High-aspect-ratio metallic surface microstructures are increasingly demanded in breakthrough applications,such as high-performance heat transfer enhancement and surface plasmon devices.However,the fast and cost-effect...High-aspect-ratio metallic surface microstructures are increasingly demanded in breakthrough applications,such as high-performance heat transfer enhancement and surface plasmon devices.However,the fast and cost-effective fabrication of high-aspect-ratio microstructures on metallic surfaces remains challenging for existing techniques.This study proposes a novel cutting-based process,namely elliptical vibration chiseling(EV-chiseling),for the high-efficiency texturing of surface microstructures with an ultrahigh aspect ratio.Unlike conventional cutting,EV-chiseling superimposes a microscale EV on a backward-moving tool.The tool chisels into the material in each vibration cycle to generate an upright chip with a high aspect ratio through material deformation.Thanks to the tool’s backward movement,the chip is left on the material surface to form a microstructure rather than falling off.Since one microstructure is generated in one vibration cycle,the process can be highly efficient using ultrafast(>1 kHz)tool vibration.A finite element analysis model is established to explore the process mechanics of EV-chiseling.Next,a mechanistic model of the microstructured surface generation is developed to describe the microstructures’aspect ratio dependency on the process parameters.Then,surface texturing tests are performed on copper to verify the efficacy of EV-chiseling.Uniformed micro ribs with a spacing of 1–10μm and an aspect ratio of 2–5 have been successfully textured on copper.Compared with the conventional EV-cutting that uses a forward-moving tool,EV-chiseling can improve the aspect ratio of textured microstructure by up to 40 times.The experimental results also verify the accuracy of the developed surface generation model of microstructures.Finally,the effects of elliptical trajectory,depth of cut,tool shape,and tool edge radius on the surface generation of micro ribs have been discussed.展开更多
It is difficult to access exfoliated sepiolite(Sep)fibers with high aspect ratio from Sep ore.The traditional method used to purify Sep ore also reduces its aspect ratio.In this study,impurities in the Sep ore were re...It is difficult to access exfoliated sepiolite(Sep)fibers with high aspect ratio from Sep ore.The traditional method used to purify Sep ore also reduces its aspect ratio.In this study,impurities in the Sep ore were removed by acid activation followed by a cetyltrimethylammonium chloride(C16)treatment to organically modify the purified Sep by cation exchange.Then,the organically-modified Sep(O-Sep)was stripped and processed by an ultrasonic cell crusher to obtain Sep microfibers at a specific frequency for a given period.These Sep samples had relatively high aspect ratio,compared with the Sep fibers gotten by traditional method.Scanning electron microscopy(SEM)and transmission electron microscopy(TEM)demonstrate the micro-morphology of exfoliated Sep samples in an intuitive way.Moreover,pure inorganic membrane prepared only with the exfoliated Sep fibers exhibited excellent flexibility,further demonstrating the excellent properties of Sep fibers with high aspect ratio.展开更多
Bird-like flapping-wing vehicles with a high aspect ratio have the potential to fulfill missions given to micro air vehicles,such as high-altitude reconnaissance,surveillance,rescue,and bird group guidance,due to thei...Bird-like flapping-wing vehicles with a high aspect ratio have the potential to fulfill missions given to micro air vehicles,such as high-altitude reconnaissance,surveillance,rescue,and bird group guidance,due to their good loading and long endurance capacities.Biologists and aeronautical researchers have explored the mystery of avian flight and made efforts to reproduce flapping flight in bioinspired aircraft for decades.However,the cognitive depth from theory to practice is still very limited.The mechanism of generating sufficient lift and thrust during avian flight is still not fully understood.Moving wings with unique biological structures such as feathers make modeling,simulation,experimentation,and analysis much more difficult.This paper reviews the research progress on bird-like flapping wings from flight mechanisms to modeling.Commonly used numerical computing methods are briefly compared.The aeroelastic problems are also highlighted.The results of the investigation show that a leading-edge vortex can be found during avian flight.Its induction and maintenance may have a close relationship with wing configuration,kinematics and deformation.The present models of flapping wings are mainly two-dimensional airfoils or three-dimensional single root-jointed geometric plates,which still exhibit large differences from real bird wings.Aeroelasticity is encouraged to consider the nonignorable effect on aerodynamic performance due to large-scale nonlinear deformation.Introducing appropriate flexibility can improve the peak values and efficiencies of lift and thrust,but the detailed conclusions always have strong background dependence.展开更多
