期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Stability and reinforcement analyses of high arch dams by considering deformation effects 被引量:1
1
作者 Qiang Yang Yaoru Liu +1 位作者 Yingru Chen Weiyuan Zhou 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2010年第4期305-313,共9页
The strict definition and logical description of the concept of structure stability and failure are presented. The criterion of structure stability is developed based on plastic complementary energy and its variation.... The strict definition and logical description of the concept of structure stability and failure are presented. The criterion of structure stability is developed based on plastic complementary energy and its variation. It is presented that the principle of minimum plastic complementary energy is the combination of structure equilibrium, coordination condition of deformation and constitutive relationship. Based on the above arguments, the deformation reinforcement theory is developed. The structure global stability can be described by the relationship between the global degree of safety of structure and the plastic complementary energy. Correspondingly, the new idea is used in the evaluations of global stability, anchorage force of dam-toe, fracture of dam-heel and treatment of faults of high arch dams in China. The results show that the deformation reinforcement theory provides a uniform and practical theoretical framework and a valuable solution for the analysis of global stability, dam-heel cracking, dam-toe anchorage and reinforcement of faults of high arch dams and their foundations. 展开更多
关键词 deformation reinforcement theory structure stability unbalanced force plastic complementary energy high arch dams
下载PDF
Automatic modal parameter identification of high arch dams:feasibility verification 被引量:5
2
作者 Li Shuai Pan Jianwen +1 位作者 Luo Guangheng Wang Jinting 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2020年第4期953-965,共13页
Modal parameters, including fundamental frequencies, damping ratios, and mode shapes, could be used to evaluate the health condition of structures. Automatic modal parameter identification, which plays an essential ro... Modal parameters, including fundamental frequencies, damping ratios, and mode shapes, could be used to evaluate the health condition of structures. Automatic modal parameter identification, which plays an essential role in realtime structural health monitoring, has become a popular topic in recent years. In this study, an automatic modal parameter identification procedure for high arch dams is proposed. The proposed procedure is implemented by combining the densitybased spatial clustering of applications with noise(DBSCAN) algorithm and the stochastic subspace identification(SSI). The 210-m-high Dagangshan Dam is investigated as an example to verify the feasibility of the procedure. The results show that the DBSCAN algorithm is robust enough to interpret the stabilization diagram from SSI and may avoid outline modes. This leads to the proposed procedure obtaining a better performance than the partitioned clustering and hierarchical clustering algorithms. In addition, the errors of the identified frequencies of the arch dam are within 4%, and the identified mode shapes are in agreement with those obtained from the finite element model, which implies that the proposed procedure is accurate enough to use in modal parameter identification. The procedure is feasible for online modal parameter identification and modal tracking of arch dams. 展开更多
关键词 automatic modal parameter identification high arch dam DBSCAN algorithm stochastic subspace identification stabilization diagram ambient vibration
下载PDF
Parallel computation of seismic analysis of high arch dam 被引量:6
3
作者 陈厚群 马怀发 +2 位作者 涂劲 成广庆 唐菊珍 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2008年第1期1-11,共11页
Parallel computation programs are developed for three-dimensional meso-mechanics analysis of fully-graded dam concrete and seismic response analysis of high arch dams (ADs), based on the Parallel Finite Element Prog... Parallel computation programs are developed for three-dimensional meso-mechanics analysis of fully-graded dam concrete and seismic response analysis of high arch dams (ADs), based on the Parallel Finite Element Program Generator (PFEPG). The computational algorithms of the numerical simulation of the meso-structure of concrete specimens were studied. Taking into account damage evolution, static preload, strain rate effect, and the heterogeneity of the meso-structure of dam concrete, the fracture processes of damage evolution and configuration of the cracks can be directly simulated. In the seismic response analysis of ADs, all the following factors are involved, such as the nonlinear contact due to the opening and slipping of the contraction joints, energy dispersion of the far-field foundation, dynamic interactions of the dam-foundation- reservoir system, and the combining effects of seismic action with all static loads. The correctness, reliability and efficiency of the two parallel computational programs are verified with practical illustrations. 展开更多
关键词 high arch dam contraction joints random aggregate model nonlinear seismic response parallelcomputation
下载PDF
Construction Simulation and Real-Time Control for High Arch Dam 被引量:5
4
作者 钟登华 任炳昱 吴康新 《Transactions of Tianjin University》 EI CAS 2008年第4期248-253,共6页
