The influence of high energy ball milling on Al 30Si powder and ceramic particulate SiC was studied by means of SEM, XRD and DSC. The results show that Al 30Si powder and their microstructure are obviously refined aft...The influence of high energy ball milling on Al 30Si powder and ceramic particulate SiC was studied by means of SEM, XRD and DSC. The results show that Al 30Si powder and their microstructure are obviously refined after high energy ball milling process. The alloy powder and SiC p stick closely to each other without interfacial reaction. DSC results detect no reaction but relaxation of the samples. So high energy ball milling can be used as an effective method for ceramic particulate pre treatment in the fabrication of MMC.展开更多
The La doped WC/Co powder was prepared by high energy ball milling. The changes of crystal structure, micrograph and defect of the powder were investigated by means of XRD (X-ray diffraction), SEM (scanning electron m...The La doped WC/Co powder was prepared by high energy ball milling. The changes of crystal structure, micrograph and defect of the powder were investigated by means of XRD (X-ray diffraction), SEM (scanning electron microscope) and DTA (differential thermal analysis). The results show that adding trace La element into carbides is effective to minish the grain size of WC/Co powder. The La doped carbides powder with grain size of 30nm can be obtained after 10h ball milling. The XRD peak of Co phase disappeared after 20h ball milling, which indicated solid solution (or secondary solid solution) of Co phase in WC phase. The La doped powder with grain size of 10nm is obtained after 30h ball milling. A peak of heat release at the temperature of 470℃ was emerged in DTA curve within the range of heating temperature, which showed that the crystal structure relaxation of the powder appeared in the process of high energy ball milling. After consolidated the La doped WC/Co alloy by high energy ball milling exhibits ultra-fine grain sizes and better mechanical properties.展开更多
The microwave magnetic properties of the ball milled FeCo panicles were investigated as functions of ball milling time ( t ) using microwave electromagnetic parameters analysis techniques. The results show that the ...The microwave magnetic properties of the ball milled FeCo panicles were investigated as functions of ball milling time ( t ) using microwave electromagnetic parameters analysis techniques. The results show that the imaginary part of intrinsic dynamic permeability ( ui ) of the ball- milled panicles is much bigger than that of raw powders. ui strongly depends on t and exhibits several slightly damped ferromagnetic resonances. These phenomena are in qualitative agreement with the formation of the corresponding microstructure or the Aharoni ' s model of non-uniform exchange resonance modes. The present microwave permeabilhy behavior indicates that nanocrystalline materials with the same grain size may exhibit different properties that depend upon the microstructure, which provides a possibility for manufacturing high performance microwave absorber.展开更多
The influence of spark plasma sintering(SPS)temperature on microstructure,hardness and corrosion behavior of a high-energy ball milled Mg-10wt%Al alloy was investigated in this work.The holding time and sintering pres...The influence of spark plasma sintering(SPS)temperature on microstructure,hardness and corrosion behavior of a high-energy ball milled Mg-10wt%Al alloy was investigated in this work.The holding time and sintering pressure for SPS were kept constant while varying the sintering temperature from 200 to 350℃.The grain size and microstructure were studied using X-ray diffraction analysis,scanning electron microscopy,energy dispersive X-ray spectroscopy,and Archimedes'based density measurement.Corrosion behavior was investigated using potentiodynamic polarization tests.The nanocrystalline regime(grain size<100nm)was maintained even after SPS up to 350℃.The density of the alloy increased with increasing the SPS temperature.Vickers'hardness and corrosion performance improved up to 300℃ followed by a decrease after SPS at 350℃.Possible reasons for densification,strengthening,and corrosion behavior have been discussed in the light of reduced porosity and microstructural changes.展开更多