Severe tool wear and poor surface quality are the main problems during micro machining of cemented carbide.In this work,an innovative hybrid process of laser-induced oxidation assisted micro milling(LOMM)was proposed ...Severe tool wear and poor surface quality are the main problems during micro machining of cemented carbide.In this work,an innovative hybrid process of laser-induced oxidation assisted micro milling(LOMM)was proposed to solve the problems.A nanosecond laser was utilized to induce oxidation of the WC-20%Co material,producing loose oxide which was easy to remove.The micro machinability of the material was improved by laser-induced oxidation.The oxidation mechanisms of cemented carbide were studied.A microgroove with a depth of 2.5 mm and aspect ratio of 5 was fabricated successfully.The milling force,surface quality and tool wear mechanisms were investigated.For comparison,a microgroove was also fabricated with conventional micro milling(COMM)using identical milling parameters.Results revealed that in LOMM the milling force and tool wear rate were extremely low during removing the oxide.The machined surface quality and dimensional accuracy achieved by LOMM were superior to those obtained by COMM.The surface roughness Saof the microgroove bottom reached 88 nm in LOMM,while the cross-sectional geometry of the microgroove was a trapezoid.Perpendicularity of the microgroove sidewall machined by LOMM was better than that by COMM.The tool wear forms in LOMM were coating spalling and slight tool nose breakage.Compared with COMM,the tool life in LOMM was prolonged significantly.It indicates that the proposed hybrid process is an effective and efficient way to fabricate high aspect ratio micro-features with high dimensional accuracy.展开更多
A near-infrared femtosecond laser is focused by a 100 mm-focal-length plano-convex lens to form a laser filament,which is employed to drill holes on copper targets.By shifting or rotating the focusing lens,additional ...A near-infrared femtosecond laser is focused by a 100 mm-focal-length plano-convex lens to form a laser filament,which is employed to drill holes on copper targets.By shifting or rotating the focusing lens,additional aberration is imposed on the focused laser beam,and significant influence is produced on the aspect ratio and cross-sectional shape of the micro-holes.Experimental results show that when proper aberration is introduced,the copper plate with a thickness of 3 mm can be drilled through with an aspect ratio of 30,while no through-holes can be drilled on 3-mm-thickness copper plates by femtosecond laser with minimized aberration.In addition,when femtosecond laser filament with large astigmatism is used,micro-holes that had a length to width ratio up to 3.3 on the cross-section are obtained.Therefore,the method proposed here can be used to fabricate long oval holes with high aspect ratios.展开更多
Further improvement of storage density is a key challenge for the application of phase-change memory(PCM)in storage-class memory.However,for PCM,storage density improvements include feature size scaling down and multi...Further improvement of storage density is a key challenge for the application of phase-change memory(PCM)in storage-class memory.However,for PCM,storage density improvements include feature size scaling down and multilevel cell(MLC)operation,potentially causing thermal crosstalk issues and phase separation issues,respectively.To address these challenges,we propose a high-aspect-ratio(25:1)lateral nanowire(NW)PCM device with conventional chalcogenide Ge_(2)Sb_(2)Te_(5)(GST-225)to realize stable MLC operations,i.e.,low intra-and inter-cell variability and low resistance drift(coefficient=0.009).The improved MLC performance is attributed to the high aspect ratio,which enables precise control of the amorphous region because of sidewall confinement,as confirmed by transmission electron microscopy analysis.In summary,the NW devices provide guidance for the design of future high-aspect-ratio threedimensional PCM devices with MLC capability.展开更多
