Low-temperature performance and high-rate discharge capability of AB5-type non-stoichiometric hydrogen storage are studied. X-ray diffraction(XRD),pressure-composition-temperature(PCT) curves and electrochemical imped...Low-temperature performance and high-rate discharge capability of AB5-type non-stoichiometric hydrogen storage are studied. X-ray diffraction(XRD),pressure-composition-temperature(PCT) curves and electrochemical impedance spectroscopy(EIS) are applied to characterize the electrochemical properties of ABx(x=4.8,4.9,5.0,5.1,5.2) alloys. The results show that the non-stoichiometric alloys exhibit better electrochemical properties compared with that of the AB5 alloy.展开更多
Aqueous zinc-ion batteries are regarded as the promising candidates for large-scale energy storage systems owing to low cost and high safety;however,their applications are restricted by their poor low-temperature perf...Aqueous zinc-ion batteries are regarded as the promising candidates for large-scale energy storage systems owing to low cost and high safety;however,their applications are restricted by their poor low-temperature performance.Herein,a low-temperature electrolyte for low-temperature aqueous zinc-ion batteries is designed by introducing low-polarity diglyme into an aqueous solution of Zn(ClO_(4))_(2).The diglyme disrupts the hydrogenbonding network of water and lowers the freezing point of the electrolyte to-105℃.The designed electrolyte achieves ionic conductivity up to16.18 mS cm^(-1)at-45℃.The diglyme and ClO_(4)^(-)reconfigure the solvated structure of Zn^(2+),which is more favorable for the desolvation of Zn^(2+)at low temperatures.In addition,the diglyme effectively suppresses the dendrites,hydrogen evolution reaction,and by-products of the zinc anode,improving the cycle stability of the battery.At-20℃,a Zn‖Zn symmetrical cell is cycled for 5200 h at 1 mA cm^(-2)and 1 mA h cm^(-2),and a Zn‖polyaniline battery achieves an ultra-long cycle life of 10000 times.This study sheds light on the future design of electrolytes with high ionic conductivity and easy desolvation at low temperatures for rechargeable batteries.展开更多
Low cost, high performance supercapacitor electrodes were fabricated using coconut waste as precursor. Simple one step pyrolysis is adopted to get the spherical shaped particle where lignocellulosic nature of carbon c...Low cost, high performance supercapacitor electrodes were fabricated using coconut waste as precursor. Simple one step pyrolysis is adopted to get the spherical shaped particle where lignocellulosic nature of carbon converts into porous carbon nanospheres. Three types of coconut wastes, namely, coconut fiber(CF), coconut leaves(CL) and coconut stick(CS) have been studied and compared for their application in supercapacitors. Uniform spherical shape with particle size ranging from 30 to 60 nm for leaves and sticks and20 nm for fibers was obtained. The electrochemical properties of the porous carbon nanospheres were studied using cyclic voltammetry(CV), chronopotentiometry(CP) and electrochemical impedance spectroscopy(EIS). The porous carbon nanospheres derived from all the three biowaste samples show good electrochemical performance for supercapacitor application. Porous carbon nanospheres derived from coconut fiber exhibited maximum specific capacitance of 236 F/g followed by coconut stick and coconut leaves with 208 and 116 F/g respectively at a scan rate of 2 m V/s. Further impedance studies showed a charge transfer resistance of 4.9 for the porous carbon nanospheres derived from coconut fiber, while those from coconut leaves and coconut stick exhibited a slightly higher resistance of 6 and14.2, respectively. The simple eco-friendly approach we have demonstrated for synthesizing coconut waste based carbon nanospheres makes them excellent candidates for future, low-cost, energy storage devices.展开更多
Thermal expansion is a common phenomenon in both metals and alloys, which is important for metallic material applications in modern industry, especially in nuclear and aerospace industries. A lower thermal expansion c...Thermal expansion is a common phenomenon in both metals and alloys, which is important for metallic material applications in modern industry, especially in nuclear and aerospace industries. A lower thermal expansion coefficient may cause lower thermal stress and higher accuracy. A new Zr-based alloy is developed and presented.The XRD diffraction results demonstrate that only a close-packed hexagonal phase(α or α' phase) exists in the microstructure. The thermal expansion and mechanical properties are studied. According to the experimental results, the new Zr-based alloy presents a low thermal expansion coefficient and good mechanical properties.Also,its thermal expansion coefficient is stable through solution treatment.展开更多