The vortex formed around the rolling ball and the high pressure region formed around the ball-raceway contact zone are the principle factors that barricades the lubricant entering the bearing cavity, and further cause...The vortex formed around the rolling ball and the high pressure region formed around the ball-raceway contact zone are the principle factors that barricades the lubricant entering the bearing cavity, and further causes improper lubrication. The investigation of the air phase flow inside the bearing cavity is essential for the optimization of the oil-air two-phase lubrication method. With the revolutionary reference frame describing the bearing motion, a highly precise air phase flow model inside the angular contact ball bearing cavity was build up. Comprehensive factors such as bearing revolution, ball rotation, and cage structure were considered to investigate the influences on the air phase flow and heat transfer efficiency. The aerodynamic noise was also analyzed. The result shows that the ball spinning leads to the pressure rise and uneven pressure distribution. The air phase velocity, pressure and cage heat transfer efficiency increase as the revolving speed increases. The operating noise is largely due to the impact of the high speed external flow on the bearing. When the center of the oil-air outlet fixes near the inner ring, the aerodynamic noise is reduced. The position near the inner ring on the bigger axial side is the ideal position to fix the lubricating device for the angular contact ball bearing.展开更多
The variation of microstucture and phase structure of metal Cr and Al powders prepared by high energy mechanical milling was analyzed and investigated.The results show that with the continuous balling the average grai...The variation of microstucture and phase structure of metal Cr and Al powders prepared by high energy mechanical milling was analyzed and investigated.The results show that with the continuous balling the average grain sizes of the brittle Cr powders are gradually decreased,and the diffraction peaks are widened and the peak values lower owing to the interrelation caused by both cold welding and breaking;the tough Al powders exhibit intense cold welding,and most of powders lead to adhesion to ball surface and pot wall,meanwhile,the Al powders subjected to intense deformation have led to many dislocation rings with non dislocation wind up found in the microstructure.展开更多
The microstructure, electrical properties and density of ZnO-based varistor ceramics with different Er2O3 content prepared by high-energy ball milling (HEBM) and sintered at 800℃ were investigated. With increasing ...The microstructure, electrical properties and density of ZnO-based varistor ceramics with different Er2O3 content prepared by high-energy ball milling (HEBM) and sintered at 800℃ were investigated. With increasing Er2O3 content, the ZnO grain size decreases due to the Er-rich phases inhibiting grain growth ; and nonlinear coefficient ( α ) decreases because of the decrease of barrier height (φB) The breakdown voltage (Eb) and density increase, whereas leakage current (IL) decreases with increasing Er2O3 content. The barrier height (φB), donor concentration (Nd), density of interface states (Ns) decrease and barrier width (ω) increases with increasing Er2O3 content due to acceptor effect of Er2O3 in varistor ceramics.展开更多
The mathematical models are developed to evaluate the ultimate tensile strength( UTS) and hardness of CNTs / Al2024 composites fabricated by high-energy ball milling. The effects of the preparation variables which are...The mathematical models are developed to evaluate the ultimate tensile strength( UTS) and hardness of CNTs / Al2024 composites fabricated by high-energy ball milling. The effects of the preparation variables which are milling time,rotational speed,mass fraction of CNTs and ball to powder ratio on UST and hardness of CNTs / Al2024 composites are investigated. Based on the central composite design( CCD),a quadratic model is developed to correlate the fabrication variables to the UST and hardness. From the analysis of variance( ANOVA),the most influential factor on each experimental design response is identified. The optimum conditions for preparing CNTs / Al2024 composites are found as follows: 1. 53 h milling time,900 r / min rotational speed,mass fraction of CNTs 2. 87% and Ball to powder ratio 25 ∶ 1. The predicted maximum UST and hardness are 273.30 MPa and 261.36 HV,respectively. And the experimental values are 283.25 MPa and256.8 HV,respectively. It is indicated that the predicted UST and hardness after process optimization are found to agree satisfactory with the experimental values.展开更多