This paper considers the copper electrodeposit ion processes in microvias and investigates whether the quality of the electroplating process can be improved by acoustic streaming using megasonic transducers placed int...This paper considers the copper electrodeposit ion processes in microvias and investigates whether the quality of the electroplating process can be improved by acoustic streaming using megasonic transducers placed into a plating cell. The theoretical results show that acoustic streaming does not take place within the micro-via (either through or blind-via' s), however it does help improve cupric ion transport in the area close to the mouth of a via. This replenishment of cupric ions at the mouth of micro-via leads to better quality filling of the micro-via through diffusion compared to basic conditions. Experiments showing the improved quality of the filling of vias are also presented.展开更多
A rapid,simple and cost-effective polyol method has been developed for the synthesis of silver nanowires with high aspect ratio and high purity.The aspect ratios of the silver nanowires as high as ca.1000(average leng...A rapid,simple and cost-effective polyol method has been developed for the synthesis of silver nanowires with high aspect ratio and high purity.The aspect ratios of the silver nanowires as high as ca.1000(average length 40μm and some even as long as 80μm,diameter 50-100 nm)were obtained via optimizing the reaction conditions.Transparent electrodes with excellent optoelectronic performances(optical transmittance of 90%,sheet resistance of 23.2Ω/□and optical transmittance of 87%,sheet resistance of 19.7Ω/□)comparable to commercial ITO were fab-ricated via simple spin coating the resulting silver nanowires onto the glass substrates.The high optoelectronic per-formances and the facile all-solution process of the as-prepared transparent electrodes render them rather promising candidates for use in cost-effective large-area optoelectronic devices.展开更多
Different methods capable of developing complex structures and building elements with high-aspect-ratio nanostructures combined with microstructures,which are of interest in nanophotonics,are presented.As originals fo...Different methods capable of developing complex structures and building elements with high-aspect-ratio nanostructures combined with microstructures,which are of interest in nanophotonics,are presented.As originals for subsequent replication steps,two families of masters were developed:(i)3.2μm deep,180 nm wide trenches were fabricated by silicon cryo-etching and(ii)9.8μm high,350 nm wide ridges were fabricated using 2-photon polymerization direct laser writing.Both emerging technologies enable the vertical smooth sidewalls needed for a successful imprint into thin layers of polymers with aspect ratios exceeding 15.Nanoridges with high aspect ratios of up to 28 and no residual layer were produced in Ormocers using the micromoulding into capillaries(MIMIC)process with subsequent ultraviolet-curing.This work presents and balances the different fabrication routes and the subsequent generation of working tools from masters with inverted tones and the combination of hard and soft materials.This provides these techniques with a proof of concept for their compatibility with high volume manufacturing of complex micro-and nanostructures.展开更多
Copper thin films were deposited by plasma-enhanced atomic layer deposition at low temperature,using copper(I)-N,N′-di-sec-butylacetamidinate as a precursor and hydrogen as a reductive gas.The influence of temperatur...Copper thin films were deposited by plasma-enhanced atomic layer deposition at low temperature,using copper(I)-N,N′-di-sec-butylacetamidinate as a precursor and hydrogen as a reductive gas.The influence of temperature,plasma power,mode of plasma,and pulse time,on the deposition rate of copper thin film,the purity of the film and the step coverage were studied.The feasibility of copper film deposition on the inner wall of a carbon fibre reinforced plastic waveguide with high aspect ratio was also studied.The morphology and composition of the thin film were studied by atomic force microscopy and x-ray photoelectron spectroscopy,respectively.The square resistance of the thin film was also tested by a four-probe technique.On the basis of on-line diagnosis,a growth mechanism of copper thin film was put forward,and it was considered that surface functional group played an important role in the process of nucleation and in determining the properties of thin films.A high density of plasma and high free-radical content were helpful for the deposition of copper thin films.展开更多
