期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
ASYMMETRIC VORTICES FLOW OVER SLENDER BODY AND ITS ACTIVE CONTROL AT HIGH ANGLE OF ATTACK 被引量:16
1
作者 邓学蓥 王延奎 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2004年第6期567-579,共13页
The studies of asymmetric vortices flow over slender body and its active control at high angles of attack have significant importance for both academic field and engineering area.This paper attempts to provide an upda... The studies of asymmetric vortices flow over slender body and its active control at high angles of attack have significant importance for both academic field and engineering area.This paper attempts to provide an update state of art to the investigations on the fields of forebody asymmetric vortices.This review emphasizes the correlation between micro-perturbation on the model nose and its response and evolution behaviors of the asymmetric vortices.The critical issues are discussed, which include the formation and evolution mechanism of asymmetric multi-vortices;main behaviors of asymmetric vortices flow including its deterministic feature and vortices flow structure;the evolution and development of asymmetric vortices under the perturbation on the model nose;forebody vortex active control especially discussed micro-perturbation active control concept and technique in more detail.However present understanding in this area is still very limited and this paper tries to identify the key unknown problems in the concluding remarks. 展开更多
关键词 asymmetric vortex flow control high angle of attack aerodynamics slender body
下载PDF
INFLUENCE OF NOSE PERTURBATIONS ON BEHAVIORS OF ASYMMETRIC VORTICES OVER SLENDER BODY 被引量:22
2
作者 陈学锐 邓学鉴 +2 位作者 王延奎 刘沛清 顾志福 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2002年第6期581-593,共13页
The influence of nose perturbations on the behaviors of asymmetric vortices over a slender body with a three-caliber ogive nose is studied in this paper. The tests of a nose-disturbed slender body with surface pressur... The influence of nose perturbations on the behaviors of asymmetric vortices over a slender body with a three-caliber ogive nose is studied in this paper. The tests of a nose-disturbed slender body with surface pressure measurement were conducted at a low speed wind tunnel with subcritical Reynolds number of 1×105 at angle of attack α=50°. The experiment results show that the behaviors and structure of asymmetric vortices over the slender body are mainly controlled by manual perturbation on the nose of body as compared with geometrical minute irregularities on the test model from the machining tolerances. The effect of the perturbation axial location on asymmetric vortices is the strongest if its location is near the model apex. There are four sensitive circumferential locations of manual perturbation at which bistable vortices over the slender body are switched by the perturbation. The flowfield near the reattachment line of lee side is more sensitive to the perturbation, because the saddle point to saddle point topological structure in this reattachment flowfield is unstable. Various types of perturbation do not change the perturbation effect on the behaviors of bistable asymmetric vortices. 展开更多
关键词 asymmetric vortex slender body of revolution bistable flow high angle of attack aerodynamics
下载PDF
Recent progress on the study of asymmetric vortex flow over slender bodies 被引量:10
3
作者 X.Y.Deng W.Tian +1 位作者 B.F.Ma Y.K.Wang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2008年第5期475-487,共13页
The investigations of forebody vortex flow and its flow control have great importance in both academic field and engineering application areas. A large number of papers and many review papers have been published. Howe... The investigations of forebody vortex flow and its flow control have great importance in both academic field and engineering application areas. A large number of papers and many review papers have been published. However in this research field of forebody asymmetric vortices, three problems such as tip perturbation effect, Reynolds number effect and flow instability are less studied and thus not understood completely. So many researches are still working on the issues in recent years. The present paper attempts to provide a review of recent research progress on first two problems. The first problem is mainly concerned with how the vortex flow evolves after tip perturbation; how to solve the problem of repeatability and reproducibility of wind tunnel testing data; how to develop a conception of active flow control technique with tip perturbation based on the study of vortex flow response to tip perturbation. For the second problem one is mainly concerned that how the asymmetric vortices are developed with the increase of Reynolds number; how to classify the vortex flow patterns in different Reynolds number regimes; how to develop an appropriate boundary layer transition technique to simulate flows at high Reynolds number in the convention wind tunnels. Finally, some important ques- tions that deserve answers are proposed in the concluding remarks. 展开更多
关键词 high angle of attack aerodynamics Asymmetric vortex Tip perturbation Slender body Reynolds number effect
下载PDF