Y2O3-doped ZnO-based varistor ceramics were prepared using high-energy ball milling (HEBM) and low-temperature sin- tering technique, with voltage-gradient of 1934-2197 V/mm, non-linear coefficients of 20.8-21.8, le...Y2O3-doped ZnO-based varistor ceramics were prepared using high-energy ball milling (HEBM) and low-temperature sin- tering technique, with voltage-gradient of 1934-2197 V/mm, non-linear coefficients of 20.8-21.8, leakage currents of 0.59-1.04 μA, and densities of 5.46-5.57 g/cm3. With increasing Y2O3 content, the voltage-gradient increases because of the decrease of ZnO grain size; the non-linear coefficient and the leakage current improve but the density decreases because of more porosity; the donor con- centration and density of interface states decrease, whereas the barrier height and width increase because of the acceptor effect of Y2O3 in varistor ceramics.展开更多
MgTiO3 precursor was mechanochemically synthesized by high-energy ball milling of MgO and TiO2 . The sinteting characteristic of the resulted MgTiO3 precursor was investigated. The experirneatal resalts indicate that...MgTiO3 precursor was mechanochemically synthesized by high-energy ball milling of MgO and TiO2 . The sinteting characteristic of the resulted MgTiO3 precursor was investigated. The experirneatal resalts indicate that particles of both MgO and TiO2 powders become smaller rapidly, and then the costalline structures of MgO and TiO2 change significantly. MgTiO3 was observed by XRD after 30 hours of ball milling. Strong diffraction peaks of MgTiO3 were observed after 50 hours of ball milling. HRTEM observation proves that dense MgTiO3 ceramics with a compact crystalline structure can be sintered from rnechanochemically activated MgTiO3 precursor, the volume density of the resulting ceramie is as high aa 95% of the theoretical density, the porosity and average pore diameter of the ceramic are measured as 4.95% and 50 nm respectively, and the transverse strength exceeded 500 MPa.展开更多
High energy ball milling(HEBM) is employed to produce nano-sized grains and particles. In this paper, the structure and magnetic properties are investigated in PrCo5 alloy for HEBM in an ethanol milling medium. With t...High energy ball milling(HEBM) is employed to produce nano-sized grains and particles. In this paper, the structure and magnetic properties are investigated in PrCo5 alloy for HEBM in an ethanol milling medium. With the increase of milling time, the grain size reduces and the coercivity increases. For a milling time of less than 30 min, the hysteresis loop of the aligned sample is very different from that of the un-aligned sample and it does not show a large decrease in magnetization slope, indicating a relatively good alignment of easy axes in particles due to the fact that the texture is nearly well preserved. However, when the milling time is further prolonged, the textured structure deteriorates in the powders.Even though exchange coupling exists between grains within the particle, the magnetic properties are exchange-decoupled between particles and the dipolar interaction results in a negative value of δ m in the whole range of the magnetic field.展开更多
In present paper, the 3-body abrasion and impact fatigue resistance of a 12%Cr-2.65%C-1.4%Si high Cr cast iron are comprehensively evaluated. The results indicated that the lower the C content of the martensitic ma...In present paper, the 3-body abrasion and impact fatigue resistance of a 12%Cr-2.65%C-1.4%Si high Cr cast iron are comprehensively evaluated. The results indicated that the lower the C content of the martensitic matrix, the better the impact fatigue resistance of the iron. The retained austenite is always harmful to both 3-body abrasion and impact fatigue resistances. The low C content martensitic matrix free from retained austenite is suitable for making grinding balls.展开更多
The structural transitions of the NiAs-type Mn0.52Sb0.48 magneto-ordered compound, ball milled to different periods, have been characterized by X-ray diffraction and DSC analysis. On the basis of lattice parameter res...The structural transitions of the NiAs-type Mn0.52Sb0.48 magneto-ordered compound, ball milled to different periods, have been characterized by X-ray diffraction and DSC analysis. On the basis of lattice parameter results a structural evolution mode with three stages is proposed. In the first stage lattice parameters keep nearly unchanged with the refinement of grains and increase of lattice strain. In the second stage, microstrain shows a lowering tendency accompanying the successive decreases of grain size. The X-ray revealed internal strain is found to be strains inside the lattice, which can be relaxed with new grain formation. The change of Tc is shown to be affected by the dimension of c axis, however the overall magnetization is continuously decreased with milling, due to the disordering process occurred in milling. Correspondent disordering mechanisms have been tentatively postulated and discussed according to the changes of lattice para meters.展开更多