The paper proposes a novel nano-patterning method called electrically induced nanostructuring, where an external electric field, insteadof the external mechanical pressure, is applied to generate an electrohydrody- na...The paper proposes a novel nano-patterning method called electrically induced nanostructuring, where an external electric field, insteadof the external mechanical pressure, is applied to generate an electrohydrody- namic force acting on the polymer-air interface to drive the polymer' s flow into the mold cavities. This electri- cally induced nanostrueturing method no longer requires a large mechanical pressure externally applied for actua- ting the polymer filling in the mold cavities, and has been used to successfully fabricate micro/nano pillar arrays of a high aspect ratio (up to 10), which have been usually considered to be "difficult to fabricate" by conventional molding or nanoimprinting processes.展开更多
This paper reviews an initial achievement of our group toward the development of on-chip parallel high-speed atomic force microscopy(HS-AFM).A novel AFM approach based on silicon waveguide cantilever displacement se...This paper reviews an initial achievement of our group toward the development of on-chip parallel high-speed atomic force microscopy(HS-AFM).A novel AFM approach based on silicon waveguide cantilever displacement sensor is proposed.The displacement sensing approach uniquely allows the use of nano-scale wide cantilever that has a high resonance frequency and low spring constant desired for on-chip parallel HS-AFM.The approach consists of low loss silicon waveguide with nano-gap,highly efficient misalignment tolerant coupler,novel high aspect ratio(HAR)sharp nano-tips that can be integrated with nano-scale wide cantilevers and electrostatically driven nano-cantilever actuators.The simulation results show that the displacement sensor with optical power responsivity of 0.31%/nm and AFM cantilever with resonance frequency of 5.4 MHz and spring constant of 0.21 N/m are achievable with the proposed approach.The developed silicon waveguide fabrication method enables silicon waveguide with 6 and 7.5 dB/cm transmission loss for TE and TM modes,respectively,and formation of 13 nm wide nano-gaps between silicon waveguides.The coupler demonstrates misalignment tolerance of ±1.8 μm for 5μm spot size lensed fiber and coupling loss of 2.12 dB/facet for standard cleaved single mode fiber without compromising other performance.The nano-tips with apex radius as small as 2.5 nm and aspect ratio of more than 50 has been enabled by the development of novel HAR nanotip fabrication technique.Integration of the HAR tips onto an array of 460 nm wide cantilever beam has also been demonstrated.展开更多
In order to reveal the effect of channel orientations on rotational heat transfer performance,this paper presents an experimental model of AR=4:1 smooth rectangular channel.The stationary and rotational heat transfer ...In order to reveal the effect of channel orientations on rotational heat transfer performance,this paper presents an experimental model of AR=4:1 smooth rectangular channel.The stationary and rotational heat transfer characteristics of the channel are studied in the range of Re=10,000-40,000 and Ro=0-1.23 under the channel orientation of 90°and 135°,which represent the basic one and realistic one,respectively.The experimental results indicate that for the trailing wall,the 90°channel shows a typical large range enhancement of rotational heat transfer,while the rotational effect becomes negative in most areas at 135°case.As the rotation number exceeds 0.7,the heat transfer of the trailing surface is greatly improved by rotational effect in 90°channel.When the channel was orientated at 135°,the leading surface heat transfer is more sensitive to rotation under the low rotation number(Ro<0.3),and 20%-30%worse than non-rotating cases.The averaged Nusselt ratios correlations under the channel orientation of 90°and 135°have been developed for further engineering applications.展开更多