CsPbI_(2)Br perovskite solar cells have achieved rapid development owing to their exceptional optoelectronic properties and relatively outstanding stability.However,open-circuit voltage(Voc)loss caused by band mismatc...CsPbI_(2)Br perovskite solar cells have achieved rapid development owing to their exceptional optoelectronic properties and relatively outstanding stability.However,open-circuit voltage(Voc)loss caused by band mismatch and charge recombination between perovskite and charge transporting layer is one of the crucial obstacles to further improve the device performance.Here,we proposed a bilayer electron transport layer ZnO(bottom)/SnO_(2)(top)to reduce the Voc loss(Eloss)and promote device Voc by ZnO insert layer thickness modulation,which could improve the efficiency of charge carrier extraction/transfer and suppress the charge carrier recombination.In addition,guanidinium iodide top surface treatment is used to further reduce the trap density,stabilize the perovskite film and align the energy levels,which promotes the fill factor,short-circuit current density(Jsc),and stability of the device.As a result,the champion cell of double-side optimized CsPbI_(2)Br perovskite solar cells exhibits an extraordinary efficiency of 16.25%with the best Voc as high as 1.27 V and excellent thermal and storage stability.展开更多
Using a Hamburg wheel-track test device, the resistance to rutting of Gussasphalt is tested and compared. Gussasphalt with hard bitumen has good resistance to rutting. The related resistance abilities to cracking at ...Using a Hamburg wheel-track test device, the resistance to rutting of Gussasphalt is tested and compared. Gussasphalt with hard bitumen has good resistance to rutting. The related resistance abilities to cracking at low temperature of Gussasphalt are tested and compared through flexural experiments and the composite structure fatigue test with temperature dropping. Gussasphalt with high performance polymer modified bitumen has a longer fatigue life and a lower breaking temperature; they can be used in the future surfaces for steel bridge decks in Germany.展开更多
By mixing preheated high-aluminum bronze powders with different amounts of Al_2O_3 powder, a low-pressure cold-sprayed coating was prepared and sprayed onto a Cr12MoV steel substrate. The hardness of the coating and t...By mixing preheated high-aluminum bronze powders with different amounts of Al_2O_3 powder, a low-pressure cold-sprayed coating was prepared and sprayed onto a Cr12MoV steel substrate. The hardness of the coating and the bonding strength between the coating and the substrate were tested with a HV-1000 microhardness tester and a mechanical universal testing machine. The surface microstructure, cross-section and tensile fracture surface of the coating were observed with a scanning electron microscope(SEM). Correspondingly, the influences of the preheat treatment temperature of the bronze powder and the Al_2O_3 content on the coating performance were investigated. The results indicate that the hardness of bronze powders decreased and the coating deposition rate increased after the preheating treatment of the bronze powder. The Al_2O_3 content in the mixed powders contributed to the deformation of bronze powders during the spraying process. This trend resulted in varied performance of the coating.展开更多
For better processing performance of high carbon low alloy steel wire rod,an investigation about the influence of cementite lamellar spacing on wire 'easy drawing' performance is completed.It is pointed out th...For better processing performance of high carbon low alloy steel wire rod,an investigation about the influence of cementite lamellar spacing on wire 'easy drawing' performance is completed.It is pointed out that too thin cementite lamellar spacing(<80 um) reduces the strain hardening level of wire drawing, and reduce the torsion performance of drawn wire at same time.For the wire or wire rod from industrial production,compared with the micro-structure with troostite,the micro-structure with sorbite or sorbite mixed with pearlite is more suitable to the drawing process with high reduction ratio.展开更多
