The morphology changes of both Fe-containing intermetallic compounds and the primary Si phase of Al-20Si-2Fe- 2Cu-0.4Mg-1.0Ni-0.5Mn (mass fraction, %) alloy produced by semi-solid rheo-diecasting were studied. The s...The morphology changes of both Fe-containing intermetallic compounds and the primary Si phase of Al-20Si-2Fe- 2Cu-0.4Mg-1.0Ni-0.5Mn (mass fraction, %) alloy produced by semi-solid rheo-diecasting were studied. The semi-solid slurry of high silicon aluminum alloy was prepared by direct ultrasonic vibration (DUV) which was imposed on the alloy near the liquidus temperature for about 2 rain. Then, standard test samples of 6.4 mm in diameter were formed by semi-solid rheo-diecasting. The results show that the DUV treatment suppresses the formation of needle-like ,β-Al5(Fe,Mn)Si phase, and the Fe-containing intermetallic compounds exist in the form of fine Al4(Fe, Mn)Si2 particles. Additionally, the primary Si grows up as fine and round particles with uniform distribution in α(Al) matrix of this alloy under DUV treatment. The tensile strengths of the samples at the room temperature and 573 K are 230 MPa and 145 MPa, respectively. The coefficient of thermal expansion (CTE) between 25 ℃ and 300 ℃ is 16.052 8×10^-6 ℃^-1, and the wear rate is 1.55%. The hardness of this alloy with 2% Fe reaches HB146.3. It is discovered that modified morphology and uniform distribution of the Fe-containing intermetallic compounds and the primary Si phase are the main reasons for reducing the CTE and increasing the wear resistance of this alloy.展开更多
The effect of fiber laser on MIG arc was investigated with 8 mm 7075-T6 high strength aluminum alloy as base material.The arc shape,droplet transfer form and electrical signal in the process of MIG welding and laser-M...The effect of fiber laser on MIG arc was investigated with 8 mm 7075-T6 high strength aluminum alloy as base material.The arc shape,droplet transfer form and electrical signal in the process of MIG welding and laser-MIG hybrid welding were analyzed.The stability of the hybrid welding process was evaluated by standard deviation analysis.The results show that with the increase of laser power,a large number of laser-induced plasma enters the arc column area,providing more conductive channels,which makes the heat of MIG arc more concentrated and the short circuit transition disappear.Due to the continuous effect of laser,the keyhole becomes a continuous electron emission source,and a stable cathode spot will be formed near the keyhole,which enhances the stability of MIG arc at the base current state.By using the method of standard deviation analysis,the voltage standard deviation of single MIG welding arc and laser-MIG hybrid arc within 4 seconds was calculated.The standard deviation of single MIG arc voltage was 1.05,and the standard deviation of MIG arc voltage in laser-MIG hybrid welding was 0.71–0.86,so the hybrid welding process was more stable.展开更多
Numerical analysis is critically important to understanding the complex deformation mechanics that occur during sheet forming processes.It has been widely used in simulation of sheet metal forming processes at room te...Numerical analysis is critically important to understanding the complex deformation mechanics that occur during sheet forming processes.It has been widely used in simulation of sheet metal forming processes at room temperature in the automotive industry.However,material at elevated temperature behaves more differently than at room temperature and specific material parameters and models need to be developed for the simulation of warm forming.Based on the experimental investigation of material behavior of high strength aluminum alloy 7075(AA7075),constitutive equations with strain rate sensitivity at 140,180 and 220 ℃ are developed.Anisotropic yield criterion Barlat 89 is used in the simulation.Warm forming of limit dome height tests and limit drawing ratio tests of AA7075 at 140,180 and 220℃are performed.Forming limit diagrams developed from experiment at several elevated temperatures in the previous study are used to predict the failure in the simulation results.Punch force and displacement predicted from simulation are compared with the experimental data.Simulation results agree with experimental results,so the developed material model can be used to accurately predict material behavior during isothermal warm forming of the AA7075-T6 alloy.展开更多
Dissimilar material joining of 6008 aluminum alloy to H220 YD galvanized high strength steel was performed by resistance spot welding with especial electrodes that were a flat tip electrode against the steel surface a...Dissimilar material joining of 6008 aluminum alloy to H220 YD galvanized high strength steel was performed by resistance spot welding with especial electrodes that were a flat tip electrode against the steel surface and a domed tip electrode upon the aluminum alloy surface. An intermetallic compound layer composed of Fe2Al5 and FeAl3 was formed at the steel/ aluminum interface in the welded joint. The thickness of the intermetallic compound layer increased with increasing welding current and welding time, and the maximum thickness being 7. 0 μm was obtained at 25 kA and 300 ms. The weld nugget diameter and tensile shear load of the welded joint had increased tendencies first with increasing welding current ( 18 -22 kA) and welding time ( 50 - 300 ms), then changed little with further increasing welding current ( 22 - 25 kA) and welding time (300 -400 ms). The maximum tensile shear load reached 5.4 kN at 22 kA and 300 ms. The welded joint fractured through brittle intermetallic compound layer and aluminum alloy nugget.展开更多