Hovering ability forms the basis for space operations of Micro Aerial Vehicles(MAVs).The problem of uneven load puts high demands on the wing design.In this paper,a new hovering-mode for MAVs,inspired by flapping flig...Hovering ability forms the basis for space operations of Micro Aerial Vehicles(MAVs).The problem of uneven load puts high demands on the wing design.In this paper,a new hovering-mode for MAVs,inspired by flapping flight in bees and hummingbirds but using high-aspect-ratio and low-stress wings,is proposed.Different from the flapping actuations that occur at the wing roots,the two wings are driven back and forth in a straight line.To simplify the design and control the angle of attack,passive wing rotation is employed.The numerical results and analysis show that the maximum stress of the oscillating wing is approximately 1/6 of that of the flapping wing when the lift of the oscillating wing is twice that of the flapping wing.A theoretical aerodynamic model of the kinematics of the vehicle's driving mechanism was developed to fulfill its design.Force measurements indicate that the vehicle generates a sufficiently high cycle-averaged vertical thrust(71 g)for liftoff at a maximum frequency of 5.56 Hz,thereby validating the proposed aerodynamic model.Moreover,liftoff performance is presented to visually demonstrate the vertical take-off capabilities and hovering potential of the aeromechanical solution.展开更多
基金support for this research provided by the National Natural Science Foundation of China(Grant No.52105458)Beijing Natural Science Foundation(Grant No.3222009)+1 种基金Huaneng Group Science and Technology Research Project(No:HNKJ22-H105)China Postdoctoral Science Foundation(Grant No.2022M711807)。
文摘High-aspect-ratio metallic surface microstructures are increasingly demanded in breakthrough applications,such as high-performance heat transfer enhancement and surface plasmon devices.However,the fast and cost-effective fabrication of high-aspect-ratio microstructures on metallic surfaces remains challenging for existing techniques.This study proposes a novel cutting-based process,namely elliptical vibration chiseling(EV-chiseling),for the high-efficiency texturing of surface microstructures with an ultrahigh aspect ratio.Unlike conventional cutting,EV-chiseling superimposes a microscale EV on a backward-moving tool.The tool chisels into the material in each vibration cycle to generate an upright chip with a high aspect ratio through material deformation.Thanks to the tool’s backward movement,the chip is left on the material surface to form a microstructure rather than falling off.Since one microstructure is generated in one vibration cycle,the process can be highly efficient using ultrafast(>1 kHz)tool vibration.A finite element analysis model is established to explore the process mechanics of EV-chiseling.Next,a mechanistic model of the microstructured surface generation is developed to describe the microstructures’aspect ratio dependency on the process parameters.Then,surface texturing tests are performed on copper to verify the efficacy of EV-chiseling.Uniformed micro ribs with a spacing of 1–10μm and an aspect ratio of 2–5 have been successfully textured on copper.Compared with the conventional EV-cutting that uses a forward-moving tool,EV-chiseling can improve the aspect ratio of textured microstructure by up to 40 times.The experimental results also verify the accuracy of the developed surface generation model of microstructures.Finally,the effects of elliptical trajectory,depth of cut,tool shape,and tool edge radius on the surface generation of micro ribs have been discussed.
基金Fundamental Research Funds for the Central Universities of ministry of Education of China(No.2232020G-04)National Key Research&Development Program of China(No.2018YFC1801500)。
文摘It is difficult to access exfoliated sepiolite(Sep)fibers with high aspect ratio from Sep ore.The traditional method used to purify Sep ore also reduces its aspect ratio.In this study,impurities in the Sep ore were removed by acid activation followed by a cetyltrimethylammonium chloride(C16)treatment to organically modify the purified Sep by cation exchange.Then,the organically-modified Sep(O-Sep)was stripped and processed by an ultrasonic cell crusher to obtain Sep microfibers at a specific frequency for a given period.These Sep samples had relatively high aspect ratio,compared with the Sep fibers gotten by traditional method.Scanning electron microscopy(SEM)and transmission electron microscopy(TEM)demonstrate the micro-morphology of exfoliated Sep samples in an intuitive way.Moreover,pure inorganic membrane prepared only with the exfoliated Sep fibers exhibited excellent flexibility,further demonstrating the excellent properties of Sep fibers with high aspect ratio.