In order to analyze the influence of the addition of yttrium and manganese on the soot combustion performance and high temperature stability of CeO_(2) catalyst,a series of Y/Mn-modified CeO_(2) catalysts were prepare...In order to analyze the influence of the addition of yttrium and manganese on the soot combustion performance and high temperature stability of CeO_(2) catalyst,a series of Y/Mn-modified CeO_(2) catalysts were prepared.The effects of structural properties,textural properties,oxygen vacancies,Ce^(3+),surface adsorbed oxygen species,reduction properties and desorption properties of oxygen species on the activity were analyzed by various characterization methods.The results of the activity test show that the addition of manganese is beneficial to enhancement of the activity,while the addition of yttrium increases the amount of reactive oxygen species,but decreases the activity.After aging at 700℃,the activity of the CeMn catalyst decreases most sharply,while the catalytic activity of the CeY catalyst can be maintained to a certain extent.Interestingly,the addition of yttrium and manganese at the same time can stabilize the activity.The fundamental reason is that yttrium and manganese move to the surface of the solid solution after aging,which increases the reduction performance of the catalyst,thus contributing to the increase of activity.Although the activity of CeYMn catalyst decreases after aging at 800℃,it is still higher than that of other catalysts aged at 700℃.展开更多
Large scale applications of metal-iodine batteries working at sub-zero degree have been challenged by the limited capacity and performance degradation.Herein,we firstly propose a Zn-I_(2)battery working at low tempera...Large scale applications of metal-iodine batteries working at sub-zero degree have been challenged by the limited capacity and performance degradation.Herein,we firstly propose a Zn-I_(2)battery working at low temperature with a carbon composite material/iodine(CCM-I_(2))cathode,a Zn anode and an environmentally tolerable Zn(ClO4)2-ACN electrolyte.The CCM framework with hierarchical porous structure endows a powerful iodine-anchoring to overcome undesirable dissolution of iodine in organic electrolyte,and the Zn(ClO4)2-ACN electrolyte with low freezing point and high ionic conductivity enhances the low temperature performance.The synergies enable an efficiently reversible conversion of Zn-I_(2)battery even at-40℃.Therefore,the resultant Zn-I_(2)battery delivers a high specific capacity of 200 mAh·g^(-1),which is fairly approximate to the theoretical capacity of I_(2)(211 mAh·g^(-1))and a superior cycling stability with minimal capacity fading of 0.00043%per cycle over 7,000 times under 2C at-20℃.Furthermore,even at-40℃,this Zn-I_(2)battery still exhibits a good capacity retention of 68.7%compared to the capacity at 25℃ and a rapid capacity-recover ability with elevating temperature change.Our results distinctly indicate this Zn-I_(2)battery can be 1competent for the practical application under low temperature operation.展开更多
The product system of high strength low alloy steels (HSLA) produced by Wuhan Iron and Steel (Group) Corporation (WISCO) was presented.A series of high performance structural steels have been developed for important c...The product system of high strength low alloy steels (HSLA) produced by Wuhan Iron and Steel (Group) Corporation (WISCO) was presented.A series of high performance structural steels have been developed for important construction projects around the world in different areas,such as bridge,pressure vessel,pipe line,shipbuilding,architecture,machinery and railway wagons.In order to promote the development of large heat input welding steel,high grade thick pipeline steel and long span bridge steel,a lot of advanced production technologies have been achieved through intensive investigation,such as the control of high purity,high homogenization and free defects in steel slabs,the rules of high melting point particle formation and distribution in micro and nano scale during steel production,and the TMCP technology for ultra low carbon bainite steel for medium and heavy plates.WISCO will carry on research and application of economic and weather-resistant steels and promote the developing and producing technologies of HSLA steel.展开更多
Inorganic CsPbI_(2) Br perovskite solar cells(PSCs) have a tremendous development in last few years due to the trade-off between the excellent optoelectronic properties and the relatively outstanding stability.Herein,...Inorganic CsPbI_(2) Br perovskite solar cells(PSCs) have a tremendous development in last few years due to the trade-off between the excellent optoelectronic properties and the relatively outstanding stability.Herein,we demonstrated a strategy of secondary crystallization(SC) for CsPbI_(2) Br film in a facile planar n-i-p structure(ITO/ZnO-SnO_(2)/CsPbI_(2) Br/Spiro-OMeTAD/Ag) at low-temperature(150℃).It is achieved through the method of post-treatment with guanidinium bromine(GABr) atop annealed CsPbI_(2) Br film.It