Aiming at the high temperature corrosion in a coal-fired boiler,the effect of H2S and SO2 on the corrosion of 12 CrlMoV under the water wall condition has been investigated by experiments.The results indicate that H2 ...Aiming at the high temperature corrosion in a coal-fired boiler,the effect of H2S and SO2 on the corrosion of 12 CrlMoV under the water wall condition has been investigated by experiments.The results indicate that H2 S can promote the corrosion significantly,and the coarse porous oxide film formed cannot stop the progress of corrosion.While SO2 presents little effect on the corrosion.The main composition of the surface of 12 CrlMoV corrosion products is Fe2 O3.With H2S in the atmosphere,the corrosion gradually develops into deeper layers by forming FeS,FeO and Fe2 O3 alternately.The corrosion rate is doubled for every 50℃ inerease in temperature at 400-500℃.展开更多
The corrosion behavior of C110 bushing at high temperature and high pressure with a high H2S / CO2 was studied, and a basis for the materials selection of sour gas well bushing was provided in H2S, CO2 and saline coex...The corrosion behavior of C110 bushing at high temperature and high pressure with a high H2S / CO2 was studied, and a basis for the materials selection of sour gas well bushing was provided in H2S, CO2 and saline coexisting environment. Under acidic condiction, hydrogen atoms greatly entered into the material and caused the material properties changed. Weight loss method was used to study the corrosion rate of hydrogen charging samples and original untreated samples in simulated oil field environment. PAR2273 electrochemical workstation was used to examine the electrochemical performance of samples untreated, hydrogen charging after reacting in autoclave. The corrosion product film was observed through SEM. The experimental results show that sample with hydrogen charging has a much more obvious partial corrosion and pitting corrosion than the untreated blank sample even the downhole corrosion speed of bushing is increased after being used for a period of time. Polarization curve shows the corrosion tendency is the same between sample with or without hydrogen charging and corrosion tendency is reduced by corrosion product film. A layer of dense product film formed on the surface of samples provides a certain protective effect to the matrix, but cracked holes which will accelerate partial corrosion of the sample were also observed.展开更多
The effects of plastic deformation and H2 S on fracture toughness of high strength casing steel(C110 steel) were investigated. The studied casing specimens are as follows: original casing, plastic deformation(PD)...The effects of plastic deformation and H2 S on fracture toughness of high strength casing steel(C110 steel) were investigated. The studied casing specimens are as follows: original casing, plastic deformation(PD) casing and PD casing after being immersed in NACE A solution saturated with H2S(PD+H2S). Instrumented impact method was employed to evaluate the impact behaviors of the specimens, meanwhile, dynamic fracture toughness(JId) was calculated by using Rice model and Schindler model. The experimental results show that dynamic fracture toughness of the casing decreases after plastic deformation. Compared with that of the original casing and PD casing, the dynamic fracture toughness decreases further when the PD casing immersed in H2 S, moreover, there are ridge-shaped feature and many secondary cracks present on the fracture surface of the specimens. Impact fracture mechanism of the casing is proposed as follows: the plastic deformation results in the increase of defect density of materials where the atomic hydrogen can accumulate in reversible or irreversible traps and even recombine to form molecular hydrogen, subsequently, the casing material toughness decreases greatly.展开更多
The corrosion behavior of the 110S tube steel in the environments of high H2 S and CO2 content was inves- tigated by using a high-temperature and high-pressure autoclave, and the corrosion products were characterized ...The corrosion behavior of the 110S tube steel in the environments of high H2 S and CO2 content was inves- tigated by using a high-temperature and high-pressure autoclave, and the corrosion products were characterized by scanning electron microscopy and X ray diffraction technique. The results showed that all of the corrosion products under the test conditions mainly consisted of different types of iron sulfides such as pyrrhotite of Fe0.95 S, mackinaw- ite of FeS0.9, Fe0. 985 S and FeS, and the absence of iron carbonate in the corrosion scales indicated that the corrosion process was controlled by H2S corrosion. The corrosion rate of the 110S steel decreased firstly and then increased with the rising of temperature. The minimum corrosion rate occurred at 110 ℃. When the H2 S partial pressure PH2s below 9 MPa, the corrosion rate declined with the increase of PH2s. While over 9 MPa, a higher PH2s resulted in a faster corrosion process. With the increasing of the CO2 partial pressure, the corrosion rate had an increasing trend. The morphologies of the corrosion scales had a good accordance with the corrosion rates.展开更多