文摘Bird-like flapping-wing vehicles with a high aspect ratio have the potential to fulfill missions given to micro air vehicles,such as high-altitude reconnaissance,surveillance,rescue,and bird group guidance,due to their good loading and long endurance capacities.Biologists and aeronautical researchers have explored the mystery of avian flight and made efforts to reproduce flapping flight in bioinspired aircraft for decades.However,the cognitive depth from theory to practice is still very limited.The mechanism of generating sufficient lift and thrust during avian flight is still not fully understood.Moving wings with unique biological structures such as feathers make modeling,simulation,experimentation,and analysis much more difficult.This paper reviews the research progress on bird-like flapping wings from flight mechanisms to modeling.Commonly used numerical computing methods are briefly compared.The aeroelastic problems are also highlighted.The results of the investigation show that a leading-edge vortex can be found during avian flight.Its induction and maintenance may have a close relationship with wing configuration,kinematics and deformation.The present models of flapping wings are mainly two-dimensional airfoils or three-dimensional single root-jointed geometric plates,which still exhibit large differences from real bird wings.Aeroelasticity is encouraged to consider the nonignorable effect on aerodynamic performance due to large-scale nonlinear deformation.Introducing appropriate flexibility can improve the peak values and efficiencies of lift and thrust,but the detailed conclusions always have strong background dependence.
基金the National Natural Science Foundation of China(No.51705249)the China Postdoctoral Science Foundation(No.2019M661823)+1 种基金the Aeronautical Science Foundation of China(No.2017ZE52047)the 111 Project on Key Technology in Sustainable Manufacturing(No.B16024)。
文摘Severe tool wear and poor surface quality are the main problems during micro machining of cemented carbide.In this work,an innovative hybrid process of laser-induced oxidation assisted micro milling(LOMM)was proposed to solve the problems.A nanosecond laser was utilized to induce oxidation of the WC-20%Co material,producing loose oxide which was easy to remove.The micro machinability of the material was improved by laser-induced oxidation.The oxidation mechanisms of cemented carbide were studied.A microgroove with a depth of 2.5 mm and aspect ratio of 5 was fabricated successfully.The milling force,surface quality and tool wear mechanisms were investigated.For comparison,a microgroove was also fabricated with conventional micro milling(COMM)using identical milling parameters.Results revealed that in LOMM the milling force and tool wear rate were extremely low during removing the oxide.The machined surface quality and dimensional accuracy achieved by LOMM were superior to those obtained by COMM.The surface roughness Saof the microgroove bottom reached 88 nm in LOMM,while the cross-sectional geometry of the microgroove was a trapezoid.Perpendicularity of the microgroove sidewall machined by LOMM was better than that by COMM.The tool wear forms in LOMM were coating spalling and slight tool nose breakage.Compared with COMM,the tool life in LOMM was prolonged significantly.It indicates that the proposed hybrid process is an effective and efficient way to fabricate high aspect ratio micro-features with high dimensional accuracy.
基金the National KeyResearch and Development Program (No. 2018YFB0504400)。
文摘A near-infrared femtosecond laser is focused by a 100 mm-focal-length plano-convex lens to form a laser filament,which is employed to drill holes on copper targets.By shifting or rotating the focusing lens,additional aberration is imposed on the focused laser beam,and significant influence is produced on the aspect ratio and cross-sectional shape of the micro-holes.Experimental results show that when proper aberration is introduced,the copper plate with a thickness of 3 mm can be drilled through with an aspect ratio of 30,while no through-holes can be drilled on 3-mm-thickness copper plates by femtosecond laser with minimized aberration.In addition,when femtosecond laser filament with large astigmatism is used,micro-holes that had a length to width ratio up to 3.3 on the cross-section are obtained.Therefore,the method proposed here can be used to fabricate long oval holes with high aspect ratios.