was found that the secondary crystallization by GABr can not only regulate the crystal growth and passivate defects,but also serve as a charge collection center to effectively collect photogenerated carriers.In addition,due to the excess Br ions in GABr,the formation of the Br-rich region at the CsPbI_(2) Br perovskite surface can further lower the Fermi level,leading to more beneficial band alignment between the perovskite and the hole transport layer(HTL),while the phase stability was also improved.As a result,the champion cell shows a superb open-circuit voltage(V_(oc)) of 1.31 V,a satisfactory power conversion efficiency(PCE) of 16.97% and outstanding stabilities.As far as we know,this should be one of the highest PCEs reported among all-inorganic CsPbI_(2) Br based PSCs.展开更多
In this paper, a laboratory study has been made to develop low cost high performance steel plates with superior HAZ toughness for large heat input welding. Simulated results show that the absorbed impact energy of hea...In this paper, a laboratory study has been made to develop low cost high performance steel plates with superior HAZ toughness for large heat input welding. Simulated results show that the absorbed impact energy of heat-affected zone (HAZ) at -20℃reaches above 200J when large heat inputs of 100 to 400kJ/cm were applied, suggestive of superior HAZ toughness for large heat input welding of developed steel plate. The microstructures in HAZ are transformed from mainly fine ferrite and bainite at 100kJ/cm, through an intermediate stage of ferrite, bainite and pearlite at 200 and 300kJ/cm, to nearly fine ferrite and pearlite at 400kJ/cm. The prior austenite grain size and ferrite grain size in HAZ are controlled to ~50 and ~20μm, respectively. The high HAZ toughness is due to the inhibition of prior austenite grain size at high temperatures and the formation of beneficial microstructures to HAZ toughness during continuous cooling.展开更多
A control system used in high performance liquid chromatograph(HPLC) was described.The control system adopting low pressure gradient elution was tested with different initial and end volume fractions,and four types of...A control system used in high performance liquid chromatograph(HPLC) was described.The control system adopting low pressure gradient elution was tested with different initial and end volume fractions,and four types of gradient elution curves.The experimental results verified the theoretical analyses of the applied method.This self-designed control system can achieve approving accuracy,repeatability and low cost,which has a bright outlook for domestic applications.展开更多
Incoherent optical processing of microwave signals,where low-coherence broadband light sources are employed instead of costly mode locked lasers,has attracted great interest thanks to its wide applications in microwav...Incoherent optical processing of microwave signals,where low-coherence broadband light sources are employed instead of costly mode locked lasers,has attracted great interest thanks to its wide applications in microwave photonics filtering[1–3],arbitrary generation[4–6]and analog to digital conversion[7]。展开更多
The low molecular weight thiols present in the deproteinized extract of a prostate cancer cell line (LNCaP-FGC) were analysed after derivatization with the Ellman reagent (ESSE). The mixed disulphides formed (RSSE) we...The low molecular weight thiols present in the deproteinized extract of a prostate cancer cell line (LNCaP-FGC) were analysed after derivatization with the Ellman reagent (ESSE). The mixed disulphides formed (RSSE) were fractionated, characterized and quantified by liquid chromatography on a C-18 column using UV detection. This revealed the presence, in femtomoles per cell, of glutathione (8.30 ± 0.73), cysteine (2.71 ± 0.04) and cysteinylglycine (0.83 ± 0.10), accounting for the bulk of the thiol present. Further analysis of the cell extracts using a novel and sensitive mass spectrometry technique allowed the detection of low level of an additional derivative which was identified as cysteinylglycerate using NMRspectroscopy.展开更多
基金Project(2006AA11A151) supported by the National Hi-Tech Research and Development Program of China
文摘Low-temperature performance and high-rate discharge capability of AB5-type non-stoichiometric hydrogen storage are studied. X-ray diffraction(XRD),pressure-composition-temperature(PCT) curves and electrochemical impedance spectroscopy(EIS) are applied to characterize the electrochemical properties of ABx(x=4.8,4.9,5.0,5.1,5.2) alloys. The results show that the non-stoichiometric alloys exhibit better electrochemical properties compared with that of the AB5 alloy.