A method of combining dynamic simulation with real-time control was proposed to fit the randomness and uncertainty in the high arch dam construction process. The mathematical logic model of high arch dam construction ... A method of combining dynamic simulation with real-time control was proposed to fit the randomness and uncertainty in the high arch dam construction process. The mathematical logic model of high arch dam construction process was established. By combining dynamic construction simulation with schedule analysis, the process of construction schedule forecasting and analysis based on dynamic simulation was studied. The process of real-time schedule control was constructed and some measures for dynamic adjustment and control of construction schedule were provided. A system developed with the method is utilized in a being constructed hydroelectric project located at the Yellow River in northwest China, which can make the pouring plan of the dam in the next stage (a month, quarter or year) to guide the practical construction. The application result shows that the system provides an effective technical support for the construction and management of the dam. 展开更多
关键词 high arch dam construction dynamic simulation schedule forecasting real-time control
下载PDF
Analysis of seismic disaster failure mechanism and dam-break simulation of high arch dam 被引量:2
5
作者 Zhang Jingkui Zhang Liaojun 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2014年第2期327-335,共9页
Based on a Chinese national high arch dam located in a meizoseismal region, a nonlinear numerical analysis model of the damage and failure process of a dam-foundation system is established by employing a 3-D deformabl... Based on a Chinese national high arch dam located in a meizoseismal region, a nonlinear numerical analysis model of the damage and failure process of a dam-foundation system is established by employing a 3-D deformable distinct element code(3DEC) and its re-development functions. The proposed analysis model considers the dam-foundation-reservoir coupling effect, infl uence of nonlinear contact in the opening and closing of the dam seam surface and abutment rock joints during strong earthquakes, and radiation damping of far fi eld energy dissipation according to the actual workability state of an arch dam. A safety assessment method and safety evaluation criteria is developed to better understand the arch dam system disaster process from local damage to ultimate failure. The dynamic characteristics, disaster mechanism, limit bearing capacity and the entire failure process of a high arch dam under a strong earthquake are then analyzed. Further, the seismic safety of the arch dam is evaluated according to the proposed evaluation criteria and safety assessment method. As a result, some useful conclusions are obtained for some aspects of the disaster mechanism and failure process of an arch dam. The analysis method and conclusions may be useful in engineering practice. 展开更多
关键词 high arch dam complex foundation 3DEC disaster mechanism dam-break process simulation seismic safety evaluation
下载PDF
Key technologies for the construction of the Xiluodu high arch dam on the Jinsha River in the development of hydropower in western China 被引量:3
6
作者 Lu Youmei Fan Qixiang Zhou Shaowu Li Bingfeng Li Wenwei 《Engineering Sciences》 EI 2012年第2期16-28,共13页
Hydropower development in China is concentrated in the country's western regions.Among all the rivers in China,the lower course of the Jinsha River contains the richest hydro-energy resource,and therefore,4 mammot... Hydropower development in China is concentrated in the country's western regions.Among all the rivers in China,the lower course of the Jinsha River contains the richest hydro-energy resource,and therefore,4 mammoth hydropower plants are under construction on this particular section of the river at Wudongde,Baihetan,Xiluodu,and Xiangjiaba.The water-blocking structures of the hydropower facilities at Wudongde,Baihetan and Xiluodu are all arch dams of around 300 m high.In view of changes in the geological conditions at the foundation of the Xiluodu dam on the riverbed after excavation started,the designs of expanding foundation surface excavation and dovetailing the dam body and foundation rock on both upstream and downstream sides were introduced,allowing the arch dam and foundation to fit each other and improving the stress conditions of the dam body and foundation.By dividing the dam body into various concrete sections,the dynamic properties of concrete were adequately adjusted to the distribution of stress in the dam body.In addition,the use of the most optimal concrete material and mixture ratio allowed thermodynamics of concrete to satisfy the requirements of the strength,durability,temperature control and crack prevention of the concrete.Moreover,rigorous temperature control measures were introduced to prevent harmful cracking,thus enhancing the integrity of the arch dam.Furthermore,sophisticated construction machinery,scientific testing methods,and sound construction techniques were employed to ensure the uniformity and reliability of concrete placement.The "Digital Dam" for the Xiluodu project,which is based on the theory of total life cycle,has supplied strong support for construction process control and decision-making. 展开更多
关键词 high arch dam key technologies Xiluodu hydropower development
下载PDF
Crucial technologies in the design of Xiluodu Super High Arch Dam 被引量:3
7
作者 Wang Renkun 《Engineering Sciences》 EI 2012年第2期35-44,55,共11页
Some super high arch dams ( SHADs), like Xiluodu Arch Dam, after their heights reaching the magnitude of 300 m, confront lots of technical challenges in design and construction. Several crucial technologies of 6 SHA... Some super high arch dams ( SHADs), like Xiluodu Arch Dam, after their heights reaching the magnitude of 300 m, confront lots of technical challenges in design and construction. Several crucial technologies of 6 SHADs will be reviewed and discussed in this and consecutive papers, including Xiluodu, Jinping I in China, Baktiary in Iran, ete. , on the topics of the research method, criterion for evaluation and engineering application of dam safety analysis and evaluation, reasonable dam base interface, dam shape optimization, comprehensive treatments of complex foundation, anti-seismic engineering, dam construction material, concrete placement and temperature control, instrumentation and monitoring of dam operation, etc. This paper will mainly focus on the overall safety of SHADs, reasonable dam base interface analysis and evaluation and their engineering application. 展开更多