基金supported by the National Natural Science Foundation of China(62174065)the Key Research and Development Plan of Hubei Province(2020BAB007)+1 种基金Hubei Provincial Natural Science Foundation(2021CFA038)the support from Hubei Key Laboratory of Advanced Memories&Hubei Engineering Research Center on Microelectronics。
文摘Further improvement of storage density is a key challenge for the application of phase-change memory(PCM)in storage-class memory.However,for PCM,storage density improvements include feature size scaling down and multilevel cell(MLC)operation,potentially causing thermal crosstalk issues and phase separation issues,respectively.To address these challenges,we propose a high-aspect-ratio(25:1)lateral nanowire(NW)PCM device with conventional chalcogenide Ge_(2)Sb_(2)Te_(5)(GST-225)to realize stable MLC operations,i.e.,low intra-and inter-cell variability and low resistance drift(coefficient=0.009).The improved MLC performance is attributed to the high aspect ratio,which enables precise control of the amorphous region because of sidewall confinement,as confirmed by transmission electron microscopy analysis.In summary,the NW devices provide guidance for the design of future high-aspect-ratio threedimensional PCM devices with MLC capability.
基金the Engineering and Physical Sciences Research Council(EPSRC)for their financial support through the grant ASPECT supported by the Scottish Manufacturing Institute(SMI)at Heriot-Watt University
文摘This paper considers the copper electrodeposit ion processes in microvias and investigates whether the quality of the electroplating process can be improved by acoustic streaming using megasonic transducers placed into a plating cell. The theoretical results show that acoustic streaming does not take place within the micro-via (either through or blind-via' s), however it does help improve cupric ion transport in the area close to the mouth of a via. This replenishment of cupric ions at the mouth of micro-via leads to better quality filling of the micro-via through diffusion compared to basic conditions. Experiments showing the improved quality of the filling of vias are also presented.
基金support from the National Key Basic Research Program of China (973 Program,2014CB648300)the National Natural Science Foundation of China (21422402,20904024,51173081,61136003,61106036)+7 种基金the Natural Science Foundation of Jiangsu Province (BK20140060,BK20130037,BK2011760)Program for New Century Excellent Talents in University (NCET-13-0872)Specialized Research Fund for the Doctoral Program of Higher Education (20133223110008)the Ministry of Education of China (IRT1148)the NUPT Scientific Foundation (NY213119)the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)the Six Talent Plan (2012XCL035)Qing Lan Project of Jiangsu Province.
文摘A rapid,simple and cost-effective polyol method has been developed for the synthesis of silver nanowires with high aspect ratio and high purity.The aspect ratios of the silver nanowires as high as ca.1000(average length 40μm and some even as long as 80μm,diameter 50-100 nm)were obtained via optimizing the reaction conditions.Transparent electrodes with excellent optoelectronic performances(optical transmittance of 90%,sheet resistance of 23.2Ω/□and optical transmittance of 87%,sheet resistance of 19.7Ω/□)comparable to commercial ITO were fab-ricated via simple spin coating the resulting silver nanowires onto the glass substrates.The high optoelectronic per-formances and the facile all-solution process of the as-prepared transparent electrodes render them rather promising candidates for use in cost-effective large-area optoelectronic devices.
基金This work is partially funded by the Swiss National Science Foundation(SNF)Ambizione project(no.PZ00P2_142511)granted to VJC.
