Enzymatic hydrolysis of proteins can enhance their emulsifying properties and antioxidant activities.However,the problem related to the hydrolysis of proteins was the generation of the bitter taste.Recently,high hydro...Enzymatic hydrolysis of proteins can enhance their emulsifying properties and antioxidant activities.However,the problem related to the hydrolysis of proteins was the generation of the bitter taste.Recently,high hydrostatic pressure(HHP)treatment has attracted much interest and has been used in several studies on protein modification.Hence,the study aimed to investigate the effects of enzymatic hydrolysis by Corolase PP under different pressure treatments(0.1,100,200,and 300 MPa for 1-5 h at 50℃)on the emulsifying property,antioxidant activity,and bitterness of soybean protein isolate hydrolysate(SPIH).As observed,the hydrolysate obtained at 200 MPa for 4 h had the highest emulsifying activity index(47.49 m^(2)/g)and emulsifying stability index(92.98%),and it had higher antioxidant activities(44.77%DPPH free radical scavenging activity,31.12%superoxide anion radical scavenging activity,and 61.50%copper ion chelating activity).At the same time,the enhancement of emulsion stability was related to the increase of zeta potential and the decrease of mean particle size.In addition,the hydrolysate obtained at 200 MPa for 4 h had a lower bitterness value and showed better palatability.This study has a broad application prospect in developing food ingredients and healthy foods.展开更多
Stemming from the unique in-plane honeycomb lattice structure and the sp^(2)hybridized carbon atoms bonded by exceptionally strong carbon–carbon bonds,graphene exhibits remarkable anisotropic electrical,mechanical,an...Stemming from the unique in-plane honeycomb lattice structure and the sp^(2)hybridized carbon atoms bonded by exceptionally strong carbon–carbon bonds,graphene exhibits remarkable anisotropic electrical,mechanical,and thermal properties.To maximize the utilization of graphene’s in-plane properties,pre-constructed and aligned structures,such as oriented aerogels,films,and fibers,have been designed.The unique combination of aligned structure,high surface area,excellent electrical conductivity,mechanical stability,thermal conductivity,and porous nature of highly aligned graphene aerogels allows for tailored and enhanced performance in specific directions,enabling advancements in diverse fields.This review provides a comprehensive overview of recent advances in highly aligned graphene aerogels and their composites.It highlights the fabrication methods of aligned graphene aerogels and the optimization of alignment which can be estimated both qualitatively and quantitatively.The oriented scaffolds endow graphene aerogels and their composites with anisotropic properties,showing enhanced electrical,mechanical,and thermal properties along the alignment at the sacrifice of the perpendicular direction.This review showcases remarkable properties and applications of aligned graphene aerogels and their composites,such as their suitability for electronics,environmental applications,thermal management,and energy storage.Challenges and potential opportunities are proposed to offer new insights into prospects of this material.展开更多
The 975 nm multimode diode lasers with high-order surface Bragg diffraction gratings have been simulated and calcu-lated using the 2D finite difference time domain(FDTD)algorithm and the scattering matrix method(SMM)....The 975 nm multimode diode lasers with high-order surface Bragg diffraction gratings have been simulated and calcu-lated using the 2D finite difference time domain(FDTD)algorithm and the scattering matrix method(SMM).The periods and etch depth of the grating parameters have been optimized.A board area laser diode(BA-LD)with high-order diffraction grat-ings has been designed and fabricated.At output powers up to 10.5 W,the measured spectral width of full width at half maxi-mum(FWHM)is less than 0.5 nm.The results demonstrate that the designed high-order surface gratings can effectively nar-row the spectral width of multimode semiconductor lasers at high output power.展开更多
Mn_(3)TeO_(6)(MTO) has been experimentally found to adopt a P2_(1)/In structure under high pressure,which exhibits a significantly smaller band gap compared to the atmospheric R3 phase.In this study,we systematically ...Mn_(3)TeO_(6)(MTO) has been experimentally found to adopt a P2_(1)/In structure under high pressure,which exhibits a significantly smaller band gap compared to the atmospheric R3 phase.In this study,we systematically investigate the magnetism,structural phase transition,and electronic properties of MTO under high pressure through first-principles calculations.Both R3 and P2_(1)/n phases of MTO are antiferromagnetic at zero temperature.The R3 phase transforms to the P2_(1)/n phase at 7.5 8 GPa,accompanied by a considerable volume collapse of about 6.47%.Employing the accurate method that combines DFT+U/and GW,the calculated band gap of R3 phase at zero pressure is very close to the experimental values,while that of the P2_(1)/n phase is significantly overestimated.The main reason for this difference is that the experimental study incorrectly used the Kubelka-Munk plot for the indirect band gap to obtain the band gap of the P2_(1)/n phase instead of the Kubelka-Munk plot for the direct band gap.Furthermore,our study reveals that the transition from the R3 phase to the P2_(1)/n phase is accompanied by a slight reduction in the band gap.展开更多
High temperature-induced hypocotyl elongation is a typical thermomorphogenesis trait that may significantly affect early seedling growth and subsequent crop yield.The ambient temperature and endogenous auxin are two c...High temperature-induced hypocotyl elongation is a typical thermomorphogenesis trait that may significantly affect early seedling growth and subsequent crop yield.The ambient temperature and endogenous auxin are two critical factors that regulate hypocotyl growth.However,the mechanism of temperature and auxin integration in horticultural plants remains poorly understood.In this study,the roles of the basic helix-loop-helix transcription factor CsPIF4 in regulating auxin biosynthesis genes and the auxin content in the hypocotyl of cucumber(Cucumis sativus L.)seedlings under high temperature were investigated.qRT-PCR and in situ hybridization analysis revealed that expression of CsPIF4 was enhanced in the epidermis and vascular bundles in the hypocotyl of cucumber seedlings in response to high temperature.qRT-PCR and HPLC analysis showed that CsPIF4 positively regulated transcription of the auxin biosynthesis gene CsYUC8 and the auxin content in the hypocotyl under high temperature(35℃).The CRISPR/Cas9-mediated knockout of CsPIF4 resulted in a shorter hypocotyl compared with that of the wild type,together with decreased expression of CsYUC8 and lower auxin content in response to high temperature.Furthermore,biochemical assays showed that CsPIF4 could bind directly to the G-box motif of the CsYUC8 promoter and thereby activate CsYUC8 expression.These findings provide insight into the molecular mechanism of high temperature-mediated hypocotyl elongation in cucumber.展开更多
The dynamic spalling characteristics of rock are important for stability analysis in rock engineering.This paper presented an experimental investigation on the dynamic spalling characteristics of granite with differen...The dynamic spalling characteristics of rock are important for stability analysis in rock engineering.This paper presented an experimental investigation on the dynamic spalling characteristics of granite with different temperatures and strain rates.A series of dynamic spalling tests with different impact velocities were conducted on thermally treated granite at different temperatures.The dynamic spalling strengths of granite with different temperatures and strain rates were determined.A model was proposed to correlate the dynamic spalling strength of granite,high temperature and strain rate.The results show that the spalling strength of granite decreases with increasing temperature.Moreover,the spalling strength of granite with a higher strain rate is larger than that with a lower strain rate.The proposed model can describe the relationship among dynamic spalling strength of granite,high temperature and strain rate.展开更多