文摘Aqueous zinc-ion batteries are regarded as the promising candidates for large-scale energy storage systems owing to low cost and high safety;however,their applications are restricted by their poor low-temperature performance.Herein,a low-temperature electrolyte for low-temperature aqueous zinc-ion batteries is designed by introducing low-polarity diglyme into an aqueous solution of Zn(ClO_(4))_(2).The diglyme disrupts the hydrogenbonding network of water and lowers the freezing point of the electrolyte to-105℃.The designed electrolyte achieves ionic conductivity up to16.18 mS cm^(-1)at-45℃.The diglyme and ClO_(4)^(-)reconfigure the solvated structure of Zn^(2+),which is more favorable for the desolvation of Zn^(2+)at low temperatures.In addition,the diglyme effectively suppresses the dendrites,hydrogen evolution reaction,and by-products of the zinc anode,improving the cycle stability of the battery.At-20℃,a Zn‖Zn symmetrical cell is cycled for 5200 h at 1 mA cm^(-2)and 1 mA h cm^(-2),and a Zn‖polyaniline battery achieves an ultra-long cycle life of 10000 times.This study sheds light on the future design of electrolytes with high ionic conductivity and easy desolvation at low temperatures for rechargeable batteries.
文摘Low cost, high performance supercapacitor electrodes were fabricated using coconut waste as precursor. Simple one step pyrolysis is adopted to get the spherical shaped particle where lignocellulosic nature of carbon converts into porous carbon nanospheres. Three types of coconut wastes, namely, coconut fiber(CF), coconut leaves(CL) and coconut stick(CS) have been studied and compared for their application in supercapacitors. Uniform spherical shape with particle size ranging from 30 to 60 nm for leaves and sticks and20 nm for fibers was obtained. The electrochemical properties of the porous carbon nanospheres were studied using cyclic voltammetry(CV), chronopotentiometry(CP) and electrochemical impedance spectroscopy(EIS). The porous carbon nanospheres derived from all the three biowaste samples show good electrochemical performance for supercapacitor application. Porous carbon nanospheres derived from coconut fiber exhibited maximum specific capacitance of 236 F/g followed by coconut stick and coconut leaves with 208 and 116 F/g respectively at a scan rate of 2 m V/s. Further impedance studies showed a charge transfer resistance of 4.9 for the porous carbon nanospheres derived from coconut fiber, while those from coconut leaves and coconut stick exhibited a slightly higher resistance of 6 and14.2, respectively. The simple eco-friendly approach we have demonstrated for synthesizing coconut waste based carbon nanospheres makes them excellent candidates for future, low-cost, energy storage devices.
基金Supported by the Postdoctoral Science Foundation of Hebei Province under Grant No B2017003008the National Natural Science Foundation of China under Grant Nos 51531005,51671166,51571174 and 51604241the Natural Science Foundation of Hebei Province under Grant No E2016203395
文摘Thermal expansion is a common phenomenon in both metals and alloys, which is important for metallic material applications in modern industry, especially in nuclear and aerospace industries. A lower thermal expansion coefficient may cause lower thermal stress and higher accuracy. A new Zr-based alloy is developed and presented.The XRD diffraction results demonstrate that only a close-packed hexagonal phase(α or α' phase) exists in the microstructure. The thermal expansion and mechanical properties are studied. According to the experimental results, the new Zr-based alloy presents a low thermal expansion coefficient and good mechanical properties.Also,its thermal expansion coefficient is stable through solution treatment.