20 mm thick plates of 2519-T87 high strength aluminum alloy have been welded.The effects of the compositions of filler wires,the heat input and the compositions of shielding gas on the mechanical properties and micros...20 mm thick plates of 2519-T87 high strength aluminum alloy have been welded.The effects of the compositions of filler wires,the heat input and the compositions of shielding gas on the mechanical properties and microstructure of the welded joint have been investigated.The results indicate that finer microstructure,better mechanical properties and higher value of hardness of HAZ can be obtained by using lower heat input.The use of Ar/He mixed shielding gas has several advantages over pure Ar shielding gas.With the increase of the proportion of He in the mixed shielding gas, the grain size of the weld metal as well as porosity susceptibility decreases.When the volume ratio of He to Ar reaches 7:3,the porosity and the grain size of weld metal reach the minimum,and the porosity can be further reduced by filling some CO2.展开更多
This article mainly discussed bulk material lHvl^ared by powder metallurgy, and the commercial 2024 aluminum alloy powder and FeNiCrCoA13 high entropy alloy powder (both produced by argon gas atomization process) we...This article mainly discussed bulk material lHvl^ared by powder metallurgy, and the commercial 2024 aluminum alloy powder and FeNiCrCoA13 high entropy alloy powder (both produced by argon gas atomization process) were ball-milled for different hours. The prepared powder was consolidated by hot extrusion method. The microstruetures of the milled powder and bulk alloy were examined by X - Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The thermal stability was tested by differential scanning calorimetry (DSC). Mechanical properties of the extruded alloy were examined by Vickers hardness tester and mechanical testing machine. The results show that after milling, the mixed particle sizes and microstructures of the alloy powder change obviously. The compressive strength of the extruded alloy has reached 580 MPa under certain conditions of milling time and composition.展开更多
Nickel-coated 45 steel studs and 6061 aluminum alloy with 4047 A1 alloy foil as filler metal were joined by using high frequency induction brazing. The microstrueture of Fe/A1 brazed joint was studied by means of opti...Nickel-coated 45 steel studs and 6061 aluminum alloy with 4047 A1 alloy foil as filler metal were joined by using high frequency induction brazing. The microstrueture of Fe/A1 brazed joint was studied by means of optical microscopy (OM), scanning electron microscope (SEM), energy dispersive X-ray (EDX), and X-ray diffraction (XRD). Results showed that 45 steel stud and 6061 aluminum alloy could be successfully joined by high frequency induction brazing with proper processing parameters. The bonding strength of the joint was of the order of 88 MPa. Ni coating on steel stud successfully avoided the generation of Fe-AI intermetallic compound which is brittle by blocking the contact between A1 and Fe. Intermetallic compounds, i e, AI3Ni2, AlmNi0.9 and A10.3Fe3Si0.7 presented in AI side, FeNi and Fe-A1-Ni ternary eutectic structure were formed in Fe side. The micro-hardness in intermetallic compound layer was 313 HV. The joint was brittle fractured in the intermetallic compounds layer of A1 side, where plenty of A13Ni2 intermetallie compounds were distributed continuously.展开更多
To avoid the angular deformation of aluminum alloy T-joint weldments, a new method named welding with auxiliary heat source is proposed. The welding simulation is performed with the commercial finite element software ...To avoid the angular deformation of aluminum alloy T-joint weldments, a new method named welding with auxiliary heat source is proposed. The welding simulation is performed with the commercial finite element software Abaqus and FORTRAN programme encoding a special conical heat source with Gaussian volumetric distribution of flux. The influence of the local model on the temperature, residual stress, and welding deformation distributions is investigated. The findings show that angular deformation achieved through numerical computation completely consists with the experimental result which has proved the effectiveness of the finite element methods developed. Various measurements performed on small-scale welded test specimens provide a data base of experimental results that serves as a bench mark for qualification of the simulation result. Finally, the residual stress and strain states in a T-joint are predicted.展开更多
The hardness, the tensile and the high-cycle fatigue(HCF) performances of 7075 aluminum alloy were investigated under temper T651, solution treated at 380 ℃ for 0.5 h and aged at different temperatures(150, 170, 1...The hardness, the tensile and the high-cycle fatigue(HCF) performances of 7075 aluminum alloy were investigated under temper T651, solution treated at 380 ℃ for 0.5 h and aged at different temperatures(150, 170, 190 ℃) for 10 hours. The optimal microstructures and the fatigue fracture surfaces were observed. The results show that the hardness and the tensile performances are at their optimum at T651, but the fatigue life is the shortest. The hardness and the elongation are the lowest after solution treatment. With the aging temperature increasing(150-190 ℃), the HCF is improved. The crack is initiated from the impurity particles on the subsurface. Treated at 170 ℃,the area of the quasi-cleavage plane and the width of parallel serrated sections of the crack propagation are the largest. With increasing aging temperature, the dimple size of finally fracture surfaces becomes larger and the depth deeper.展开更多