With the increasing spotlight in electric vehicles,there is a growing demand for high-energy-density batteries to enhance driving range.Consequently,several studies have been conducted on high-energy-density LiNi_(x)C...With the increasing spotlight in electric vehicles,there is a growing demand for high-energy-density batteries to enhance driving range.Consequently,several studies have been conducted on high-energy-density LiNi_(x)Co_(y)Mn_(z)O_(2)cathodes.However,there is a limit to permanent performance deterioration because of side reactions caused by moisture in the atmosphere and continuous microcracks during cycling as the Ni content to express high energy increases and the content of Mn and Co that maintain structural and electrochemical stabilization decreases.The direct modification of the surface and bulk regions aims to enhance the capacity and long-term performance of high-Ni cathode materials.Therefore,an efficient modification requires a study based on a thorough understanding of the degradation mechanisms in the surface and bulk region.In this review,a comprehensive analysis of various modifications,including doping,coating,concentration gradient,and single crystals,is conducted to solve degradation issues along with an analysis of the overall degradation mechanism occurring in high-Ni cathode materials.It also summarizes recent research developments related to the following modifications,aims to provide notable points and directions for post-studies,and provides valuable references for the commercialization of stable high-energy-density cathode materials.展开更多
An easily stackable multi-layer quasi-zero-stiffness(ML-QZS)meta-structure is proposed to achieve highly efficient vibration isolation performance at low frequency.First,the distributed shape optimization method is us...An easily stackable multi-layer quasi-zero-stiffness(ML-QZS)meta-structure is proposed to achieve highly efficient vibration isolation performance at low frequency.First,the distributed shape optimization method is used to design the unit cel,i.e.,the single-layer QZS(SL-QZS)meta-structure.Second,the stiffness feature of the unit cell is investigated and verified through static experiments.Third,the unit cells are stacked one by one along the direction of vibration isolation,and thus the ML-QZS meta-structure is constructed.Fourth,the dynamic modeling of the ML-QZS vibration isolation metastructure is conducted,and the dynamic responses are obtained from the equations of motion,and verified by finite element(FE)simulations.Finally,a prototype of the ML-QZS vibration isolation meta-structure is fabricated by additive manufacturing,and the vibration isolation performance is evaluated experimentally.The results show that the vibration isolation performance substantially enhances when the number of unit cells increases.More importantly,the ML-QZS meta-structure can be easily extended in the direction of vibration isolation when the unit cells are properly stacked.Hence,the ML-FQZS vibration isolation meta-structure should be a fascinating solution for highly efficient vibration isolation performance at low frequency.展开更多
This paper expounds upon a novel target detection methodology distinguished by its elevated discriminatory efficacy,specifically tailored for environments characterized by markedly low luminance levels.Conventional me...This paper expounds upon a novel target detection methodology distinguished by its elevated discriminatory efficacy,specifically tailored for environments characterized by markedly low luminance levels.Conventional methodologies struggle with the challenges posed by luminosity fluctuations,especially in settings characterized by diminished radiance,further exacerbated by the utilization of suboptimal imaging instrumentation.The envisioned approach mandates a departure from the conventional YOLOX model,which exhibits inadequacies in mitigating these challenges.To enhance the efficacy of this approach in low-light conditions,the dehazing algorithm undergoes refinement,effecting a discerning regulation of the transmission rate at the pixel level,reducing it to values below 0.5,thereby resulting in an augmentation of image contrast.Subsequently,the coiflet wavelet transform is employed to discern and isolate high-discriminatory attributes by dismantling low-frequency image attributes and extracting high-frequency attributes across divergent axes.The utilization of CycleGAN serves to elevate the features of low-light imagery across an array of stylistic variances.Advanced computational methodologies are then employed to amalgamate and conflate intricate attributes originating from images characterized by distinct stylistic orientations,thereby augmenting the model’s erudition potential.Empirical validation conducted on the PASCAL VOC and MS COCO 2017 datasets substantiates pronounced advancements.The refined low-light enhancement algorithm yields a discernible 5.9%augmentation in the target detection evaluation index when compared to the original imagery.Mean Average Precision(mAP)undergoes enhancements of 9.45%and 0.052%in low-light visual renditions relative to conventional YOLOX outcomes.The envisaged approach presents a myriad of advantages over prevailing benchmark methodologies in the realm of target detection within environments marked by an acute scarcity of luminosity.展开更多
Historically,streamer-to-leader transition studies mainly focused on the rod-plane gap and low altitude analysis,with limited attention paid to the sphere-plane gap at high altitude analysis.In this work,sphere-plane ...Historically,streamer-to-leader transition studies mainly focused on the rod-plane gap and low altitude analysis,with limited attention paid to the sphere-plane gap at high altitude analysis.In this work,sphere-plane gap discharge tests were carried out under the gap distance of 5 m at the Qinghai Ultra High Voltage(UHV)test base at an altitude of 2200 m.The experiments measured the physical parameters such as the discharge current,electric field intensity and instantaneous optical power.The duration of the dark period and the critical charge of streamer-toleader transition were obtained at high altitude.Based on radial thermal expansion of the streamer stem,we established a modified streamer-to-leader transition model of the sphere-plane gap discharge at high altitude,and calculated the stem temperature,stem radii and the duration of streamer-to-leader transition.Compared with the measured duration of sphere-plane electrode discharge at an altitude of 2200 m,the error rate of the modified model was 0.94%,while the classical model was 6.97%,demonstrating the effectiveness of the modified model.From the comparisons and analysis,several suggestions are proposed to improve the numerical model for further quantitative investigations of the leader inception.展开更多
The development of high-energy and long-lifespan NASICON-type cathode materials for sodium-ion batteries has always been a research hotspot but a daunting challenge.Although Na_(4)MnCr(PO_(4))_(3)has emerged as one of...The development of high-energy and long-lifespan NASICON-type cathode materials for sodium-ion batteries has always been a research hotspot but a daunting challenge.Although Na_(4)MnCr(PO_(4))_(3)has emerged as one of the most promising high-energy-density cathode materials owing to its three-electron reactions,it still suffers from serious structural distortion upon repetitive charge/discharge processes caused by the Jahn-Teller active Mn^(3+).Herein,the selective substitution of Cr by Zr in Na_(4)MnCr(PO_(4))_(3)was explored to enhance the structural stability,due to the pinning effect of Zr ions and the≈2.9-electron reactions,as-prepared Na_(3.9)MnCr_(0.9)Zr_(0.1)(PO_(4))_(3)/C delivers a high capacity retention of 85.94%over 500 cycles at 5 C and an ultrahigh capacity of 156.4 mAh g^(-1)at 0.1 C,enabling the stable energy output as high as 555.2 Wh kg^(-1).Moreover,during the whole charge/discharge process,a small volume change of only 6.7%was verified by in situ X-ray diffraction,and the reversible reactions of Cr^(3+)/Cr^(4+),Mn^(3+)/Mn^(4+),and Mn^(2+)/Mn^(3+)redox couples were identified via ex situ X-ray photoelectron spectroscopy analyses.Galvanostatic intermittent titration technique tests and density functional theory calculations further demonstrated the fast reaction kinetics of the Na_(3.9)MnCr_(0.9)Zr_(0.1)(PO_(4))_(3)/C electrode.This work offers new opportunities for designing high-energy and high-stability NASICON cathodes by ion doping.展开更多