基金supported by National Natural Science Foundation of China(61704131 and 61804111)National Key Research and Development Program of China(Grant 2018YFB2202900)+2 种基金Key Research and Development Program of Shaanxi Province(Grant 2020GY-310)the Joint Research Funds of Department of Science&Technology of Shaanxi Province and Northwestern Polytechnical University(2020GXLH-Z-018)the Fundamental Research Funds for the Central Universities and the Innovation Fund of Xidian University.
文摘CsPbI_(2)Br perovskite solar cells have achieved rapid development owing to their exceptional optoelectronic properties and relatively outstanding stability.However,open-circuit voltage(Voc)loss caused by band mismatch and charge recombination between perovskite and charge transporting layer is one of the crucial obstacles to further improve the device performance.Here,we proposed a bilayer electron transport layer ZnO(bottom)/SnO_(2)(top)to reduce the Voc loss(Eloss)and promote device Voc by ZnO insert layer thickness modulation,which could improve the efficiency of charge carrier extraction/transfer and suppress the charge carrier recombination.In addition,guanidinium iodide top surface treatment is used to further reduce the trap density,stabilize the perovskite film and align the energy levels,which promotes the fill factor,short-circuit current density(Jsc),and stability of the device.As a result,the champion cell of double-side optimized CsPbI_(2)Br perovskite solar cells exhibits an extraordinary efficiency of 16.25%with the best Voc as high as 1.27 V and excellent thermal and storage stability.
文摘Using a Hamburg wheel-track test device, the resistance to rutting of Gussasphalt is tested and compared. Gussasphalt with hard bitumen has good resistance to rutting. The related resistance abilities to cracking at low temperature of Gussasphalt are tested and compared through flexural experiments and the composite structure fatigue test with temperature dropping. Gussasphalt with high performance polymer modified bitumen has a longer fatigue life and a lower breaking temperature; they can be used in the future surfaces for steel bridge decks in Germany.
基金financially supported by the National Key Research and Development Program of China(No.2016YFE0111400)the Program on Key Research Project of Gansu Province(No.17YF1WA159)the National High-end Foreign Experts Program of China(No.GTD20156200088)
文摘By mixing preheated high-aluminum bronze powders with different amounts of Al_2O_3 powder, a low-pressure cold-sprayed coating was prepared and sprayed onto a Cr12MoV steel substrate. The hardness of the coating and the bonding strength between the coating and the substrate were tested with a HV-1000 microhardness tester and a mechanical universal testing machine. The surface microstructure, cross-section and tensile fracture surface of the coating were observed with a scanning electron microscope(SEM). Correspondingly, the influences of the preheat treatment temperature of the bronze powder and the Al_2O_3 content on the coating performance were investigated. The results indicate that the hardness of bronze powders decreased and the coating deposition rate increased after the preheating treatment of the bronze powder. The Al_2O_3 content in the mixed powders contributed to the deformation of bronze powders during the spraying process. This trend resulted in varied performance of the coating.
文摘For better processing performance of high carbon low alloy steel wire rod,an investigation about the influence of cementite lamellar spacing on wire 'easy drawing' performance is completed.It is pointed out that too thin cementite lamellar spacing(<80 um) reduces the strain hardening level of wire drawing, and reduce the torsion performance of drawn wire at same time.For the wire or wire rod from industrial production,compared with the micro-structure with troostite,the micro-structure with sorbite or sorbite mixed with pearlite is more suitable to the drawing process with high reduction ratio.