Tensile tests of solid solution treated 7050 aluminum alloy were conducted to different strain degrees (0.1, 0.4, 0.6 and failure) at 460 ℃ with the strain rate of 1.0×10-4-1.0×10-1s-1. The boundary misorie...Tensile tests of solid solution treated 7050 aluminum alloy were conducted to different strain degrees (0.1, 0.4, 0.6 and failure) at 460 ℃ with the strain rate of 1.0×10-4-1.0×10-1s-1. The boundary misorientation angle evolution during hot deformation of the 7050 aluminum alloy was studied by EBSD technique and the fracture surfaces were observed using SEM. A linear relationship between the increase in the average boundary misorientation angle and the true strain at different strain rates is assumed when aluminum alloy is deformed at 460 ℃. The increasing rate of average boundary misorientation angle is 15.1-, 15.7- and -0.75- corresponding to the strain rate of 1.0×10-4, 1.0×10-2 and 0.1 s-1, respectively. The main softening mechanism is continuous dynamic recrystallization when the strain rates are 1.0×10-4 and 1.0×10-2 s-1, and it is dynamic recovery when strain rate is 0.1 s-1.展开更多
The process of friction-stir welding 2A12CZ alloy has been studied. And strength and elongation tests have been performed, which demonstrated that the opportunity existed to manipulate friction-stir welding parameters...The process of friction-stir welding 2A12CZ alloy has been studied. And strength and elongation tests have been performed, which demonstrated that the opportunity existed to manipulate friction-stir welding parameters in order to improve a range of material properties. The results showed that the joint strength and elongation arrived at their maximums (331 MPa and 4%) at 37.5 mm/min and 300 rpm. As welding parameters changing, joint tensile strength and elongation had similar development. Hardness measurement indicated that the weld was softened. However, there was considerable difference in softening degree for different joint zone. The weld top had lower hardness and wider softening zone than other zone of the weld. And softening zone at advancing side was wider than that at retreating side.展开更多
A nanostructured surface layer was fabricated on 1420 aluminum alloy by high-energy shot peening.Microstructures were characterized by X-ray diffractometer (XRD), transmission electron microscope (TEM) and high-resolu...A nanostructured surface layer was fabricated on 1420 aluminum alloy by high-energy shot peening.Microstructures were characterized by X-ray diffractometer (XRD), transmission electron microscope (TEM) and high-resolution electron microscope(HRTEM), and microhardness measurement was conducted along the depth from top surface layer to matrix of the sample peened for 30 min. The results show that a nanocrystalline layer about 20 μm in thickness is formed on the surface of the sample after high-energy shot peening, in which the grain size is changed from about 20 nm to 100 nm. In the surface layer of 20 -50 μm in depth, the microstructure consists of submicron grains. The surface nanocrystallization is accomplished by dislocation slip. The microhardness of the top surface nanostructured layer is enhanced obviously after high-energy shot peening(HESP) compared with that of the coarse-grained matrix.展开更多
In order to understand the stress corrosion behavior of super-high strength aluminum alloys by spray forming, different aluminum alloys by different heat treatment was made. The results showed that the alloy with peak...In order to understand the stress corrosion behavior of super-high strength aluminum alloys by spray forming, different aluminum alloys by different heat treatment was made. The results showed that the alloy with peak aging has the most sensitive stress corrosion cracking, the crack can even be seen using eyes;the alloys with two step aging were better than one step aging alloys, the alloys has not been found stress corrosion cracking.展开更多
The P + Sr + Ce compound modification technologies of as-cast Al-21Si-1.5Cu-1.5Ni- 2.5Fe- 0.5Mg alloy were investigated by means of orthogonal test. Orthogonal test results show that 3% (CaH2PO4 + 2CASO4)+ 0.2%...The P + Sr + Ce compound modification technologies of as-cast Al-21Si-1.5Cu-1.5Ni- 2.5Fe- 0.5Mg alloy were investigated by means of orthogonal test. Orthogonal test results show that 3% (CaH2PO4 + 2CASO4)+ 0.2%Sr + 0.2%Ce is the optimum additive of modification treatment which can fine eutectic and primary silicon also can change the form of rich-iron phase at same time. The needle form of rich-iron phase is Al9FeSi3, which is prored by X-ray diffraction analysis and X-ray energy spectrum analysis. After compound modification treatment, the needle form of rich-iron phase disappeared and the fish bone form of rich-iron and rich-Ce phase that is AlsCeFe emerged. Both at room temperature and at 300℃, the tensile strength of the alloy after the modification treatment with the optimum additive is 30% lager than that of the alloy unmodified. Observed by SEM, the brittle intercrystalline tensile fracture changed into a blended one in which has many dimples.展开更多
A high Fe containing aluminum matrix filler metal for hardfacing aluminum silicon alloys has been developed by using iron,nickel,and silicon as the major strengthening elements,and by measuring mechanical properties...A high Fe containing aluminum matrix filler metal for hardfacing aluminum silicon alloys has been developed by using iron,nickel,and silicon as the major strengthening elements,and by measuring mechanical properties,room temperature and high temperature wear tests,and microstructural analysis.The filler metal,which contains 3.0%-5.0% Fe and 11.0%-13.0% Si,exhibits an excellent weldability.The as cast and as welded microstructures for the filler metal are of uniformly distribution and its dispersed network of hard phase is enriched with Al Si Fe Ni.The filler metal shows high mechanical properties and wear resistance at both room temperature and high temperatures.The deposited metal has a better resistance to impact wear at 220℃ than that of substrate Al Si Mg Cu piston alloy;at room temperature,the deposited metal has an equivalent resistance to slide wear with lubrication as that of a hyper eutectic aluminum silicon alloy with 27% Si and 1% Ni.展开更多