Manufacturing process,diffusion co-efficient and areal capacity are the three main criteria for regulating thick electrodes for lithium-ion batteries(LIBs).However,simultaneously regulating these criteria for LIBs is ...Manufacturing process,diffusion co-efficient and areal capacity are the three main criteria for regulating thick electrodes for lithium-ion batteries(LIBs).However,simultaneously regulating these criteria for LIBs is desirable but remains a significant challenge.In this work,niobium pentoxide(Nb_(2)O_(5))anode and lithium iron phosphate(LiFePO_(4))cathode materials were chosen as the model materials and demonstrate that these three parameters can be simultaneously modulated by incorporation of micro-carbon fibers(MCF)and carbon nanotubes(CNT)with both Nb_(2)O_(5) and LFP via vacuum filtration approach.Both as-prepared MNC-20 anode and MLC-20 cathode achieves high reversible areal capacity of≈5.4 m A h cm^(-2)@0.1 C and outstanding Li-ion diffusion coefficients of≈10~(-8)cm~2 s~(-1)in the half-cell configuration.The assembled MNC-20‖MLC-20 full cell LIB delivers maximum energy and power densities of244.04 W h kg^(-1)and 108.86 W kg^(-1),respectively.The excellent electrochemical properties of the asprepared thick electrodes can be attributed to the highly conductive,mechanical compactness and multidimensional mutual effects of the MCF,CNT and active materials that facilitates rapid Li-ion diffusion kinetics.Furthermore,electrochemical impedance spectroscopy(EIS),symmetric cells analysis,and insitu Raman techniques clearly validates the enhanced Li-ion diffusion kinetics in the present architecture.展开更多
Polymerflooding is an effective method widely applied for enhancing oil recovery(EOR)by reducing the mobility ratio between theinjected water and crude oil.However,traditional polymers encounter challenges in high sali...Polymerflooding is an effective method widely applied for enhancing oil recovery(EOR)by reducing the mobility ratio between theinjected water and crude oil.However,traditional polymers encounter challenges in high salinity reservoirs due to their salt sensitivity.Toovercome this challenge,we synthesized a zwitterion polymer(PAMNS)with salt-induced tackifying property through copolymerization ofacrylamide and a zwitterion monomer,methylacrylamide propyl-N,N-dimethylbutylsulfonate(NS).NS monomer is obtained from thereaction between 1,4-butanesultone and dimethylamino propyl methylacrylamide.In this study,the rheological properties,salt responsiveness,and EOR efficiency of PAMNS were evaluated.Results demonstrate that PAMNS exhibits desirable salt-induced tackifyingcharacteristics,with viscosity increasing up to 2.4 times as the NaCl concentration reaches a salinity of 30×10^(4)mg L^(-1).Furthermore,highvalence ions possess a much stronger effect on enhancing viscosity,manifested as Mg^(2+)>Ca^(2+)>Na^(+).Molecular dynamics simulations(MD)andfluid dynamics experiment results demonstrate that PAMNS molecules exhibit a more stretched state and enhanced intermolecularassociations in high-salinity environments.It is because of the salt-induced tackifying,PAMNS demonstrates superior performance inpolymerflooding experiments under salinity ranges from 5×10^(4)mg L^(-1)to 20×10^(4)mg L^(-1),leading to 10.38–19.83%higher EOR thantraditional polymers.展开更多
The effect of slow shot speed on externally solidified crystal(ESC),porosity and tensile property in a newly developed high-pressure die-cast Al-Si alloy was investigated by optical microscopy(OM),scanning electron mi...The effect of slow shot speed on externally solidified crystal(ESC),porosity and tensile property in a newly developed high-pressure die-cast Al-Si alloy was investigated by optical microscopy(OM),scanning electron microscopy(SEM)and laboratory computed tomography(CT).Results showed that the newly developed AlSi9MnMoV alloy exhibited improved mechanical properties when compared to the AlSi10MnMg alloy.The AlSi9MnMoV alloy,which was designed with trace multicomponent additions,displays a notable grain refining effect in comparison to the AlSi10MnMg alloy.Refining elements Ti,Zr,V,Nb,B promote heterogeneous nucleation and reduce the grain size of primaryα-Al.At a lower slow shot speed,the large ESCs are easier to form and gather,developing into the dendrite net and net-shrinkage.With an increase in slow shot speed,the size and number of ESCs and porosities significantly reduce.In addition,the distribution of ESCs is more dispersed and the net-shrinkage disappears.The tensile property is greatly improved by adopting a higher slow shot speed.The ultimate tensile strength is enhanced from 260.31 MPa to 290.31 MPa(increased by 11.52%),and the elongation is enhanced from 3.72%to 6.34%(increased by 70.52%).展开更多
●AIM:To assess effectivity and safety of trifocal intraocular lenses(IOLs)and capsular tension rings in treating cataract patients with axial high myopia.●METHODS:A prospective nonrandomized controlled clinical tria...●AIM:To assess effectivity and safety of trifocal intraocular lenses(IOLs)and capsular tension rings in treating cataract patients with axial high myopia.●METHODS:A prospective nonrandomized controlled clinical trial was conducted.Totally 98 eyes(74 patients)who underwent femtosecond laser-assisted cataract surgery(FLACS)with trifocal IOLs were enrolled in the study and followed up for 2y after surgery:46 eyes(33 patients)with capsular tension ring implantation in the long axial lengths(AL)group(26<AL<29 mm)and 52 eyes(41 patients)in the normal AL group(22<AL<24.5 mm).Postoperative outcomes about effectivity and safety,including the subjective and objective visual quality,and postoperative complications were assessed.●RESULTS:Uncorrected distance visual acuity at 5 m and uncorrected intermediate visual acuity at 60 and 80 cm in the long AL group were significantly worse than those in the normal AL group at 3mo postoperatively(P<0.05).The differences in reading speed,spectacle independence and potential visual complaints between the two groups were not statistically significant(P>0.05).The dysfunctional lens index and total modulation transfer function(MTF)average height were similar between the two groups.The postoperative internal coma aberrations in the axial high myopia eyes were significantly higher than that in the normal AL group(P<0.05).The total satisfaction score in the long AL group(91.32±2.76)was slightly higher than that in the normal AL group(90.36±3.47),but there was no difference(P=0.136).A statistically negative correlation was found between corrected distance visual acuity(CDVA)and dysfunctional lens index(r=-0.382,P=0.009),and between CDVA and the total MTF average height(r=-0.374,P=0.01).But there was no significant correlation between CDVA and total satisfaction score(r=0.059,P=0.696).Postoperative complications mainly presented as posterior capsular opacity(PCO),retinal detachment and cystoid macular edema.There was no difference in the incidence of fundus disease(6.5%vs 3.8%,P=0.663)or PCO(17.4%vs 7.7%,P=0.217)between the two groups at two years.●CONCLUSION:The utilization of trifocal IOL and capsular tension ring implantation is beneficial for cataract patients with axial high myopia undergoing FLACS.This approach not only ensures excellent subjective feelings and objective visual quality,but also does not increase the incidence of postoperative complications.展开更多
Unreduced gametes through chromosome doubling play a major role in the process of plant polyploidization.Our previous work confirmed that Camellia oleifera can produce natural 2n pollen,and it is possible to induce th...Unreduced gametes through chromosome doubling play a major role in the process of plant polyploidization.Our previous work confirmed that Camellia oleifera can produce natural 2n pollen,and it is possible to induce the 2n pollen formation by high temperature treatment.This study focused on the optimization of the 2n pollen induction technique and the mechanisms of high temperature-induced2n pollen formation in C.oleifera.We found that the optimal protocol for inducing 2n pollen via high temperature was to perform 45℃with4 h at the prophaseⅠstage of the pollen mother cells(PMCs).Meanwhile,high temperature significantly decreased the yield and fertility of2n pollen.Through the observation of meiosis,abnormal chromosome and cytological behaviour was discovered under high-temperature treatment,and we confirmed that the formation of 2n pollen is caused by abnormal cell plate.Based on weighted gene co-expression network analysis,fifteen hub genes related to cell cycle control were identified.After male flower buds were exposed to heat shock,polygalacturonase gene(CoPGX3)was significantly upregulated.We inferred that high temperature causes the CoPGX3 gene to be overexpressed and that CoPGX3 is redistributed into the cytosol where it degrades cytoplasmic pectin,which leads to an abnormal cell plate.Furthermore,abnormal cytokinesis resulted in the formation of dyads and triads,and PMCs divided to produce 2n pollen.Our findings provide new insights into the mechanism of 2n pollen induced by high temperature in a woody plant and lay a foundation for further ploidy breeding of C.oleifera.展开更多