With the aid of hydrogen permeating devices, the hydrogen permeation behaviors of X52 pipeline steel in NACE A solution with saturated H2S/CO2 were studied under the conditions of different ambient temperatures and pH...With the aid of hydrogen permeating devices, the hydrogen permeation behaviors of X52 pipeline steel in NACE A solution with saturated H2S/CO2 were studied under the conditions of different ambient temperatures and pH values, and the hydrogen permeation behaviors of X52 pipeline steel in weld seam zone were comparatively studied. The experimental results show that the hydrogen permeation coefficient value is directly proportional to the time required for reaching the saturation anode current and inversely proportional to the saturation anode current, and the hydrogen permeation coefficient is influenced by the corrosion scales; the temperature is directly proportional to the saturation anode current, and the hydrogen permeation coefficient is influenced by the temperature and corrosion scales, heat-affected zone and matrix zone in NACE A solution with saturated H2S/CO2 at normal temperature. The hydrogen permeation coefficient in weld seam zone is larger than that in heat-affected zone which is further larger than that in matrix zone.展开更多
Initial corrosion kinetics of X52 anti-H2S pipeline steel exposed to 90 ℃/1.61 MPa H2S solutions was investigated through high temperature and high pressure immersion tests. Corrosion rates were obtained based on wei...Initial corrosion kinetics of X52 anti-H2S pipeline steel exposed to 90 ℃/1.61 MPa H2S solutions was investigated through high temperature and high pressure immersion tests. Corrosion rates were obtained based on weight loss calculation. The corrosion products were analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and electron probe micro-analysis (EPMA). The initial corrosion kinetics was found to obey the exponential law. With increasing immersion time, the main corrosion products changed from iron-rich mackinawite to sulfur-rich pyrrhotite. The corrosion films had two layers: an inner fine-grained layer rich in iron and an outer columnar-grained layer rich in sulfur. The corrosion film formed through the combination of outward diffusion of Fe2+ ions and inward diffusion of HS^- ions. The variation of the corrosion products and compaction of the corrosion layer resulted in a decrease in the diffusion coefficient with increasing immersion time. The double-layered corrosion film formed after long time immersion acted as an effective barrier against diffusion.展开更多
基金supported by the National Key Research and Development Plan of China (No. 2018YFB0604203)
文摘Aiming at the high temperature corrosion in a coal-fired boiler,the effect of H2S and SO2 on the corrosion of 12 CrlMoV under the water wall condition has been investigated by experiments.The results indicate that H2 S can promote the corrosion significantly,and the coarse porous oxide film formed cannot stop the progress of corrosion.While SO2 presents little effect on the corrosion.The main composition of the surface of 12 CrlMoV corrosion products is Fe2 O3.With H2S in the atmosphere,the corrosion gradually develops into deeper layers by forming FeS,FeO and Fe2 O3 alternately.The corrosion rate is doubled for every 50℃ inerease in temperature at 400-500℃.
基金Funded by the National Natural Science Foundation of China(No. 50904050)the Basic Projects of Sichuan Province(2011JY0106)the Postdoctoral Science Foundation(20110490810)
文摘The corrosion behavior of C110 bushing at high temperature and high pressure with a high H2S / CO2 was studied, and a basis for the materials selection of sour gas well bushing was provided in H2S, CO2 and saline coexisting environment. Under acidic condiction, hydrogen atoms greatly entered into the material and caused the material properties changed. Weight loss method was used to study the corrosion rate of hydrogen charging samples and original untreated samples in simulated oil field environment. PAR2273 electrochemical workstation was used to examine the electrochemical performance of samples untreated, hydrogen charging after reacting in autoclave. The corrosion product film was observed through SEM. The experimental results show that sample with hydrogen charging has a much more obvious partial corrosion and pitting corrosion than the untreated blank sample even the downhole corrosion speed of bushing is increased after being used for a period of time. Polarization curve shows the corrosion tendency is the same between sample with or without hydrogen charging and corrosion tendency is reduced by corrosion product film. A layer of dense product film formed on the surface of samples provides a certain protective effect to the matrix, but cracked holes which will accelerate partial corrosion of the sample were also observed.