Using the devices of split Hopkinson tension bar(SHTB)and split Hopkinson pressure bar(SHPB),the dynamic tension and compression experiments in three typical forming directions(rolling direction(RD),transverse directi...Using the devices of split Hopkinson tension bar(SHTB)and split Hopkinson pressure bar(SHPB),the dynamic tension and compression experiments in three typical forming directions(rolling direction(RD),transverse direction(TD)and normal direction(ND))were carried out at strain rates of 1000,2000 and 4000 s-1,respectively.From the microscopic point of view,the effect of strain rate and anisotropy on tension compression asymmetry of aviation aluminum alloy 7050 was studied by scanning electron microscope(SEM),metallographic microscope and electron backscatter diffraction(EBSD).The results showed that there was obvious asymmetry between tension and compression,especially that the yield strength of the material in tension was higher than that in compression.The asymmetry in the elastic stage of tension-compression was weaker and the asymmetry in the strengthening stage was stronger with the increase of strain rate.At the same strain rate,the changing trend of the flow stress was distinct under different orientations of tension and compression,which was related to the stress direction of the grains.According to EBSD grain orientation analysis and raw material texture pole figure analysis,it was found that the larger the difference in the degree of grain refinement during tension and compression,the larger the macro-flow stress difference.展开更多
An inductively coupled plasma (ICP) discharge and its etching behaviors for aluminum alloys were investigated in this report. A radio frequency power supply was used for plasma generation. The unique hardware configur...An inductively coupled plasma (ICP) discharge and its etching behaviors for aluminum alloys were investigated in this report. A radio frequency power supply was used for plasma generation. The unique hardware configuration enabled one to control ion energy separately from plasma density. Plasma properties were measured with a Langmuir probe. Electron temperature, plasma potential and plasma density were found to be comparable with those reported from Electron Cyclotron Resonance (ECR) and other types of reactors[1].A mixture of HBr and chlorine gases were used for this aluminum etch study. Experimental matrices were designed with Response Surface Methodology (RSM) to analyze the process trends versus etch parameters, such as source power, bias power and gas composition. An etch rate of 8500A to 9000A per minute was obtained at 5 to 15 mTorr pressure ranges. Anisotropic profiles with high photoresist selectivity (5 to 1) and silicon dioxide selectivity greater than 10 were achieved with HBr addition into chlorine plasma.Bromine-containing chemistry for an aluminum etch in a low pressure ICP discharge showed great potential for use in ULSI fabrication. In addition, the hardware used was very simple and the chamber size was much smaller than other high density plasma sources.展开更多
The ongoing effort to create methods for detecting and quantifying fatigue damage is motivated by the high levels of uncertainty in present fatigue-life prediction approaches and the frequently catastrophic nature of ...The ongoing effort to create methods for detecting and quantifying fatigue damage is motivated by the high levels of uncertainty in present fatigue-life prediction approaches and the frequently catastrophic nature of fatigue failure.The fatigue life of high strength aluminum alloy 2090-T83 is predicted in this study using a variety of artificial intelligence and machine learning techniques for constant amplitude and negative stress ratios(R?1).Artificial neural networks(ANN),adaptive neuro-fuzzy inference systems(ANFIS),support-vector machines(SVM),a random forest model(RF),and an extreme-gradient tree-boosting model(XGB)are trained using numerical and experimental input data obtained from fatigue tests based on a relatively low number of stress measurements.In particular,the coefficients of the traditional force law formula are found using relevant numerical methods.It is shown that,in comparison to traditional approaches,the neural network and neuro-fuzzy models produce better results,with the neural network models trained using the boosting iterations technique providing the best performances.Building strong models from weak models,XGB helps to predict fatigue life by reducing model partiality and variation in supervised learning.Fuzzy neural models can be used to predict the fatigue life of alloys more accurately than neural networks and traditional methods.展开更多
Friction stir welding (FSW) has been widely used in many industries, with which high-strength aluminum alloys can be well joined. However, the corrosion resistance of FSW high-strength Al alloy joints is relatively ...Friction stir welding (FSW) has been widely used in many industries, with which high-strength aluminum alloys can be well joined. However, the corrosion resistance of FSW high-strength Al alloy joints is relatively poor, which limits their industrial applications. The joints shall be protected against corrosion. In this review, therefore, the current status and development of corrosion protection for FSW high-strength Al alloy joints are presented. Particular emphasis has been given to different protection methods : lowering heat input, post-weld heat treatment, surface modification and spray coatings. Finally, opportunities are identified for further research and development in corrosion protection of FSW high-strength Al alloy joints.展开更多