We present a high-order Galerkin method in both space and time for the 1D unsteady linear advection-diffusion equation. Three Interior Penalty Discontinuous Galerkin (IPDG) schemes are detailed for the space discretiz...We present a high-order Galerkin method in both space and time for the 1D unsteady linear advection-diffusion equation. Three Interior Penalty Discontinuous Galerkin (IPDG) schemes are detailed for the space discretization, while the time integration is performed at the same order of accuracy thanks to an Arbitrary high order DERivatives (ADER) method. The orders of convergence of the three ADER-IPDG methods are carefully examined through numerical illustrations, showing that the approach is consistent, accurate, and efficient. The numerical results indicate that the symmetric version of IPDG is typically more accurate and more efficient compared to the other approaches.展开更多
Context/Objective: High blood pressure (HBP) currently represents the most widespread chronic non-communicable disease in Cameroon. The increase in its prevalence in the country is the result of multiple factors inclu...Context/Objective: High blood pressure (HBP) currently represents the most widespread chronic non-communicable disease in Cameroon. The increase in its prevalence in the country is the result of multiple factors including economic stress imposed by precariousness, poor living conditions, sources of anxiety, anguish, depression and other behavioral disorders. Economic stress is a globalizing concept that integrates into a purely hermeneutic approach, a particular functioning of the nervous system of an individual who faces employment problems and precarious remuneration conditions. The non-satisfaction by an individual of his basic needs due to insufficient financial means can cause him to become irritable, aggressive, and socially and symbolically isolated, thereby increasing the desire to resort to morbid life models such as excessive consumption of narcotics and other psychoactive substances often associated with high blood pressure. The fight against the emergence of BPH is a complex, multifaceted and multifactorial reality that requires taking into account economic stress. The main objective of this survey is to describe the situation of economic stress within the Cameroonian population, which imposes precariousness and life models at risk of high blood pressure. Specifically, we determined the level of household income and the sources of income. Methods: A cross-sectional survey with a descriptive aim among five hundred households in the Central Region of Cameroon was conducted. A probabilistic technique called simple randomness was used. The number of households to be surveyed was determined indirectly using the Cochrane formula. Data collection in face-to-face mode using a physical questionnaire took place from July 1 to August 31, 2023, after obtaining ethical clearance from the Regional Health Research Ethics Committee, Human from the Center and an administrative authorization for data collection. Regarding their processing, the data was grouped during processing in Excel sheets. Normality and reliability tests of the collected data were carried out. For this, the Chi-square test was used for data with a qualitative value and that of Kolmogorov-Sminorf for data with a quantitative value. Descriptive analysis was possible using R software version 3.2, SPSS version 25.0, XLSTAT 2016, PAST and EXCEL programs from Microsoft Office 2013. Results: The main results highlight economic stress, with 45.60% of households surveyed earning less than US$154 per month;55% of household heads were women in single-parent families;14% of household heads were unemployed, 22% worked in the private sector and 19% were self-employed. This general economic situation leads to precarious living conditions, thereby increasing the risk of high blood pressure among the Cameroonian population.展开更多
KVPO_(4)F with excellent structural stability and high operating voltage has been identified as a promising cathode for potassium-ion batteries(PIBs),but limits in sluggish ion transport and severe volume change cause...KVPO_(4)F with excellent structural stability and high operating voltage has been identified as a promising cathode for potassium-ion batteries(PIBs),but limits in sluggish ion transport and severe volume change cause insufficient potassium storage capability.Here,a high-energy and low-strain KVPO_(4)F composite cathode assisted by multifunctional K_(2)C_(4)O_(4)electrode stabilizer is exquisitely designed.Systematical electrochemical investigations demonstrate that this composite cathode can deliver a remarkable energy density up to 530 Wh kg^(-1)with 142.7 mAh g^(-1)of reversible capacity at 25 mA g^(-1),outstanding rate capability of 70.6 mAh g^(-1)at 1000 mA g^(-1),and decent cycling stability.Furthermore,slight volume change(~5%)and increased interfacial stability with thin and even cathode-electrolyte interphase can be observed through in situ and ex situ characterizations,which are attributed to the synergistic effect from in situ potassium compensation and carbon deposition through self-sacrificing K_(2)C_(4)O_(4)additive.Moreover,potassium-ion full cells manifest significant improvement in energy density and cycling stability.This work demonstrates a positive impact of K_(2)C_(4)O_(4)additive on the comprehensive electrochemical enhancement,especially the activation of high-voltage plateau capacity and provides an efficient strategy to enlighten the design of other high-voltage cathodes for advanced high-energy batteries.展开更多
This article proposes a VGG network with histogram of oriented gradient(HOG) feature fusion(HOG-VGG) for polarization synthetic aperture radar(PolSAR) image terrain classification.VGG-Net has a strong ability of deep ...This article proposes a VGG network with histogram of oriented gradient(HOG) feature fusion(HOG-VGG) for polarization synthetic aperture radar(PolSAR) image terrain classification.VGG-Net has a strong ability of deep feature extraction,which can fully extract the global deep features of different terrains in PolSAR images,so it is widely used in PolSAR terrain classification.However,VGG-Net ignores the local edge & shape features,resulting in incomplete feature representation of the PolSAR terrains,as a consequence,the terrain classification accuracy is not promising.In fact,edge and shape features play an important role in PolSAR terrain classification.To solve this problem,a new VGG network with HOG feature fusion was specifically proposed for high-precision PolSAR terrain classification.HOG-VGG extracts both the global deep semantic features and the local edge & shape features of the PolSAR terrains,so the terrain feature representation completeness is greatly elevated.Moreover,HOG-VGG optimally fuses the global deep features and the local edge & shape features to achieve the best classification results.The superiority of HOG-VGG is verified on the Flevoland,San Francisco and Oberpfaffenhofen datasets.Experiments show that the proposed HOG-VGG achieves much better PolSAR terrain classification performance,with overall accuracies of 97.54%,94.63%,and 96.07%,respectively.展开更多
基金supported by the Doctoral Research Foundation of Bohai University (05013/0520bs006)the Science and Technology Project of“Unveiling and Commanding”Liaoning Province (2021JH1/10400033)the Scientific Research Project from Education Department of Liaoning Province (LJ2020010)。
文摘Enzymatic hydrolysis of proteins can enhance their emulsifying properties and antioxidant activities.However,the problem related to the hydrolysis of proteins was the generation of the bitter taste.Recently,high hydrostatic pressure(HHP)treatment has attracted much interest and has been used in several studies on protein modification.Hence,the study aimed to investigate the effects of enzymatic hydrolysis by Corolase PP under different pressure treatments(0.1,100,200,and 300 MPa for 1-5 h at 50℃)on the emulsifying property,antioxidant activity,and bitterness of soybean protein isolate hydrolysate(SPIH).As observed,the hydrolysate obtained at 200 MPa for 4 h had the highest emulsifying activity index(47.49 m^(2)/g)and emulsifying stability index(92.98%),and it had higher antioxidant activities(44.77%DPPH free radical scavenging activity,31.12%superoxide anion radical scavenging activity,and 61.50%copper ion chelating activity).At the same time,the enhancement of emulsion stability was related to the increase of zeta potential and the decrease of mean particle size.In addition,the hydrolysate obtained at 200 MPa for 4 h had a lower bitterness value and showed better palatability.This study has a broad application prospect in developing food ingredients and healthy foods.
