macroscopic films(FGMFs).We first demonstrate that benefiting from the high conductivity of up to 1×10^(6)S m^(-1)and good resistive stability of FGMFs even under extensive bending,the FGMFs-based rectifying circuit(GRC)exhibits good flexibility and RF-to-DC efficiency of 53%at 2.1 GHz.Moreover,we further expand the application of FGMFs to a flexible wideband monopole rectenna and a 2.45 GHz wearable rectenna for harvesting wireless energy.The wideband rectenna at various bending conditions produces a maximum conversion efficiency of 52%,46%,and 44%at the 5th Generation(5G)2.1 GHz,Industrial Long-Term Evolution(LTE)2.3 GHz,and Scientific Medical(ISM)2.45 GHz,respectively.A 2.45 GHz GRC is optimized and integrated with an AMC-backed wearable antenna.The proposed 2.45 GHz wearable rectenna shows a maximum conversion efficiency of 55.7%.All the results indicate that the highly flexible graphene-film-based rectennas have great potential as a wireless power supplier for smart Internet of Things(loT)applications.
基金Sponsored by the Project to Enhance the Innovative Capabilities of Science and Technology SMEs of Shandong Province(Grant No.2023TSGC0531).
文摘21-4N(5Cr21Mn9Ni4N)is extensively employed in the production of engine valves,operating under severe conditions.Apart from withstanding high-temperature gas corrosion,it must also endure the impact of cylinder explosion pressure.The predominant failure mode of 21-4N valves is abrasive wear.Surface coatings serve as an effective approach to prevent such failures.In this investigation,Laser cladding technology was utilized to fabricate AlCoCrFeNiTi high entropy alloy coatings onto the surfaces of 21-4N valves.According to the findings,the cladding zone has a normal dendritic microstructure,a good substrate-to-cladding layer interaction,and no obvious flaws.In terms of hardness,the cladding demonstrates an average hardness of 620 HV.The hardness has increased by 140%compared to the substrate.The average hardness of the cladding remains at approximately 520 HV even at elevated temperatures.Regarding frictional wear performance,between 400℃and 800℃,the cladding layer exhibits an average friction coefficient of 0.4,with the primary wear mechanisms being abrasive wear,adhesive wear,and a minor degree of plastic deformation.
基金supported in part by the National Natural Science Foundation of China under Grant U23A20278in part by the National Natural Science Foundation of China under Grant 62171151in part by the Fundamental Research Funds for the Central Universities under Grant HIT.OCEF.2021012。
文摘The hybrid carrier(HC)system rooted in the carrier fusion concept is gradually garnering attention.In this paper,we study the extended hybrid carrier(EHC)multiple access scheme to ensure reliable wireless communication.By employing the EHC modulation,a power layered multiplexing framework is realized,which exhibits enhanced interference suppression capability owing to the more uniform energy distribution design.The implementation method and advantage mechanism are explicated respectively for the uplink and downlink,and the performance analysis under varying channel conditions is provided.In addition,considering the connectivity demand,we explore the non-orthogonal multiple access(NOMA)method of the EHC system and develop the EHC sparse code multiple access scheme.The proposed scheme melds the energy spread superiority of EHC with the access capacity of NOMA,facilitating superior support for massive connectivity in high mobility environments.Simulation results have verified the feasibility and advantages of the proposed scheme.Compared with existing HC multiple access schemes,the proposed scheme exhibits robust bit error rate performance and can better guarantee multiple access performance in complex scenarios of nextgeneration communications.
基金supports from the National Natural Science Foundation of China(12074123,12174108)the Foundation of‘Manufacturing beyond limits’of Shanghai‘Talent Program'of Henan Academy of Sciences.
文摘Femtosecond laser-induced periodic surface structures(LIPSS)have been extensively studied over the past few decades.In particular,the period and groove width of high-spatial-frequency LIPSS(HSFL)is much smaller than the diffraction limit,making it a useful method for efficient nanomanufacturing.However,compared with the low-spatial-frequency LIPSS(LSFL),the structure size of the HSFL is smaller,and it is more easily submerged.Therefore,the formation mechanism of HSFL is complex and has always been a research hotspot in this field.In this study,regular LSFL with a period of 760 nm was fabricated in advance on a silicon surface with two-beam interference using an 800 nm,50 fs femtosecond laser.The ultrafast dynamics of HSFL formation on the silicon surface of prefabricated LSFL under single femtosecond laser pulse irradiation were observed and analyzed for the first time using collinear pump-probe imaging method.In general,the evolution of the surface structure undergoes five sequential stages:the LSFL begins to split,becomes uniform HSFL,degenerates into an irregular LSFL,undergoes secondary splitting into a weakly uniform HSFL,and evolves into an irregular LSFL or is submerged.The results indicate that the local enhancement of the submerged nanocavity,or the nanoplasma,in the prefabricated LSFL ridge led to the splitting of the LSFL,and the thermodynamic effect drove the homogenization of the splitting LSFL,which evolved into HSFL.
基金supported by the National Key R&D Program of China(Grant No.2023YFA1406200).
文摘Cubic boron nitride and hexagonal boron nitride are the two predominant crystalline structures of boron nitride.They can interconvert under varying pressure and temperature conditions.However,this transformation requires overcoming significant potential barriers in dynamics,which poses great difficulty in determining the c-BN/h-BN phase boundary.This study used high-pressure in situ differential thermal measurements to ascertain the temperature of h-BN/c-BN conversion within the commonly used pressure range(3-6 GPa)for the industrial synthesis of c-BN to constrain the P-T phase boundary of h-BN/c-BN in the pressure-temperature range as much as possible.Based on the analysis of the experimental data,it is determined that the relationship between pressure and temperature conforms to the following equation:P=a+1/bT.Here,P denotes the pressure(GPa)and T is the temperature(K).The coefficients are a=-3.8±0.8 GPa and b=229.8±17.1 GPa/K.These findings call into question existing high-pressure and high-temperature phase diagrams of boron nitride,which seem to overstate the phase boundary temperature between c-BN and h-BN.The BN phase diagram obtained from this study can provide critical temperature and pressure condition guidance for the industrial synthesis of c-BN,thus optimizing synthesis efficiency and product performance.