The microstructure of the thin-walled tubes with high-strength aluminum alloy determines their final forming quality and performance. This type of tube can be manufactured by multi-pass hot power backward spinning pro...The microstructure of the thin-walled tubes with high-strength aluminum alloy determines their final forming quality and performance. This type of tube can be manufactured by multi-pass hot power backward spinning process as it can eliminate casting defects, refine microstructure and improve the plasticity of the tube. To analyze the microstructure distribution characteristics of the tube during the spinning process, a 3D coupled thermo-mechanical FE model coupled with the microstructure evolution model of the process was established under the ABAQUS environment. The microstructure evolution characteristics and laws of the tube for the whole spinning process were analyzed. The results show that the dynamic recrystallization is mainly produced in the spinning deformation zone and root area of the tube. In the first pass, the dynamic recrystallization phenomenon is not obvious in the tube. With the pass increasing, the trend of dynamic recrystallization volume percentage gradually increases and extends from the outer surface of the tube to the inner surface. The fine-grained area shows the states of concentration, dispersion, and re-concentration as the pass number increases. .展开更多
基金Project(2007AA03Z557) supported by the National High-tech Research and Development Program of ChinaProject(50775086) supported by the National Natural Science Foundation of China
文摘The morphology changes of both Fe-containing intermetallic compounds and the primary Si phase of Al-20Si-2Fe- 2Cu-0.4Mg-1.0Ni-0.5Mn (mass fraction, %) alloy produced by semi-solid rheo-diecasting were studied. The semi-solid slurry of high silicon aluminum alloy was prepared by direct ultrasonic vibration (DUV) which was imposed on the alloy near the liquidus temperature for about 2 rain. Then, standard test samples of 6.4 mm in diameter were formed by semi-solid rheo-diecasting. The results show that the DUV treatment suppresses the formation of needle-like ,β-Al5(Fe,Mn)Si phase, and the Fe-containing intermetallic compounds exist in the form of fine Al4(Fe, Mn)Si2 particles. Additionally, the primary Si grows up as fine and round particles with uniform distribution in α(Al) matrix of this alloy under DUV treatment. The tensile strengths of the samples at the room temperature and 573 K are 230 MPa and 145 MPa, respectively. The coefficient of thermal expansion (CTE) between 25 ℃ and 300 ℃ is 16.052 8×10^-6 ℃^-1, and the wear rate is 1.55%. The hardness of this alloy with 2% Fe reaches HB146.3. It is discovered that modified morphology and uniform distribution of the Fe-containing intermetallic compounds and the primary Si phase are the main reasons for reducing the CTE and increasing the wear resistance of this alloy.
基金supported by Science and Technology Programs of Inner Mongolia(2020GG0301).
文摘The effect of fiber laser on MIG arc was investigated with 8 mm 7075-T6 high strength aluminum alloy as base material.The arc shape,droplet transfer form and electrical signal in the process of MIG welding and laser-MIG hybrid welding were analyzed.The stability of the hybrid welding process was evaluated by standard deviation analysis.The results show that with the increase of laser power,a large number of laser-induced plasma enters the arc column area,providing more conductive channels,which makes the heat of MIG arc more concentrated and the short circuit transition disappear.Due to the continuous effect of laser,the keyhole becomes a continuous electron emission source,and a stable cathode spot will be formed near the keyhole,which enhances the stability of MIG arc at the base current state.By using the method of standard deviation analysis,the voltage standard deviation of single MIG welding arc and laser-MIG hybrid arc within 4 seconds was calculated.The standard deviation of single MIG arc voltage was 1.05,and the standard deviation of MIG arc voltage in laser-MIG hybrid welding was 0.71–0.86,so the hybrid welding process was more stable.
文摘Numerical analysis is critically important to understanding the complex deformation mechanics that occur during sheet forming processes.It has been widely used in simulation of sheet metal forming processes at room temperature in the automotive industry.However,material at elevated temperature behaves more differently than at room temperature and specific material parameters and models need to be developed for the simulation of warm forming.Based on the experimental investigation of material behavior of high strength aluminum alloy 7075(AA7075),constitutive equations with strain rate sensitivity at 140,180 and 220 ℃ are developed.Anisotropic yield criterion Barlat 89 is used in the simulation.Warm forming of limit dome height tests and limit drawing ratio tests of AA7075 at 140,180 and 220℃are performed.Forming limit diagrams developed from experiment at several elevated temperatures in the previous study are used to predict the failure in the simulation results.Punch force and displacement predicted from simulation are compared with the experimental data.Simulation results agree with experimental results,so the developed material model can be used to accurately predict material behavior during isothermal warm forming of the AA7075-T6 alloy.