基金The financial support by the National Natural Science Foundation of China(No.52002020)is acknowledged.
文摘Stemming from the unique in-plane honeycomb lattice structure and the sp^(2)hybridized carbon atoms bonded by exceptionally strong carbon–carbon bonds,graphene exhibits remarkable anisotropic electrical,mechanical,and thermal properties.To maximize the utilization of graphene’s in-plane properties,pre-constructed and aligned structures,such as oriented aerogels,films,and fibers,have been designed.The unique combination of aligned structure,high surface area,excellent electrical conductivity,mechanical stability,thermal conductivity,and porous nature of highly aligned graphene aerogels allows for tailored and enhanced performance in specific directions,enabling advancements in diverse fields.This review provides a comprehensive overview of recent advances in highly aligned graphene aerogels and their composites.It highlights the fabrication methods of aligned graphene aerogels and the optimization of alignment which can be estimated both qualitatively and quantitatively.The oriented scaffolds endow graphene aerogels and their composites with anisotropic properties,showing enhanced electrical,mechanical,and thermal properties along the alignment at the sacrifice of the perpendicular direction.This review showcases remarkable properties and applications of aligned graphene aerogels and their composites,such as their suitability for electronics,environmental applications,thermal management,and energy storage.Challenges and potential opportunities are proposed to offer new insights into prospects of this material.
基金supported by the National Key R&D Program of China,No.2022YFB4601201.
文摘The 975 nm multimode diode lasers with high-order surface Bragg diffraction gratings have been simulated and calcu-lated using the 2D finite difference time domain(FDTD)algorithm and the scattering matrix method(SMM).The periods and etch depth of the grating parameters have been optimized.A board area laser diode(BA-LD)with high-order diffraction grat-ings has been designed and fabricated.At output powers up to 10.5 W,the measured spectral width of full width at half maxi-mum(FWHM)is less than 0.5 nm.The results demonstrate that the designed high-order surface gratings can effectively nar-row the spectral width of multimode semiconductor lasers at high output power.
基金Project supported by National Key Research and Development Program of China(Grant No.2021YFB3802300)the Natural Science Foundation of China Academy of Engineering Physics(Grant Nos.U1730248 and U1830101)the National Natural Science Foundation of China(Grant Nos.12202418,11872056,11904282,12074274,and 12174356)。
文摘Mn_(3)TeO_(6)(MTO) has been experimentally found to adopt a P2_(1)/In structure under high pressure,which exhibits a significantly smaller band gap compared to the atmospheric R3 phase.In this study,we systematically investigate the magnetism,structural phase transition,and electronic properties of MTO under high pressure through first-principles calculations.Both R3 and P2_(1)/n phases of MTO are antiferromagnetic at zero temperature.The R3 phase transforms to the P2_(1)/n phase at 7.5 8 GPa,accompanied by a considerable volume collapse of about 6.47%.Employing the accurate method that combines DFT+U/and GW,the calculated band gap of R3 phase at zero pressure is very close to the experimental values,while that of the P2_(1)/n phase is significantly overestimated.The main reason for this difference is that the experimental study incorrectly used the Kubelka-Munk plot for the indirect band gap to obtain the band gap of the P2_(1)/n phase instead of the Kubelka-Munk plot for the direct band gap.Furthermore,our study reveals that the transition from the R3 phase to the P2_(1)/n phase is accompanied by a slight reduction in the band gap.
基金the China Postdoctoral Science Foundation(Grant No.2021M703530)the National Natural Science Foundation of China(Grant No.31972398).
文摘High temperature-induced hypocotyl elongation is a typical thermomorphogenesis trait that may significantly affect early seedling growth and subsequent crop yield.The ambient temperature and endogenous auxin are two critical factors that regulate hypocotyl growth.However,the mechanism of temperature and auxin integration in horticultural plants remains poorly understood.In this study,the roles of the basic helix-loop-helix transcription factor CsPIF4 in regulating auxin biosynthesis genes and the auxin content in the hypocotyl of cucumber(Cucumis sativus L.)seedlings under high temperature were investigated.qRT-PCR and in situ hybridization analysis revealed that expression of CsPIF4 was enhanced in the epidermis and vascular bundles in the hypocotyl of cucumber seedlings in response to high temperature.qRT-PCR and HPLC analysis showed that CsPIF4 positively regulated transcription of the auxin biosynthesis gene CsYUC8 and the auxin content in the hypocotyl under high temperature(35℃).The CRISPR/Cas9-mediated knockout of CsPIF4 resulted in a shorter hypocotyl compared with that of the wild type,together with decreased expression of CsYUC8 and lower auxin content in response to high temperature.Furthermore,biochemical assays showed that CsPIF4 could bind directly to the G-box motif of the CsYUC8 promoter and thereby activate CsYUC8 expression.These findings provide insight into the molecular mechanism of high temperature-mediated hypocotyl elongation in cucumber.
基金supported by the Beijing Natural Science Foundation,China(Grant No.JQ20039)National Natural Science Foundation of China(Grant No.12172019).
文摘The dynamic spalling characteristics of rock are important for stability analysis in rock engineering.This paper presented an experimental investigation on the dynamic spalling characteristics of granite with different temperatures and strain rates.A series of dynamic spalling tests with different impact velocities were conducted on thermally treated granite at different temperatures.The dynamic spalling strengths of granite with different temperatures and strain rates were determined.A model was proposed to correlate the dynamic spalling strength of granite,high temperature and strain rate.The results show that the spalling strength of granite decreases with increasing temperature.Moreover,the spalling strength of granite with a higher strain rate is larger than that with a lower strain rate.The proposed model can describe the relationship among dynamic spalling strength of granite,high temperature and strain rate.