关键词 overall safety reasonable dam base interface super high arch dam
下载PDF
FLOOD DISCHARGE AND ENERGY DISSIPATION BY JETS FROM OUTLETS IN HIGH ARCH DAM 被引量:39
8
作者 Ph.D.Candidate:Sun JianXi’an University of Technolgy, Xi’an 710048, ChinaSupervisor:Yu Changzhao (Tsinghua University, Beijing 100084, China)Li Yuzhu (Tsinghua University, Beijing 100084, China)Chen Changzhi (Tsinghua University, Beijing 100084, China)Members of Dissertation Defense Committee:Gao Jizhang (China Institute of Water Resources and Hydropower Research), ChairmanLi Guifen (China Institute of Water Resources and Hydropower Research)Cui Guangtao (Tianjing University)Wang Xingkui (Tsinghua University)Yu Changzhao (Tsinghua University)Li Yuzhu (Tsinghua University)Chen Changzhi (Tsinghua University) 《Journal of Hydrodynamics》 SCIE EI CSCD 2003年第1期122-122,共1页
In this thesis, the scale effect by an aerated water jet diffusing in the water upon the hydrodynamic pressure, the local riverbed scour by multiple layered jets and by those colliding in the vertical and the transver... In this thesis, the scale effect by an aerated water jet diffusing in the water upon the hydrodynamic pressure, the local riverbed scour by multiple layered jets and by those colliding in the vertical and the transverse directions, and the stability of the apron slab both in the inverted arch cushion pool and the flat bottom one by the large discharge and the high water head with 300m level are detailedly researched by means of model test and numerical simulation. A mathematic model simulating the destabilization of the flat bottomed slab is established to open out the mechanism of its stability. Both experimental researches both on the hydrodynamic pressure acted inside joints between the bedrock and the apron slab, and on forces at arch abutments in inverted arch cushion pool are carried out by using an advanced measurement and the imitation means to acquire the mechanism of the inverted arch pool to keep stability and its stability condition. 展开更多
关键词 high arch dam flood discharge energy dissipation inverted arch cushion pool STABILITY AERATION
原文传递
Transverse Joint Aperture Simulation of High Arch Dam Based on Measured Temperature in Construction Period
9
作者 ZHANG Chao CHANG Xiaolin +1 位作者 LIU Xinghong DUAN Yin 《Wuhan University Journal of Natural Sciences》 CAS 2014年第4期361-368,共8页
Transverse joint aperture is of certain reference value to ensure joint grouting quality and overall safety of high arch dam. A 3D isoparametric joint element model with spherical surface key grooves and finite thickn... Transverse joint aperture is of certain reference value to ensure joint grouting quality and overall safety of high arch dam. A 3D isoparametric joint element model with spherical surface key grooves and finite thickness is used to simulate a transverse joint. A set of program is developed to simulate the transverse joint ap- erture of Dagangshan high arch dam. Combined with the measured temperatures, the whole developing process of Dagangshan arch dam's transverse joint aperture is simulated. The real work behav- ior of transverse joint, thermal and mechanical properties of con- crete, pouring process, joint grouting temperature and cantilever height of high arch dam are considered during the simulation. The simulation results show that the lower of the joint grouting tem- perature, the larger value of transverse joint aperture; the higher of cantilever height during the construction period, the smaller value of transverse joint aperture. 展开更多
关键词 high arch dam simulation analysis transverse jointaperture temperature field cantilever height
原文传递
Definition of the general initial water penetration fracture criterion for concrete and its engineering application 被引量:6
10
作者 JIANG YaZhou REN QingWen +1 位作者 XU Wei LIU Shuang 《Science China(Technological Sciences)》 SCIE EI CAS 2011年第6期1575-1580,共6页
A general initial water penetration(seepage) fracture criterion for concrete is proposed to predict whether or not harmful water penetration(hydraulic fracturing),other than microcracking,will occur in concrete struct... A general initial water penetration(seepage) fracture criterion for concrete is proposed to predict whether or not harmful water penetration(hydraulic fracturing),other than microcracking,will occur in concrete structures in a severe high water pressure environment.The final regression,of the different macroscopic failure types in concrete to microscopic ModeⅠ c racking,allows the use of only one universal criterion to indicate the damage.Thus,a general initial water penetration fracture criterion is approximately defined as a strain magnitude of 1000×10-6,based on the concept of tensile strain derived from experimental results in the relevant literature.Then,the locations of harmful water penetration fracture(hydraulic fracture) in the high arch dam mass of the Jinping first class hydropower project are analyzed using the nonlinear finite element method(FEM) according to the proposed criterion.The proposed criterion also holds promise for other concrete structures in high water pressure environments. 展开更多
关键词 CONCRETE initial water penetration fracture criterion hydraulic fracture tensile strain Jinping high arch dam
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部