文摘Dissimilar material joining of 6008 aluminum alloy to H220 YD galvanized high strength steel was performed by resistance spot welding with especial electrodes that were a flat tip electrode against the steel surface and a domed tip electrode upon the aluminum alloy surface. An intermetallic compound layer composed of Fe2Al5 and FeAl3 was formed at the steel/ aluminum interface in the welded joint. The thickness of the intermetallic compound layer increased with increasing welding current and welding time, and the maximum thickness being 7. 0 μm was obtained at 25 kA and 300 ms. The weld nugget diameter and tensile shear load of the welded joint had increased tendencies first with increasing welding current ( 18 -22 kA) and welding time ( 50 - 300 ms), then changed little with further increasing welding current ( 22 - 25 kA) and welding time (300 -400 ms). The maximum tensile shear load reached 5.4 kN at 22 kA and 300 ms. The welded joint fractured through brittle intermetallic compound layer and aluminum alloy nugget.
基金This project is supported by National Hi-tech Research and Development Program of China(863 Program,No.2002AA305402).
文摘20 mm thick plates of 2519-T87 high strength aluminum alloy have been welded.The effects of the compositions of filler wires,the heat input and the compositions of shielding gas on the mechanical properties and microstructure of the welded joint have been investigated.The results indicate that finer microstructure,better mechanical properties and higher value of hardness of HAZ can be obtained by using lower heat input.The use of Ar/He mixed shielding gas has several advantages over pure Ar shielding gas.With the increase of the proportion of He in the mixed shielding gas, the grain size of the weld metal as well as porosity susceptibility decreases.When the volume ratio of He to Ar reaches 7:3,the porosity and the grain size of weld metal reach the minimum,and the porosity can be further reduced by filling some CO2.
文摘This article mainly discussed bulk material lHvl^ared by powder metallurgy, and the commercial 2024 aluminum alloy powder and FeNiCrCoA13 high entropy alloy powder (both produced by argon gas atomization process) were ball-milled for different hours. The prepared powder was consolidated by hot extrusion method. The microstruetures of the milled powder and bulk alloy were examined by X - Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The thermal stability was tested by differential scanning calorimetry (DSC). Mechanical properties of the extruded alloy were examined by Vickers hardness tester and mechanical testing machine. The results show that after milling, the mixed particle sizes and microstructures of the alloy powder change obviously. The compressive strength of the extruded alloy has reached 580 MPa under certain conditions of milling time and composition.
基金Funded by the National Defense Basic Research Program(No.A2620110005)the Equipment Pre Research Project of Eleventh Five-Year Plan of China(No.40401050301)the Natural Science Foundation of Jiangsu Province(No.BK20131261)
文摘Nickel-coated 45 steel studs and 6061 aluminum alloy with 4047 A1 alloy foil as filler metal were joined by using high frequency induction brazing. The microstrueture of Fe/A1 brazed joint was studied by means of optical microscopy (OM), scanning electron microscope (SEM), energy dispersive X-ray (EDX), and X-ray diffraction (XRD). Results showed that 45 steel stud and 6061 aluminum alloy could be successfully joined by high frequency induction brazing with proper processing parameters. The bonding strength of the joint was of the order of 88 MPa. Ni coating on steel stud successfully avoided the generation of Fe-AI intermetallic compound which is brittle by blocking the contact between A1 and Fe. Intermetallic compounds, i e, AI3Ni2, AlmNi0.9 and A10.3Fe3Si0.7 presented in AI side, FeNi and Fe-A1-Ni ternary eutectic structure were formed in Fe side. The micro-hardness in intermetallic compound layer was 313 HV. The joint was brittle fractured in the intermetallic compounds layer of A1 side, where plenty of A13Ni2 intermetallie compounds were distributed continuously.
基金This work was supported by the National Natural Science Foundation of China ( Grant No. 50305035 ).
文摘To avoid the angular deformation of aluminum alloy T-joint weldments, a new method named welding with auxiliary heat source is proposed. The welding simulation is performed with the commercial finite element software Abaqus and FORTRAN programme encoding a special conical heat source with Gaussian volumetric distribution of flux. The influence of the local model on the temperature, residual stress, and welding deformation distributions is investigated. The findings show that angular deformation achieved through numerical computation completely consists with the experimental result which has proved the effectiveness of the finite element methods developed. Various measurements performed on small-scale welded test specimens provide a data base of experimental results that serves as a bench mark for qualification of the simulation result. Finally, the residual stress and strain states in a T-joint are predicted.