文摘With the increasing spotlight in electric vehicles,there is a growing demand for high-energy-density batteries to enhance driving range.Consequently,several studies have been conducted on high-energy-density LiNi_(x)Co_(y)Mn_(z)O_(2)cathodes.However,there is a limit to permanent performance deterioration because of side reactions caused by moisture in the atmosphere and continuous microcracks during cycling as the Ni content to express high energy increases and the content of Mn and Co that maintain structural and electrochemical stabilization decreases.The direct modification of the surface and bulk regions aims to enhance the capacity and long-term performance of high-Ni cathode materials.Therefore,an efficient modification requires a study based on a thorough understanding of the degradation mechanisms in the surface and bulk region.In this review,a comprehensive analysis of various modifications,including doping,coating,concentration gradient,and single crystals,is conducted to solve degradation issues along with an analysis of the overall degradation mechanism occurring in high-Ni cathode materials.It also summarizes recent research developments related to the following modifications,aims to provide notable points and directions for post-studies,and provides valuable references for the commercialization of stable high-energy-density cathode materials.
基金supported by the National Natural Science Foundation of China(Nos.12122206 and 12272129)the Natural Science Foundation of Hunan Province of China(No.2024JJ4004)the Zhejiang Provincial Natural Science Foundation of China(No.LQ24A020006)。
文摘An easily stackable multi-layer quasi-zero-stiffness(ML-QZS)meta-structure is proposed to achieve highly efficient vibration isolation performance at low frequency.First,the distributed shape optimization method is used to design the unit cel,i.e.,the single-layer QZS(SL-QZS)meta-structure.Second,the stiffness feature of the unit cell is investigated and verified through static experiments.Third,the unit cells are stacked one by one along the direction of vibration isolation,and thus the ML-QZS meta-structure is constructed.Fourth,the dynamic modeling of the ML-QZS vibration isolation metastructure is conducted,and the dynamic responses are obtained from the equations of motion,and verified by finite element(FE)simulations.Finally,a prototype of the ML-QZS vibration isolation meta-structure is fabricated by additive manufacturing,and the vibration isolation performance is evaluated experimentally.The results show that the vibration isolation performance substantially enhances when the number of unit cells increases.More importantly,the ML-QZS meta-structure can be easily extended in the direction of vibration isolation when the unit cells are properly stacked.Hence,the ML-FQZS vibration isolation meta-structure should be a fascinating solution for highly efficient vibration isolation performance at low frequency.
基金supported by National Sciences Foundation of China Grants(No.61902158).
文摘This paper expounds upon a novel target detection methodology distinguished by its elevated discriminatory efficacy,specifically tailored for environments characterized by markedly low luminance levels.Conventional methodologies struggle with the challenges posed by luminosity fluctuations,especially in settings characterized by diminished radiance,further exacerbated by the utilization of suboptimal imaging instrumentation.The envisioned approach mandates a departure from the conventional YOLOX model,which exhibits inadequacies in mitigating these challenges.To enhance the efficacy of this approach in low-light conditions,the dehazing algorithm undergoes refinement,effecting a discerning regulation of the transmission rate at the pixel level,reducing it to values below 0.5,thereby resulting in an augmentation of image contrast.Subsequently,the coiflet wavelet transform is employed to discern and isolate high-discriminatory attributes by dismantling low-frequency image attributes and extracting high-frequency attributes across divergent axes.The utilization of CycleGAN serves to elevate the features of low-light imagery across an array of stylistic variances.Advanced computational methodologies are then employed to amalgamate and conflate intricate attributes originating from images characterized by distinct stylistic orientations,thereby augmenting the model’s erudition potential.Empirical validation conducted on the PASCAL VOC and MS COCO 2017 datasets substantiates pronounced advancements.The refined low-light enhancement algorithm yields a discernible 5.9%augmentation in the target detection evaluation index when compared to the original imagery.Mean Average Precision(mAP)undergoes enhancements of 9.45%and 0.052%in low-light visual renditions relative to conventional YOLOX outcomes.The envisaged approach presents a myriad of advantages over prevailing benchmark methodologies in the realm of target detection within environments marked by an acute scarcity of luminosity.
基金supported by National Natural Science Foundation of China(Scientific Funds for Young Scientists)(No.52007064)。
文摘Historically,streamer-to-leader transition studies mainly focused on the rod-plane gap and low altitude analysis,with limited attention paid to the sphere-plane gap at high altitude analysis.In this work,sphere-plane gap discharge tests were carried out under the gap distance of 5 m at the Qinghai Ultra High Voltage(UHV)test base at an altitude of 2200 m.The experiments measured the physical parameters such as the discharge current,electric field intensity and instantaneous optical power.The duration of the dark period and the critical charge of streamer-toleader transition were obtained at high altitude.Based on radial thermal expansion of the streamer stem,we established a modified streamer-to-leader transition model of the sphere-plane gap discharge at high altitude,and calculated the stem temperature,stem radii and the duration of streamer-to-leader transition.Compared with the measured duration of sphere-plane electrode discharge at an altitude of 2200 m,the error rate of the modified model was 0.94%,while the classical model was 6.97%,demonstrating the effectiveness of the modified model.From the comparisons and analysis,several suggestions are proposed to improve the numerical model for further quantitative investigations of the leader inception.
基金Financial support from the National Natural Science Foundation of China(22075016 and 22103057)Fundamental Research Funds for the Central Universities(FRF-TP-20-020A3 and QNXM20220060)+1 种基金Interdisciplinary Research Project for Young Teachers of USTB(FRF-IDRY-21-011)111 Project(B170003 and B12015)
文摘The development of high-energy and long-lifespan NASICON-type cathode materials for sodium-ion batteries has always been a research hotspot but a daunting challenge.Although Na_(4)MnCr(PO_(4))_(3)has emerged as one of the most promising high-energy-density cathode materials owing to its three-electron reactions,it still suffers from serious structural distortion upon repetitive charge/discharge processes caused by the Jahn-Teller active Mn^(3+).Herein,the selective substitution of Cr by Zr in Na_(4)MnCr(PO_(4))_(3)was explored to enhance the structural stability,due to the pinning effect of Zr ions and the≈2.9-electron reactions,as-prepared Na_(3.9)MnCr_(0.9)Zr_(0.1)(PO_(4))_(3)/C delivers a high capacity retention of 85.94%over 500 cycles at 5 C and an ultrahigh capacity of 156.4 mAh g^(-1)at 0.1 C,enabling the stable energy output as high as 555.2 Wh kg^(-1).Moreover,during the whole charge/discharge process,a small volume change of only 6.7%was verified by in situ X-ray diffraction,and the reversible reactions of Cr^(3+)/Cr^(4+),Mn^(3+)/Mn^(4+),and Mn^(2+)/Mn^(3+)redox couples were identified via ex situ X-ray photoelectron spectroscopy analyses.Galvanostatic intermittent titration technique tests and density functional theory calculations further demonstrated the fast reaction kinetics of the Na_(3.9)MnCr_(0.9)Zr_(0.1)(PO_(4))_(3)/C electrode.This work offers new opportunities for designing high-energy and high-stability NASICON cathodes by ion doping.