基金Project supported by the National Natural Science Foundation of China(21962021)the Yunnan Fundamental Research Projects(202001AU070121)+1 种基金the National Natural Science Foundation of China(51908091)the Special Basic Cooperative Research Programs of Yunnan Provincial Undergraduate Universities'Association(202101BA070001-084)。
文摘In order to analyze the influence of the addition of yttrium and manganese on the soot combustion performance and high temperature stability of CeO_(2) catalyst,a series of Y/Mn-modified CeO_(2) catalysts were prepared.The effects of structural properties,textural properties,oxygen vacancies,Ce^(3+),surface adsorbed oxygen species,reduction properties and desorption properties of oxygen species on the activity were analyzed by various characterization methods.The results of the activity test show that the addition of manganese is beneficial to enhancement of the activity,while the addition of yttrium increases the amount of reactive oxygen species,but decreases the activity.After aging at 700℃,the activity of the CeMn catalyst decreases most sharply,while the catalytic activity of the CeY catalyst can be maintained to a certain extent.Interestingly,the addition of yttrium and manganese at the same time can stabilize the activity.The fundamental reason is that yttrium and manganese move to the surface of the solid solution after aging,which increases the reduction performance of the catalyst,thus contributing to the increase of activity.Although the activity of CeYMn catalyst decreases after aging at 800℃,it is still higher than that of other catalysts aged at 700℃.
基金This work was financially supported by the National Key R&D Program of China(No.2017YFA0700104)the Tianjin Natural Science Foundation of China(No.20JCZDJC00280)the National Natural Science Foundation of China(No.U1804255).
文摘Large scale applications of metal-iodine batteries working at sub-zero degree have been challenged by the limited capacity and performance degradation.Herein,we firstly propose a Zn-I_(2)battery working at low temperature with a carbon composite material/iodine(CCM-I_(2))cathode,a Zn anode and an environmentally tolerable Zn(ClO4)2-ACN electrolyte.The CCM framework with hierarchical porous structure endows a powerful iodine-anchoring to overcome undesirable dissolution of iodine in organic electrolyte,and the Zn(ClO4)2-ACN electrolyte with low freezing point and high ionic conductivity enhances the low temperature performance.The synergies enable an efficiently reversible conversion of Zn-I_(2)battery even at-40℃.Therefore,the resultant Zn-I_(2)battery delivers a high specific capacity of 200 mAh·g^(-1),which is fairly approximate to the theoretical capacity of I_(2)(211 mAh·g^(-1))and a superior cycling stability with minimal capacity fading of 0.00043%per cycle over 7,000 times under 2C at-20℃.Furthermore,even at-40℃,this Zn-I_(2)battery still exhibits a good capacity retention of 68.7%compared to the capacity at 25℃ and a rapid capacity-recover ability with elevating temperature change.Our results distinctly indicate this Zn-I_(2)battery can be 1competent for the practical application under low temperature operation.
文摘The product system of high strength low alloy steels (HSLA) produced by Wuhan Iron and Steel (Group) Corporation (WISCO) was presented.A series of high performance structural steels have been developed for important construction projects around the world in different areas,such as bridge,pressure vessel,pipe line,shipbuilding,architecture,machinery and railway wagons.In order to promote the development of large heat input welding steel,high grade thick pipeline steel and long span bridge steel,a lot of advanced production technologies have been achieved through intensive investigation,such as the control of high purity,high homogenization and free defects in steel slabs,the rules of high melting point particle formation and distribution in micro and nano scale during steel production,and the TMCP technology for ultra low carbon bainite steel for medium and heavy plates.WISCO will carry on research and application of economic and weather-resistant steels and promote the developing and producing technologies of HSLA steel.