基金Funded by the National Natural Science Foundation of China(Nos.51375500,and 51375162)Scientific Research Project of Hunan Province Department of Education(No.17C0886)Open Funded Projects of Hunan Provincial Key Laboratory of Health Maintenance for Mechanical Equipment(No.201605)
文摘The hardness, the tensile and the high-cycle fatigue(HCF) performances of 7075 aluminum alloy were investigated under temper T651, solution treated at 380 ℃ for 0.5 h and aged at different temperatures(150, 170, 190 ℃) for 10 hours. The optimal microstructures and the fatigue fracture surfaces were observed. The results show that the hardness and the tensile performances are at their optimum at T651, but the fatigue life is the shortest. The hardness and the elongation are the lowest after solution treatment. With the aging temperature increasing(150-190 ℃), the HCF is improved. The crack is initiated from the impurity particles on the subsurface. Treated at 170 ℃,the area of the quasi-cleavage plane and the width of parallel serrated sections of the crack propagation are the largest. With increasing aging temperature, the dimple size of finally fracture surfaces becomes larger and the depth deeper.
文摘Tensile tests of solid solution treated 7050 aluminum alloy were conducted to different strain degrees (0.1, 0.4, 0.6 and failure) at 460 ℃ with the strain rate of 1.0×10-4-1.0×10-1s-1. The boundary misorientation angle evolution during hot deformation of the 7050 aluminum alloy was studied by EBSD technique and the fracture surfaces were observed using SEM. A linear relationship between the increase in the average boundary misorientation angle and the true strain at different strain rates is assumed when aluminum alloy is deformed at 460 ℃. The increasing rate of average boundary misorientation angle is 15.1-, 15.7- and -0.75- corresponding to the strain rate of 1.0×10-4, 1.0×10-2 and 0.1 s-1, respectively. The main softening mechanism is continuous dynamic recrystallization when the strain rates are 1.0×10-4 and 1.0×10-2 s-1, and it is dynamic recovery when strain rate is 0.1 s-1.
文摘The process of friction-stir welding 2A12CZ alloy has been studied. And strength and elongation tests have been performed, which demonstrated that the opportunity existed to manipulate friction-stir welding parameters in order to improve a range of material properties. The results showed that the joint strength and elongation arrived at their maximums (331 MPa and 4%) at 37.5 mm/min and 300 rpm. As welding parameters changing, joint tensile strength and elongation had similar development. Hardness measurement indicated that the weld was softened. However, there was considerable difference in softening degree for different joint zone. The weld top had lower hardness and wider softening zone than other zone of the weld. And softening zone at advancing side was wider than that at retreating side.
文摘A nanostructured surface layer was fabricated on 1420 aluminum alloy by high-energy shot peening.Microstructures were characterized by X-ray diffractometer (XRD), transmission electron microscope (TEM) and high-resolution electron microscope(HRTEM), and microhardness measurement was conducted along the depth from top surface layer to matrix of the sample peened for 30 min. The results show that a nanocrystalline layer about 20 μm in thickness is formed on the surface of the sample after high-energy shot peening, in which the grain size is changed from about 20 nm to 100 nm. In the surface layer of 20 -50 μm in depth, the microstructure consists of submicron grains. The surface nanocrystallization is accomplished by dislocation slip. The microhardness of the top surface nanostructured layer is enhanced obviously after high-energy shot peening(HESP) compared with that of the coarse-grained matrix.
文摘In order to understand the stress corrosion behavior of super-high strength aluminum alloys by spray forming, different aluminum alloys by different heat treatment was made. The results showed that the alloy with peak aging has the most sensitive stress corrosion cracking, the crack can even be seen using eyes;the alloys with two step aging were better than one step aging alloys, the alloys has not been found stress corrosion cracking.
文摘The P + Sr + Ce compound modification technologies of as-cast Al-21Si-1.5Cu-1.5Ni- 2.5Fe- 0.5Mg alloy were investigated by means of orthogonal test. Orthogonal test results show that 3% (CaH2PO4 + 2CASO4)+ 0.2%Sr + 0.2%Ce is the optimum additive of modification treatment which can fine eutectic and primary silicon also can change the form of rich-iron phase at same time. The needle form of rich-iron phase is Al9FeSi3, which is prored by X-ray diffraction analysis and X-ray energy spectrum analysis. After compound modification treatment, the needle form of rich-iron phase disappeared and the fish bone form of rich-iron and rich-Ce phase that is AlsCeFe emerged. Both at room temperature and at 300℃, the tensile strength of the alloy after the modification treatment with the optimum additive is 30% lager than that of the alloy unmodified. Observed by SEM, the brittle intercrystalline tensile fracture changed into a blended one in which has many dimples.
文摘A high Fe containing aluminum matrix filler metal for hardfacing aluminum silicon alloys has been developed by using iron,nickel,and silicon as the major strengthening elements,and by measuring mechanical properties,room temperature and high temperature wear tests,and microstructural analysis.The filler metal,which contains 3.0%-5.0% Fe and 11.0%-13.0% Si,exhibits an excellent weldability.The as cast and as welded microstructures for the filler metal are of uniformly distribution and its dispersed network of hard phase is enriched with Al Si Fe Ni.The filler metal shows high mechanical properties and wear resistance at both room temperature and high temperatures.The deposited metal has a better resistance to impact wear at 220℃ than that of substrate Al Si Mg Cu piston alloy;at room temperature,the deposited metal has an equivalent resistance to slide wear with lubrication as that of a hyper eutectic aluminum silicon alloy with 27% Si and 1% Ni.