基金supported by the Science and Technology Innovation Program of Hunan Province(2022WZ1012)the Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy(2020CB1007)the Natural Science Foundation of Guangzhou(202201020147)。
文摘Manufacturing process,diffusion co-efficient and areal capacity are the three main criteria for regulating thick electrodes for lithium-ion batteries(LIBs).However,simultaneously regulating these criteria for LIBs is desirable but remains a significant challenge.In this work,niobium pentoxide(Nb_(2)O_(5))anode and lithium iron phosphate(LiFePO_(4))cathode materials were chosen as the model materials and demonstrate that these three parameters can be simultaneously modulated by incorporation of micro-carbon fibers(MCF)and carbon nanotubes(CNT)with both Nb_(2)O_(5) and LFP via vacuum filtration approach.Both as-prepared MNC-20 anode and MLC-20 cathode achieves high reversible areal capacity of≈5.4 m A h cm^(-2)@0.1 C and outstanding Li-ion diffusion coefficients of≈10~(-8)cm~2 s~(-1)in the half-cell configuration.The assembled MNC-20‖MLC-20 full cell LIB delivers maximum energy and power densities of244.04 W h kg^(-1)and 108.86 W kg^(-1),respectively.The excellent electrochemical properties of the asprepared thick electrodes can be attributed to the highly conductive,mechanical compactness and multidimensional mutual effects of the MCF,CNT and active materials that facilitates rapid Li-ion diffusion kinetics.Furthermore,electrochemical impedance spectroscopy(EIS),symmetric cells analysis,and insitu Raman techniques clearly validates the enhanced Li-ion diffusion kinetics in the present architecture.
基金support of the National Natural Science Foundation of China(No.52120105007)the National Key Research and Development Program of China(2019Y FA0708700)are gratefully acknowledged.
文摘Polymerflooding is an effective method widely applied for enhancing oil recovery(EOR)by reducing the mobility ratio between theinjected water and crude oil.However,traditional polymers encounter challenges in high salinity reservoirs due to their salt sensitivity.Toovercome this challenge,we synthesized a zwitterion polymer(PAMNS)with salt-induced tackifying property through copolymerization ofacrylamide and a zwitterion monomer,methylacrylamide propyl-N,N-dimethylbutylsulfonate(NS).NS monomer is obtained from thereaction between 1,4-butanesultone and dimethylamino propyl methylacrylamide.In this study,the rheological properties,salt responsiveness,and EOR efficiency of PAMNS were evaluated.Results demonstrate that PAMNS exhibits desirable salt-induced tackifyingcharacteristics,with viscosity increasing up to 2.4 times as the NaCl concentration reaches a salinity of 30×10^(4)mg L^(-1).Furthermore,highvalence ions possess a much stronger effect on enhancing viscosity,manifested as Mg^(2+)>Ca^(2+)>Na^(+).Molecular dynamics simulations(MD)andfluid dynamics experiment results demonstrate that PAMNS molecules exhibit a more stretched state and enhanced intermolecularassociations in high-salinity environments.It is because of the salt-induced tackifying,PAMNS demonstrates superior performance inpolymerflooding experiments under salinity ranges from 5×10^(4)mg L^(-1)to 20×10^(4)mg L^(-1),leading to 10.38–19.83%higher EOR thantraditional polymers.
基金financially supported by the National Key Research and Development Program of China(2022YFB3404201)the Major Science and Technology Project of Changchun City,Jilin Province(Grant No.20210301024GX)。
文摘The effect of slow shot speed on externally solidified crystal(ESC),porosity and tensile property in a newly developed high-pressure die-cast Al-Si alloy was investigated by optical microscopy(OM),scanning electron microscopy(SEM)and laboratory computed tomography(CT).Results showed that the newly developed AlSi9MnMoV alloy exhibited improved mechanical properties when compared to the AlSi10MnMg alloy.The AlSi9MnMoV alloy,which was designed with trace multicomponent additions,displays a notable grain refining effect in comparison to the AlSi10MnMg alloy.Refining elements Ti,Zr,V,Nb,B promote heterogeneous nucleation and reduce the grain size of primaryα-Al.At a lower slow shot speed,the large ESCs are easier to form and gather,developing into the dendrite net and net-shrinkage.With an increase in slow shot speed,the size and number of ESCs and porosities significantly reduce.In addition,the distribution of ESCs is more dispersed and the net-shrinkage disappears.The tensile property is greatly improved by adopting a higher slow shot speed.The ultimate tensile strength is enhanced from 260.31 MPa to 290.31 MPa(increased by 11.52%),and the elongation is enhanced from 3.72%to 6.34%(increased by 70.52%).
文摘●AIM:To assess effectivity and safety of trifocal intraocular lenses(IOLs)and capsular tension rings in treating cataract patients with axial high myopia.●METHODS:A prospective nonrandomized controlled clinical trial was conducted.Totally 98 eyes(74 patients)who underwent femtosecond laser-assisted cataract surgery(FLACS)with trifocal IOLs were enrolled in the study and followed up for 2y after surgery:46 eyes(33 patients)with capsular tension ring implantation in the long axial lengths(AL)group(26<AL<29 mm)and 52 eyes(41 patients)in the normal AL group(22<AL<24.5 mm).Postoperative outcomes about effectivity and safety,including the subjective and objective visual quality,and postoperative complications were assessed.●RESULTS:Uncorrected distance visual acuity at 5 m and uncorrected intermediate visual acuity at 60 and 80 cm in the long AL group were significantly worse than those in the normal AL group at 3mo postoperatively(P<0.05).The differences in reading speed,spectacle independence and potential visual complaints between the two groups were not statistically significant(P>0.05).The dysfunctional lens index and total modulation transfer function(MTF)average height were similar between the two groups.The postoperative internal coma aberrations in the axial high myopia eyes were significantly higher than that in the normal AL group(P<0.05).The total satisfaction score in the long AL group(91.32±2.76)was slightly higher than that in the normal AL group(90.36±3.47),but there was no difference(P=0.136).A statistically negative correlation was found between corrected distance visual acuity(CDVA)and dysfunctional lens index(r=-0.382,P=0.009),and between CDVA and the total MTF average height(r=-0.374,P=0.01).But there was no significant correlation between CDVA and total satisfaction score(r=0.059,P=0.696).Postoperative complications mainly presented as posterior capsular opacity(PCO),retinal detachment and cystoid macular edema.There was no difference in the incidence of fundus disease(6.5%vs 3.8%,P=0.663)or PCO(17.4%vs 7.7%,P=0.217)between the two groups at two years.●CONCLUSION:The utilization of trifocal IOL and capsular tension ring implantation is beneficial for cataract patients with axial high myopia undergoing FLACS.This approach not only ensures excellent subjective feelings and objective visual quality,but also does not increase the incidence of postoperative complications.