In this paper, the milling parameters of high energy ball mill (Fritsch Pulverisette 7) like vial geometry, number and size of balls and speed of the mill were modelled and discussed. Simulations through discrete elem...In this paper, the milling parameters of high energy ball mill (Fritsch Pulverisette 7) like vial geometry, number and size of balls and speed of the mill were modelled and discussed. Simulations through discrete element method (DEM) provide correlation between the milling parameters. A mathematical model is used to improve and develop this process. The results show that the loss of powder mass can remarkably improve the performance of milling. The balls made of stainless-steel have a positive effect on the milling efficiency. The simulation shows that the high ball milling velocities can contribute to faster particle size reduction.展开更多
The article has been retracted due to the investigation of complaints received against it. The Editorial Board found that substantial portions of the text came from other published paper. Comparing with the paper publ...The article has been retracted due to the investigation of complaints received against it. The Editorial Board found that substantial portions of the text came from other published paper. Comparing with the paper published in International Journal of Engineering, Science and Technology Vol. 3, No. 4, 2011, pp. 82-88 (www.ijest-ng.com), these two papers have the same contents before Figure 7 and the author added Fig. 8, 9, 10 on the 2012 paper. The scientific community takes a very strong view on this matter, and the Journal of Minerals and Materials Characterization and Engineering (JMMCE) treats all unethical behavior seriously. This paper published in Vol.11 No.5, 529-541, 2012 has been removed from this site.展开更多
High energy ball milling(HEBM) method was applied to synthesize nickel hydroxide with and without partial substitution for Ni2+ sites by such metallic ions as Al3+, Al3+Zn2+ and Al3+Zn2+Co2+. The morphologies, structu...High energy ball milling(HEBM) method was applied to synthesize nickel hydroxide with and without partial substitution for Ni2+ sites by such metallic ions as Al3+, Al3+Zn2+ and Al3+Zn2+Co2+. The morphologies, structures, composition and thermal stability of the prepared powders were studied by SEM, XRD, FTIR and TG. The results reveal that all the synthesized Ni(OH)2 particles agglomerate in sub-micron sizes and the non-substituted Ni(OH)2 is composed of beta phase with a crystal interlayer distance of 4.64 , while the Al3+, Al3+Zn2+, Al3+Zn2+Co2+ substituted products are composed of alpha phase with 8.03 crystal interlayer space. Absorbed water molecule is found in all the synthesized Ni(OH)2 and the non-substituted particles are more thermally stable than substituted a-Ni(OH)2. The absorption peaks of inserted crystal anions of CO3 and SO24 are detected for metallic ion substituted a-Ni(OH)2. The specific capacity of Al3+substituted Ni(OH)2 is 325 mA·h/g, 5 mA·h/g higher than Al3+Zn2+ substituted and non-substituted Ni(OH)2, but 25 mA·h/g greater than Al3+Zn2+Co2+ substituted Ni(OH)2. The electrochemical mechanism of synthesized Ni(OH)2 electrodes is discussed by EIS spectrum and Al3+ substituted Ni(OH)2 electrode shows a high electrochemical cyclic stability.展开更多
For the purpose to improve a design quality of high-speed spindle units, we have developed mathematical models and software to simulate a rotation accuracy of spindles running on ball bearings. In order to better unde...For the purpose to improve a design quality of high-speed spindle units, we have developed mathematical models and software to simulate a rotation accuracy of spindles running on ball bearings. In order to better understand the mechanics of ball bearings, the dynamic interaction of ball bearings and spindle unit, and the influence of the bearing imperfections on the spindle rotation accuracy, we have carried out computer aided analysis and experimental studies. When doing this, we have found that the spindle rotation accuracy can vary drastically with rotational speed. The influence of bearing preload has a secondary importance. Comparison of the results of these studies has demonstrated adequacy of the models developed to the real spindle units.展开更多