基金financially supported by the National Natural Science Foundation of China (61704131,61804111)the National Key Research and Development Program of China (Grant2018YFB2202900)+3 种基金the Key Research and Development Program of Shaanxi Province (Grant 2020GY-310)the Joint Research Funds of Department of Science & Technology of Shaanxi Province and Northwestern Polytechnical University (2020GXLH-Z-018)the Fundamental Research Funds for the Central Universitiesthe Innovation Fund of Xidian University。
文摘Inorganic CsPbI_(2) Br perovskite solar cells(PSCs) have a tremendous development in last few years due to the trade-off between the excellent optoelectronic properties and the relatively outstanding stability.Herein,we demonstrated a strategy of secondary crystallization(SC) for CsPbI_(2) Br film in a facile planar n-i-p structure(ITO/ZnO-SnO_(2)/CsPbI_(2) Br/Spiro-OMeTAD/Ag) at low-temperature(150℃).It is achieved through the method of post-treatment with guanidinium bromine(GABr) atop annealed CsPbI_(2) Br film.It was found that the secondary crystallization by GABr can not only regulate the crystal growth and passivate defects,but also serve as a charge collection center to effectively collect photogenerated carriers.In addition,due to the excess Br ions in GABr,the formation of the Br-rich region at the CsPbI_(2) Br perovskite surface can further lower the Fermi level,leading to more beneficial band alignment between the perovskite and the hole transport layer(HTL),while the phase stability was also improved.As a result,the champion cell shows a superb open-circuit voltage(V_(oc)) of 1.31 V,a satisfactory power conversion efficiency(PCE) of 16.97% and outstanding stabilities.As far as we know,this should be one of the highest PCEs reported among all-inorganic CsPbI_(2) Br based PSCs.
文摘In this paper, a laboratory study has been made to develop low cost high performance steel plates with superior HAZ toughness for large heat input welding. Simulated results show that the absorbed impact energy of heat-affected zone (HAZ) at -20℃reaches above 200J when large heat inputs of 100 to 400kJ/cm were applied, suggestive of superior HAZ toughness for large heat input welding of developed steel plate. The microstructures in HAZ are transformed from mainly fine ferrite and bainite at 100kJ/cm, through an intermediate stage of ferrite, bainite and pearlite at 200 and 300kJ/cm, to nearly fine ferrite and pearlite at 400kJ/cm. The prior austenite grain size and ferrite grain size in HAZ are controlled to ~50 and ~20μm, respectively. The high HAZ toughness is due to the inhibition of prior austenite grain size at high temperatures and the formation of beneficial microstructures to HAZ toughness during continuous cooling.
基金the National High Technology Research and Development Program (863) of China(No. 2009AA04Z326)the National Natural Science Foundation of China (Nos. 60671059, 60871091 and60588101)+1 种基金the National Basic Research Program (973) of China (Nos. 2005CB724302 and 2005CB724303)the 111 Project from the Ministry of Education of China(No. B08020)
文摘A control system used in high performance liquid chromatograph(HPLC) was described.The control system adopting low pressure gradient elution was tested with different initial and end volume fractions,and four types of gradient elution curves.The experimental results verified the theoretical analyses of the applied method.This self-designed control system can achieve approving accuracy,repeatability and low cost,which has a bright outlook for domestic applications.
文摘Incoherent optical processing of microwave signals,where low-coherence broadband light sources are employed instead of costly mode locked lasers,has attracted great interest thanks to its wide applications in microwave photonics filtering[1–3],arbitrary generation[4–6]and analog to digital conversion[7]。
文摘The low molecular weight thiols present in the deproteinized extract of a prostate cancer cell line (LNCaP-FGC) were analysed after derivatization with the Ellman reagent (ESSE). The mixed disulphides formed (RSSE) were fractionated, characterized and quantified by liquid chromatography on a C-18 column using UV detection. This revealed the presence, in femtomoles per cell, of glutathione (8.30 ± 0.73), cysteine (2.71 ± 0.04) and cysteinylglycine (0.83 ± 0.10), accounting for the bulk of the thiol present. Further analysis of the cell extracts using a novel and sensitive mass spectrometry technique allowed the detection of low level of an additional derivative which was identified as cysteinylglycerate using NMRspectroscopy.