基金supported by the National Natural Science Foundation of China(Grant No.32101489)Forestry Science and Technology Innovation Program of Hunan Province(Grant No.XLK202101-2)Science and Technology Innovation Platform and Talent Program of Hunan Province(Grant Nos.2023RC3164,2021NK1007)。
文摘Unreduced gametes through chromosome doubling play a major role in the process of plant polyploidization.Our previous work confirmed that Camellia oleifera can produce natural 2n pollen,and it is possible to induce the 2n pollen formation by high temperature treatment.This study focused on the optimization of the 2n pollen induction technique and the mechanisms of high temperature-induced2n pollen formation in C.oleifera.We found that the optimal protocol for inducing 2n pollen via high temperature was to perform 45℃with4 h at the prophaseⅠstage of the pollen mother cells(PMCs).Meanwhile,high temperature significantly decreased the yield and fertility of2n pollen.Through the observation of meiosis,abnormal chromosome and cytological behaviour was discovered under high-temperature treatment,and we confirmed that the formation of 2n pollen is caused by abnormal cell plate.Based on weighted gene co-expression network analysis,fifteen hub genes related to cell cycle control were identified.After male flower buds were exposed to heat shock,polygalacturonase gene(CoPGX3)was significantly upregulated.We inferred that high temperature causes the CoPGX3 gene to be overexpressed and that CoPGX3 is redistributed into the cytosol where it degrades cytoplasmic pectin,which leads to an abnormal cell plate.Furthermore,abnormal cytokinesis resulted in the formation of dyads and triads,and PMCs divided to produce 2n pollen.Our findings provide new insights into the mechanism of 2n pollen induced by high temperature in a woody plant and lay a foundation for further ploidy breeding of C.oleifera.
文摘We present a high-order Galerkin method in both space and time for the 1D unsteady linear advection-diffusion equation. Three Interior Penalty Discontinuous Galerkin (IPDG) schemes are detailed for the space discretization, while the time integration is performed at the same order of accuracy thanks to an Arbitrary high order DERivatives (ADER) method. The orders of convergence of the three ADER-IPDG methods are carefully examined through numerical illustrations, showing that the approach is consistent, accurate, and efficient. The numerical results indicate that the symmetric version of IPDG is typically more accurate and more efficient compared to the other approaches.
文摘Context/Objective: High blood pressure (HBP) currently represents the most widespread chronic non-communicable disease in Cameroon. The increase in its prevalence in the country is the result of multiple factors including economic stress imposed by precariousness, poor living conditions, sources of anxiety, anguish, depression and other behavioral disorders. Economic stress is a globalizing concept that integrates into a purely hermeneutic approach, a particular functioning of the nervous system of an individual who faces employment problems and precarious remuneration conditions. The non-satisfaction by an individual of his basic needs due to insufficient financial means can cause him to become irritable, aggressive, and socially and symbolically isolated, thereby increasing the desire to resort to morbid life models such as excessive consumption of narcotics and other psychoactive substances often associated with high blood pressure. The fight against the emergence of BPH is a complex, multifaceted and multifactorial reality that requires taking into account economic stress. The main objective of this survey is to describe the situation of economic stress within the Cameroonian population, which imposes precariousness and life models at risk of high blood pressure. Specifically, we determined the level of household income and the sources of income. Methods: A cross-sectional survey with a descriptive aim among five hundred households in the Central Region of Cameroon was conducted. A probabilistic technique called simple randomness was used. The number of households to be surveyed was determined indirectly using the Cochrane formula. Data collection in face-to-face mode using a physical questionnaire took place from July 1 to August 31, 2023, after obtaining ethical clearance from the Regional Health Research Ethics Committee, Human from the Center and an administrative authorization for data collection. Regarding their processing, the data was grouped during processing in Excel sheets. Normality and reliability tests of the collected data were carried out. For this, the Chi-square test was used for data with a qualitative value and that of Kolmogorov-Sminorf for data with a quantitative value. Descriptive analysis was possible using R software version 3.2, SPSS version 25.0, XLSTAT 2016, PAST and EXCEL programs from Microsoft Office 2013. Results: The main results highlight economic stress, with 45.60% of households surveyed earning less than US$154 per month;55% of household heads were women in single-parent families;14% of household heads were unemployed, 22% worked in the private sector and 19% were self-employed. This general economic situation leads to precarious living conditions, thereby increasing the risk of high blood pressure among the Cameroonian population.
基金the financial support from the National Key R&D Program of China(Grant No.2023YFE0202000)the National Natural Science Foundation of China(Grant No.52102213)+1 种基金Natural Science Foundation of Jilin Province(Grant No.20230101128JC)Double-Thousand Talents Plan of Jiangxi Province(jxsq2023102005)
文摘KVPO_(4)F with excellent structural stability and high operating voltage has been identified as a promising cathode for potassium-ion batteries(PIBs),but limits in sluggish ion transport and severe volume change cause insufficient potassium storage capability.Here,a high-energy and low-strain KVPO_(4)F composite cathode assisted by multifunctional K_(2)C_(4)O_(4)electrode stabilizer is exquisitely designed.Systematical electrochemical investigations demonstrate that this composite cathode can deliver a remarkable energy density up to 530 Wh kg^(-1)with 142.7 mAh g^(-1)of reversible capacity at 25 mA g^(-1),outstanding rate capability of 70.6 mAh g^(-1)at 1000 mA g^(-1),and decent cycling stability.Furthermore,slight volume change(~5%)and increased interfacial stability with thin and even cathode-electrolyte interphase can be observed through in situ and ex situ characterizations,which are attributed to the synergistic effect from in situ potassium compensation and carbon deposition through self-sacrificing K_(2)C_(4)O_(4)additive.Moreover,potassium-ion full cells manifest significant improvement in energy density and cycling stability.This work demonstrates a positive impact of K_(2)C_(4)O_(4)additive on the comprehensive electrochemical enhancement,especially the activation of high-voltage plateau capacity and provides an efficient strategy to enlighten the design of other high-voltage cathodes for advanced high-energy batteries.
基金Sponsored by the Fundamental Research Funds for the Central Universities of China(Grant No.PA2023IISL0098)the Hefei Municipal Natural Science Foundation(Grant No.202201)+1 种基金the National Natural Science Foundation of China(Grant No.62071164)the Open Fund of Information Materials and Intelligent Sensing Laboratory of Anhui Province(Anhui University)(Grant No.IMIS202214 and IMIS202102)。
文摘This article proposes a VGG network with histogram of oriented gradient(HOG) feature fusion(HOG-VGG) for polarization synthetic aperture radar(PolSAR) image terrain classification.VGG-Net has a strong ability of deep feature extraction,which can fully extract the global deep features of different terrains in PolSAR images,so it is widely used in PolSAR terrain classification.However,VGG-Net ignores the local edge & shape features,resulting in incomplete feature representation of the PolSAR terrains,as a consequence,the terrain classification accuracy is not promising.In fact,edge and shape features play an important role in PolSAR terrain classification.To solve this problem,a new VGG network with HOG feature fusion was specifically proposed for high-precision PolSAR terrain classification.HOG-VGG extracts both the global deep semantic features and the local edge & shape features of the PolSAR terrains,so the terrain feature representation completeness is greatly elevated.Moreover,HOG-VGG optimally fuses the global deep features and the local edge & shape features to achieve the best classification results.The superiority of HOG-VGG is verified on the Flevoland,San Francisco and Oberpfaffenhofen datasets.Experiments show that the proposed HOG-VGG achieves much better PolSAR terrain classification performance,with overall accuracies of 97.54%,94.63%,and 96.07%,respectively.