In this paper, we conduct research on the Korf ball athlete basic selecting model under the background of high level athlete data guidance. Athletes selecting closely related to the ultimate goal of training for many ...In this paper, we conduct research on the Korf ball athlete basic selecting model under the background of high level athlete data guidance. Athletes selecting closely related to the ultimate goal of training for many years. So, naturally, great athletes become references, the structure model of the excellent athlete competitive ability become athletes selecting targeting. Based on abundant literature, discusses the selection of the targeting of athletes, in an effort to at the same time, the rich athletes selecting theory provides a new perspective for the material practice. Our paper integrates the basic information of the high level athlete data to construct the novel paradigm for further promotion.展开更多
Iron/polytetrafluoroethylene (Fe/PTFE) nanocomposites were prepared by means of high-energy ball milling for different lengths of time. Three new components of FeF2, FeF3, and Fe3C in the resultants were mainly in- ve...Iron/polytetrafluoroethylene (Fe/PTFE) nanocomposites were prepared by means of high-energy ball milling for different lengths of time. Three new components of FeF2, FeF3, and Fe3C in the resultants were mainly in- vestigated using the M?ssbauer spectroscopy (MS). The components and average grain size of the nanocomposites were also measured using X-ray diffraction (XRD) and transmission electron microscopy (TEM), respectively.展开更多
文摘The influence of high energy ball milling on Al 30Si powder and ceramic particulate SiC was studied by means of SEM, XRD and DSC. The results show that Al 30Si powder and their microstructure are obviously refined after high energy ball milling process. The alloy powder and SiC p stick closely to each other without interfacial reaction. DSC results detect no reaction but relaxation of the samples. So high energy ball milling can be used as an effective method for ceramic particulate pre treatment in the fabrication of MMC.
基金This work was supported by State Key Laboratory for Powder Metallurgy of China. We are grateful to the staff of Hu'nan Yin Zhou Nonferrous Metals Hi-Tech. Ltd. Company for cemented carbides powders.
文摘The La doped WC/Co powder was prepared by high energy ball milling. The changes of crystal structure, micrograph and defect of the powder were investigated by means of XRD (X-ray diffraction), SEM (scanning electron microscope) and DTA (differential thermal analysis). The results show that adding trace La element into carbides is effective to minish the grain size of WC/Co powder. The La doped carbides powder with grain size of 30nm can be obtained after 10h ball milling. The XRD peak of Co phase disappeared after 20h ball milling, which indicated solid solution (or secondary solid solution) of Co phase in WC phase. The La doped powder with grain size of 10nm is obtained after 30h ball milling. A peak of heat release at the temperature of 470℃ was emerged in DTA curve within the range of heating temperature, which showed that the crystal structure relaxation of the powder appeared in the process of high energy ball milling. After consolidated the La doped WC/Co alloy by high energy ball milling exhibits ultra-fine grain sizes and better mechanical properties.
基金Funded by the 863 High Technology Research Project ( No.2001AA339020 and 2002AA305302) fromthe Ministry of Scienceand Technology of China , and the Excellent Young Teachers Pro-gramof MOE(2002[350]) ,China
文摘The microwave magnetic properties of the ball milled FeCo panicles were investigated as functions of ball milling time ( t ) using microwave electromagnetic parameters analysis techniques. The results show that the imaginary part of intrinsic dynamic permeability ( ui ) of the ball- milled panicles is much bigger than that of raw powders. ui strongly depends on t and exhibits several slightly damped ferromagnetic resonances. These phenomena are in qualitative agreement with the formation of the corresponding microstructure or the Aharoni ' s model of non-uniform exchange resonance modes. The present microwave permeabilhy behavior indicates that nanocrystalline materials with the same grain size may exhibit different properties that depend upon the microstructure, which provides a possibility for manufacturing high performance microwave absorber.
基金RKG acknowledges the financial support from the National Science Foundation(NSF-CMMI 1846887)under the direction of Dr.Alexis Lewis.