Effects of tip perturbation and wing locations on rolling oscillation induced by forebody vortices 被引量:8
4
作者 Bing Wang Xue-Ying Deng Bao-Feng Ma Zhen Rong 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2010年第5期787-791,共5页
The wing rock motion is frequently suffered by a wing-body configuration with low swept wing at high angle of attack. It is found from our experimental study that the tip perturbation and wing longitudinal locations a... The wing rock motion is frequently suffered by a wing-body configuration with low swept wing at high angle of attack. It is found from our experimental study that the tip perturbation and wing longitudinal locations affect significantly the wing rock motion of a wing-body. The natural tip perturbation would make the wing rock motion of a nondeterministic nature and an artificial mini-tip perturbation would make the wing rock motion deterministic. The artificial tip perturbation would, as its circumferential location is varied, generate three different types of motion patterns: (1) limit cycle oscillation, (2) irregular oscillation, (3) equilibrium state with tiny oscillation. The amplitude of rolling oscillation corresponding to the limit cycle oscillatory motion pattern is decreased with the wing location shifting downstream along the body axis. 展开更多
关键词 Wing rock motion- Asymmetric vortices flow high angle of attack aerodynamics Nose tip perturbation
下载PDF
Mechanism of perturbation-combined active control technique for asymmetric vortex flow over slender body at high angle of attack 被引量:1
5
作者 WANG YanKui SHAN JiXiang +3 位作者 TIAN Wei DENG XueYing DONG JinGang TIAN Xiao 《Science China(Technological Sciences)》 SCIE EI CAS 2011年第10期2665-2673,共9页
Based on the determinability of asymmetric vortices flow over slender body under changeless round grain at high angle of attack,the effect of microblowing set in special position on the behaviors of asymmetric flow is... Based on the determinability of asymmetric vortices flow over slender body under changeless round grain at high angle of attack,the effect of microblowing set in special position on the behaviors of asymmetric flow is discussed in this paper,including blowing momentum and circumferential locations of the microblowing hole of 0.5 mm in diameter on nose tip.A new kind of active control technique,named perturbation-combined active control technique,which combines the micro-grain and micro-blowing perturbation,was proposed on the basis of the above.This control technique can not only change the sign of side force of slender body arbitrarily through changing the vortices positions between yaw-left and yaw-right configuration,but also can make the magnitude of side force variable gradually even at bistable state of asymmetric vortex.Finally,the interferential mechanism of the perturbation-combined active control technique has also been concluded from this paper.The tests have been conducted at low speed wind tunnel with subcritical Reynolds number of 1.05×10~5 at angle of attack α=50° in Beihang University,Beijing,China. 展开更多
关键词 asymmetric vortex perturbation-combined active flow control high angle of attack aerodynamics slender body
原文传递
Unsteady aerodynamics modeling for flight dynamics application 被引量:13
6
作者 Qing Wang Kai-Feng He. +3 位作者 Wei-Qi Qian Tian-Jiao Zhang Yan-Qing Cheng Kai-Yuan Wu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第1期14-23,共10页
In view of engineering application, it is practicable to decompose the aerodynamics into three components: the static aerodynamics, the aerodynamic increment due to steady rotations, and the aerodynamic increment due... In view of engineering application, it is practicable to decompose the aerodynamics into three components: the static aerodynamics, the aerodynamic increment due to steady rotations, and the aerodynamic increment due to unsteady separated and vortical flow. The first and the second components can be presented in conventional forms, while the third is described using a one-order differential equation and a radial-basis-function (RBF) network. For an aircraft configuration, the mathematical models of 6- component aerodynamic coefficients are set up from the wind tunnel test data of pitch, yaw, roll, and coupled yawroll large-amplitude oscillations. The flight dynamics of an aircraft is studied by the bifurcation analysis technique in the case of quasi-steady aerodynamics and unsteady aerodynam- ics, respectively. The results show that: (1) unsteady aerodynamics has no effect upon the existence of trim points, but affects their stability; (2) unsteady aerodynamics has great effects upon the existence, stability, and amplitudes of periodic solutions; and (3) unsteady aerodynamics changes the stable regions of trim points obviously. Furthermore, the dynamic responses of the aircraft to elevator deflections are inspected. It is shown that the unsteady aerodynamics is beneficial to dynamic stability for the present aircraft. Finally, the effects of unsteady aerodynamics on the post-stall maneuverability 展开更多
关键词 Unsteady aerodynamics high angle of attack Mathematical model Flight dynamics - Bifurcation analysis Post-stall maneuver
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部