基金supported by the Natural Science Foundation of China(No.51675230)the Major Innovation Projects in Shandong Province (No. 2019JZZY010451)。
文摘Using the devices of split Hopkinson tension bar(SHTB)and split Hopkinson pressure bar(SHPB),the dynamic tension and compression experiments in three typical forming directions(rolling direction(RD),transverse direction(TD)and normal direction(ND))were carried out at strain rates of 1000,2000 and 4000 s-1,respectively.From the microscopic point of view,the effect of strain rate and anisotropy on tension compression asymmetry of aviation aluminum alloy 7050 was studied by scanning electron microscope(SEM),metallographic microscope and electron backscatter diffraction(EBSD).The results showed that there was obvious asymmetry between tension and compression,especially that the yield strength of the material in tension was higher than that in compression.The asymmetry in the elastic stage of tension-compression was weaker and the asymmetry in the strengthening stage was stronger with the increase of strain rate.At the same strain rate,the changing trend of the flow stress was distinct under different orientations of tension and compression,which was related to the stress direction of the grains.According to EBSD grain orientation analysis and raw material texture pole figure analysis,it was found that the larger the difference in the degree of grain refinement during tension and compression,the larger the macro-flow stress difference.
文摘An inductively coupled plasma (ICP) discharge and its etching behaviors for aluminum alloys were investigated in this report. A radio frequency power supply was used for plasma generation. The unique hardware configuration enabled one to control ion energy separately from plasma density. Plasma properties were measured with a Langmuir probe. Electron temperature, plasma potential and plasma density were found to be comparable with those reported from Electron Cyclotron Resonance (ECR) and other types of reactors[1].A mixture of HBr and chlorine gases were used for this aluminum etch study. Experimental matrices were designed with Response Surface Methodology (RSM) to analyze the process trends versus etch parameters, such as source power, bias power and gas composition. An etch rate of 8500A to 9000A per minute was obtained at 5 to 15 mTorr pressure ranges. Anisotropic profiles with high photoresist selectivity (5 to 1) and silicon dioxide selectivity greater than 10 were achieved with HBr addition into chlorine plasma.Bromine-containing chemistry for an aluminum etch in a low pressure ICP discharge showed great potential for use in ULSI fabrication. In addition, the hardware used was very simple and the chamber size was much smaller than other high density plasma sources.
文摘The ongoing effort to create methods for detecting and quantifying fatigue damage is motivated by the high levels of uncertainty in present fatigue-life prediction approaches and the frequently catastrophic nature of fatigue failure.The fatigue life of high strength aluminum alloy 2090-T83 is predicted in this study using a variety of artificial intelligence and machine learning techniques for constant amplitude and negative stress ratios(R?1).Artificial neural networks(ANN),adaptive neuro-fuzzy inference systems(ANFIS),support-vector machines(SVM),a random forest model(RF),and an extreme-gradient tree-boosting model(XGB)are trained using numerical and experimental input data obtained from fatigue tests based on a relatively low number of stress measurements.In particular,the coefficients of the traditional force law formula are found using relevant numerical methods.It is shown that,in comparison to traditional approaches,the neural network and neuro-fuzzy models produce better results,with the neural network models trained using the boosting iterations technique providing the best performances.Building strong models from weak models,XGB helps to predict fatigue life by reducing model partiality and variation in supervised learning.Fuzzy neural models can be used to predict the fatigue life of alloys more accurately than neural networks and traditional methods.
文摘Friction stir welding (FSW) has been widely used in many industries, with which high-strength aluminum alloys can be well joined. However, the corrosion resistance of FSW high-strength Al alloy joints is relatively poor, which limits their industrial applications. The joints shall be protected against corrosion. In this review, therefore, the current status and development of corrosion protection for FSW high-strength Al alloy joints are presented. Particular emphasis has been given to different protection methods : lowering heat input, post-weld heat treatment, surface modification and spray coatings. Finally, opportunities are identified for further research and development in corrosion protection of FSW high-strength Al alloy joints.
文摘The microstructure of the thin-walled tubes with high-strength aluminum alloy determines their final forming quality and performance. This type of tube can be manufactured by multi-pass hot power backward spinning process as it can eliminate casting defects, refine microstructure and improve the plasticity of the tube. To analyze the microstructure distribution characteristics of the tube during the spinning process, a 3D coupled thermo-mechanical FE model coupled with the microstructure evolution model of the process was established under the ABAQUS environment. The microstructure evolution characteristics and laws of the tube for the whole spinning process were analyzed. The results show that the dynamic recrystallization is mainly produced in the spinning deformation zone and root area of the tube. In the first pass, the dynamic recrystallization phenomenon is not obvious in the tube. With the pass increasing, the trend of dynamic recrystallization volume percentage gradually increases and extends from the outer surface of the tube to the inner surface. The fine-grained area shows the states of concentration, dispersion, and re-concentration as the pass number increases. .