基金Funded by the Construction of Key Disciplines for Young Teacher Science Foundation of the Southwest Petroleum University(No.P209)the Research Fund for the Doctoral Program of Higher Education(No.20105121120002)the National Natural Science Foundation of China(Nos.51004084 and 51374177)
文摘The effects of plastic deformation and H2 S on fracture toughness of high strength casing steel(C110 steel) were investigated. The studied casing specimens are as follows: original casing, plastic deformation(PD) casing and PD casing after being immersed in NACE A solution saturated with H2S(PD+H2S). Instrumented impact method was employed to evaluate the impact behaviors of the specimens, meanwhile, dynamic fracture toughness(JId) was calculated by using Rice model and Schindler model. The experimental results show that dynamic fracture toughness of the casing decreases after plastic deformation. Compared with that of the original casing and PD casing, the dynamic fracture toughness decreases further when the PD casing immersed in H2 S, moreover, there are ridge-shaped feature and many secondary cracks present on the fracture surface of the specimens. Impact fracture mechanism of the casing is proposed as follows: the plastic deformation results in the increase of defect density of materials where the atomic hydrogen can accumulate in reversible or irreversible traps and even recombine to form molecular hydrogen, subsequently, the casing material toughness decreases greatly.
基金Sponsored by Key National Science and Technology Specific Projects of China(2008ZX05017-002)
文摘The corrosion behavior of the 110S tube steel in the environments of high H2 S and CO2 content was inves- tigated by using a high-temperature and high-pressure autoclave, and the corrosion products were characterized by scanning electron microscopy and X ray diffraction technique. The results showed that all of the corrosion products under the test conditions mainly consisted of different types of iron sulfides such as pyrrhotite of Fe0.95 S, mackinaw- ite of FeS0.9, Fe0. 985 S and FeS, and the absence of iron carbonate in the corrosion scales indicated that the corrosion process was controlled by H2S corrosion. The corrosion rate of the 110S steel decreased firstly and then increased with the rising of temperature. The minimum corrosion rate occurred at 110 ℃. When the H2 S partial pressure PH2s below 9 MPa, the corrosion rate declined with the increase of PH2s. While over 9 MPa, a higher PH2s resulted in a faster corrosion process. With the increasing of the CO2 partial pressure, the corrosion rate had an increasing trend. The morphologies of the corrosion scales had a good accordance with the corrosion rates.
基金Funded by the Program for National Science Foundation for Distinguished Young Scholars (No.51125019)the National Natural Science Foundation of China (No.50904050)+2 种基金the Basic Projects of Sichuan Province of China(No.2011JY0106)Postdoctoral Science Foundation(No.20110490810)the Special Fund of China's Central Government for the Development of Local Colleges and Universities-the Project of National First-level Discipline in Oil and Gas Engineering
文摘With the aid of hydrogen permeating devices, the hydrogen permeation behaviors of X52 pipeline steel in NACE A solution with saturated H2S/CO2 were studied under the conditions of different ambient temperatures and pH values, and the hydrogen permeation behaviors of X52 pipeline steel in weld seam zone were comparatively studied. The experimental results show that the hydrogen permeation coefficient value is directly proportional to the time required for reaching the saturation anode current and inversely proportional to the saturation anode current, and the hydrogen permeation coefficient is influenced by the corrosion scales; the temperature is directly proportional to the saturation anode current, and the hydrogen permeation coefficient is influenced by the temperature and corrosion scales, heat-affected zone and matrix zone in NACE A solution with saturated H2S/CO2 at normal temperature. The hydrogen permeation coefficient in weld seam zone is larger than that in heat-affected zone which is further larger than that in matrix zone.
基金supported by the National Natural Science Foundation of China(No.51025104)
文摘Initial corrosion kinetics of X52 anti-H2S pipeline steel exposed to 90 ℃/1.61 MPa H2S solutions was investigated through high temperature and high pressure immersion tests. Corrosion rates were obtained based on weight loss calculation. The corrosion products were analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and electron probe micro-analysis (EPMA). The initial corrosion kinetics was found to obey the exponential law. With increasing immersion time, the main corrosion products changed from iron-rich mackinawite to sulfur-rich pyrrhotite. The corrosion films had two layers: an inner fine-grained layer rich in iron and an outer columnar-grained layer rich in sulfur. The corrosion film formed through the combination of outward diffusion of Fe2+ ions and inward diffusion of HS^- ions. The variation of the corrosion products and compaction of the corrosion layer resulted in a decrease in the diffusion coefficient with increasing immersion time. The double-layered corrosion film formed after long time immersion acted as an effective barrier against diffusion.