文摘The influence of spark plasma sintering(SPS)temperature on microstructure,hardness and corrosion behavior of a high-energy ball milled Mg-10wt%Al alloy was investigated in this work.The holding time and sintering pressure for SPS were kept constant while varying the sintering temperature from 200 to 350℃.The grain size and microstructure were studied using X-ray diffraction analysis,scanning electron microscopy,energy dispersive X-ray spectroscopy,and Archimedes'based density measurement.Corrosion behavior was investigated using potentiodynamic polarization tests.The nanocrystalline regime(grain size<100nm)was maintained even after SPS up to 350℃.The density of the alloy increased with increasing the SPS temperature.Vickers'hardness and corrosion performance improved up to 300℃ followed by a decrease after SPS at 350℃.Possible reasons for densification,strengthening,and corrosion behavior have been discussed in the light of reduced porosity and microstructural changes.
基金Project(2011CB706606) supported by the National Basic Research of ChinaProject(51405375) supported by the National Natural Science Foundation of China
文摘The vortex formed around the rolling ball and the high pressure region formed around the ball-raceway contact zone are the principle factors that barricades the lubricant entering the bearing cavity, and further causes improper lubrication. The investigation of the air phase flow inside the bearing cavity is essential for the optimization of the oil-air two-phase lubrication method. With the revolutionary reference frame describing the bearing motion, a highly precise air phase flow model inside the angular contact ball bearing cavity was build up. Comprehensive factors such as bearing revolution, ball rotation, and cage structure were considered to investigate the influences on the air phase flow and heat transfer efficiency. The aerodynamic noise was also analyzed. The result shows that the ball spinning leads to the pressure rise and uneven pressure distribution. The air phase velocity, pressure and cage heat transfer efficiency increase as the revolving speed increases. The operating noise is largely due to the impact of the high speed external flow on the bearing. When the center of the oil-air outlet fixes near the inner ring, the aerodynamic noise is reduced. The position near the inner ring on the bigger axial side is the ideal position to fix the lubricating device for the angular contact ball bearing.
文摘The variation of microstucture and phase structure of metal Cr and Al powders prepared by high energy mechanical milling was analyzed and investigated.The results show that with the continuous balling the average grain sizes of the brittle Cr powders are gradually decreased,and the diffraction peaks are widened and the peak values lower owing to the interrelation caused by both cold welding and breaking;the tough Al powders exhibit intense cold welding,and most of powders lead to adhesion to ball surface and pot wall,meanwhile,the Al powders subjected to intense deformation have led to many dislocation rings with non dislocation wind up found in the microstructure.
基金Project supported by National Natural Science Foundation of China (50471045) Shanghai Nano-Technology PromotionCenter (0452nm026)
文摘The microstructure, electrical properties and density of ZnO-based varistor ceramics with different Er2O3 content prepared by high-energy ball milling (HEBM) and sintered at 800℃ were investigated. With increasing Er2O3 content, the ZnO grain size decreases due to the Er-rich phases inhibiting grain growth ; and nonlinear coefficient ( α ) decreases because of the decrease of barrier height (φB) The breakdown voltage (Eb) and density increase, whereas leakage current (IL) decreases with increasing Er2O3 content. The barrier height (φB), donor concentration (Nd), density of interface states (Ns) decrease and barrier width (ω) increases with increasing Er2O3 content due to acceptor effect of Er2O3 in varistor ceramics.
基金Sponsored by the Program for Innovative Research Team in University of Yunnan Province and Major Projects of Yunnan Province(Grant No.2014FC001)
文摘The mathematical models are developed to evaluate the ultimate tensile strength( UTS) and hardness of CNTs / Al2024 composites fabricated by high-energy ball milling. The effects of the preparation variables which are milling time,rotational speed,mass fraction of CNTs and ball to powder ratio on UST and hardness of CNTs / Al2024 composites are investigated. Based on the central composite design( CCD),a quadratic model is developed to correlate the fabrication variables to the UST and hardness. From the analysis of variance( ANOVA),the most influential factor on each experimental design response is identified. The optimum conditions for preparing CNTs / Al2024 composites are found as follows: 1. 53 h milling time,900 r / min rotational speed,mass fraction of CNTs 2. 87% and Ball to powder ratio 25 ∶ 1. The predicted maximum UST and hardness are 273.30 MPa and 261.36 HV,respectively. And the experimental values are 283.25 MPa and256.8 HV,respectively. It is indicated that the predicted UST and hardness after process optimization are found to agree satisfactory with the experimental values.
文摘Y2O3-doped ZnO-based varistor ceramics were prepared using high-energy ball milling (HEBM) and low-temperature sin- tering technique, with voltage-gradient of 1934-2197 V/mm, non-linear coefficients of 20.8-21.8, leakage currents of 0.59-1.04 μA, and densities of 5.46-5.57 g/cm3. With increasing Y2O3 content, the voltage-gradient increases because of the decrease of ZnO grain size; the non-linear coefficient and the leakage current improve but the density decreases because of more porosity; the donor con- centration and density of interface states decrease, whereas the barrier height and width increase because of the acceptor effect of Y2O3 in varistor ceramics.
文摘MgTiO3 precursor was mechanochemically synthesized by high-energy ball milling of MgO and TiO2 . The sinteting characteristic of the resulted MgTiO3 precursor was investigated. The experirneatal resalts indicate that particles of both MgO and TiO2 powders become smaller rapidly, and then the costalline structures of MgO and TiO2 change significantly. MgTiO3 was observed by XRD after 30 hours of ball milling. Strong diffraction peaks of MgTiO3 were observed after 50 hours of ball milling. HRTEM observation proves that dense MgTiO3 ceramics with a compact crystalline structure can be sintered from rnechanochemically activated MgTiO3 precursor, the volume density of the resulting ceramie is as high aa 95% of the theoretical density, the porosity and average pore diameter of the ceramic are measured as 4.95% and 50 nm respectively, and the transverse strength exceeded 500 MPa.
基金supported by the National Natural Science Foundation of China(Grant No.51461033)
文摘High energy ball milling(HEBM) is employed to produce nano-sized grains and particles. In this paper, the structure and magnetic properties are investigated in PrCo5 alloy for HEBM in an ethanol milling medium. With the increase of milling time, the grain size reduces and the coercivity increases. For a milling time of less than 30 min, the hysteresis loop of the aligned sample is very different from that of the un-aligned sample and it does not show a large decrease in magnetization slope, indicating a relatively good alignment of easy axes in particles due to the fact that the texture is nearly well preserved. However, when the milling time is further prolonged, the textured structure deteriorates in the powders.Even though exchange coupling exists between grains within the particle, the magnetic properties are exchange-decoupled between particles and the dipolar interaction results in a negative value of δ m in the whole range of the magnetic field.
文摘In present paper, the 3-body abrasion and impact fatigue resistance of a 12%Cr-2.65%C-1.4%Si high Cr cast iron are comprehensively evaluated. The results indicated that the lower the C content of the martensitic matrix, the better the impact fatigue resistance of the iron. The retained austenite is always harmful to both 3-body abrasion and impact fatigue resistances. The low C content martensitic matrix free from retained austenite is suitable for making grinding balls.
文摘The structural transitions of the NiAs-type Mn0.52Sb0.48 magneto-ordered compound, ball milled to different periods, have been characterized by X-ray diffraction and DSC analysis. On the basis of lattice parameter results a structural evolution mode with three stages is proposed. In the first stage lattice parameters keep nearly unchanged with the refinement of grains and increase of lattice strain. In the second stage, microstrain shows a lowering tendency accompanying the successive decreases of grain size. The X-ray revealed internal strain is found to be strains inside the lattice, which can be relaxed with new grain formation. The change of Tc is shown to be affected by the dimension of c axis, however the overall magnetization is continuously decreased with milling, due to the disordering process occurred in milling. Correspondent disordering mechanisms have been tentatively postulated and discussed according to the changes of lattice para meters.
文摘In this paper, the milling parameters of high energy ball mill (Fritsch Pulverisette 7) like vial geometry, number and size of balls and speed of the mill were modelled and discussed. Simulations through discrete element method (DEM) provide correlation between the milling parameters. A mathematical model is used to improve and develop this process. The results show that the loss of powder mass can remarkably improve the performance of milling. The balls made of stainless-steel have a positive effect on the milling efficiency. The simulation shows that the high ball milling velocities can contribute to faster particle size reduction.
文摘The article has been retracted due to the investigation of complaints received against it. The Editorial Board found that substantial portions of the text came from other published paper. Comparing with the paper published in International Journal of Engineering, Science and Technology Vol. 3, No. 4, 2011, pp. 82-88 (www.ijest-ng.com), these two papers have the same contents before Figure 7 and the author added Fig. 8, 9, 10 on the 2012 paper. The scientific community takes a very strong view on this matter, and the Journal of Minerals and Materials Characterization and Engineering (JMMCE) treats all unethical behavior seriously. This paper published in Vol.11 No.5, 529-541, 2012 has been removed from this site.
文摘High energy ball milling(HEBM) method was applied to synthesize nickel hydroxide with and without partial substitution for Ni2+ sites by such metallic ions as Al3+, Al3+Zn2+ and Al3+Zn2+Co2+. The morphologies, structures, composition and thermal stability of the prepared powders were studied by SEM, XRD, FTIR and TG. The results reveal that all the synthesized Ni(OH)2 particles agglomerate in sub-micron sizes and the non-substituted Ni(OH)2 is composed of beta phase with a crystal interlayer distance of 4.64 , while the Al3+, Al3+Zn2+, Al3+Zn2+Co2+ substituted products are composed of alpha phase with 8.03 crystal interlayer space. Absorbed water molecule is found in all the synthesized Ni(OH)2 and the non-substituted particles are more thermally stable than substituted a-Ni(OH)2. The absorption peaks of inserted crystal anions of CO3 and SO24 are detected for metallic ion substituted a-Ni(OH)2. The specific capacity of Al3+substituted Ni(OH)2 is 325 mA·h/g, 5 mA·h/g higher than Al3+Zn2+ substituted and non-substituted Ni(OH)2, but 25 mA·h/g greater than Al3+Zn2+Co2+ substituted Ni(OH)2. The electrochemical mechanism of synthesized Ni(OH)2 electrodes is discussed by EIS spectrum and Al3+ substituted Ni(OH)2 electrode shows a high electrochemical cyclic stability.
文摘For the purpose to improve a design quality of high-speed spindle units, we have developed mathematical models and software to simulate a rotation accuracy of spindles running on ball bearings. In order to better understand the mechanics of ball bearings, the dynamic interaction of ball bearings and spindle unit, and the influence of the bearing imperfections on the spindle rotation accuracy, we have carried out computer aided analysis and experimental studies. When doing this, we have found that the spindle rotation accuracy can vary drastically with rotational speed. The influence of bearing preload has a secondary importance. Comparison of the results of these studies has demonstrated adequacy of the models developed to the real spindle units.
文摘In this paper, we conduct research on the Korf ball athlete basic selecting model under the background of high level athlete data guidance. Athletes selecting closely related to the ultimate goal of training for many years. So, naturally, great athletes become references, the structure model of the excellent athlete competitive ability become athletes selecting targeting. Based on abundant literature, discusses the selection of the targeting of athletes, in an effort to at the same time, the rich athletes selecting theory provides a new perspective for the material practice. Our paper integrates the basic information of the high level athlete data to construct the novel paradigm for further promotion.
文摘Iron/polytetrafluoroethylene (Fe/PTFE) nanocomposites were prepared by means of high-energy ball milling for different lengths of time. Three new components of FeF2, FeF3, and Fe3C in the resultants were mainly in- vestigated using the M?ssbauer spectroscopy (MS). The components and average grain size of the nanocomposites were also measured using X-ray diffraction (XRD) and transmission electron microscopy (TEM), respectively.