文摘Different methods capable of developing complex structures and building elements with high-aspect-ratio nanostructures combined with microstructures,which are of interest in nanophotonics,are presented.As originals for subsequent replication steps,two families of masters were developed:(i)3.2μm deep,180 nm wide trenches were fabricated by silicon cryo-etching and(ii)9.8μm high,350 nm wide ridges were fabricated using 2-photon polymerization direct laser writing.Both emerging technologies enable the vertical smooth sidewalls needed for a successful imprint into thin layers of polymers with aspect ratios exceeding 15.Nanoridges with high aspect ratios of up to 28 and no residual layer were produced in Ormocers using the micromoulding into capillaries(MIMIC)process with subsequent ultraviolet-curing.This work presents and balances the different fabrication routes and the subsequent generation of working tools from masters with inverted tones and the combination of hard and soft materials.This provides these techniques with a proof of concept for their compatibility with high volume manufacturing of complex micro-and nanostructures.
文摘Copper thin films were deposited by plasma-enhanced atomic layer deposition at low temperature,using copper(I)-N,N′-di-sec-butylacetamidinate as a precursor and hydrogen as a reductive gas.The influence of temperature,plasma power,mode of plasma,and pulse time,on the deposition rate of copper thin film,the purity of the film and the step coverage were studied.The feasibility of copper film deposition on the inner wall of a carbon fibre reinforced plastic waveguide with high aspect ratio was also studied.The morphology and composition of the thin film were studied by atomic force microscopy and x-ray photoelectron spectroscopy,respectively.The square resistance of the thin film was also tested by a four-probe technique.On the basis of on-line diagnosis,a growth mechanism of copper thin film was put forward,and it was considered that surface functional group played an important role in the process of nucleation and in determining the properties of thin films.A high density of plasma and high free-radical content were helpful for the deposition of copper thin films.
基金Major Research Plan of NSFC on Nanomanufacturing(No.90923040)National Basic Research Program of China(No.2009CB724202)
文摘The paper proposes a novel nano-patterning method called electrically induced nanostructuring, where an external electric field, insteadof the external mechanical pressure, is applied to generate an electrohydrody- namic force acting on the polymer-air interface to drive the polymer' s flow into the mold cavities. This electri- cally induced nanostrueturing method no longer requires a large mechanical pressure externally applied for actua- ting the polymer filling in the mold cavities, and has been used to successfully fabricate micro/nano pillar arrays of a high aspect ratio (up to 10), which have been usually considered to be "difficult to fabricate" by conventional molding or nanoimprinting processes.
文摘This paper reviews an initial achievement of our group toward the development of on-chip parallel high-speed atomic force microscopy(HS-AFM).A novel AFM approach based on silicon waveguide cantilever displacement sensor is proposed.The displacement sensing approach uniquely allows the use of nano-scale wide cantilever that has a high resonance frequency and low spring constant desired for on-chip parallel HS-AFM.The approach consists of low loss silicon waveguide with nano-gap,highly efficient misalignment tolerant coupler,novel high aspect ratio(HAR)sharp nano-tips that can be integrated with nano-scale wide cantilevers and electrostatically driven nano-cantilever actuators.The simulation results show that the displacement sensor with optical power responsivity of 0.31%/nm and AFM cantilever with resonance frequency of 5.4 MHz and spring constant of 0.21 N/m are achievable with the proposed approach.The developed silicon waveguide fabrication method enables silicon waveguide with 6 and 7.5 dB/cm transmission loss for TE and TM modes,respectively,and formation of 13 nm wide nano-gaps between silicon waveguides.The coupler demonstrates misalignment tolerance of ±1.8 μm for 5μm spot size lensed fiber and coupling loss of 2.12 dB/facet for standard cleaved single mode fiber without compromising other performance.The nano-tips with apex radius as small as 2.5 nm and aspect ratio of more than 50 has been enabled by the development of novel HAR nanotip fabrication technique.Integration of the HAR tips onto an array of 460 nm wide cantilever beam has also been demonstrated.
基金The work is supported by Hunan Provincial Natural Science Foundation of China(No.2019JJ50701).
文摘In order to reveal the effect of channel orientations on rotational heat transfer performance,this paper presents an experimental model of AR=4:1 smooth rectangular channel.The stationary and rotational heat transfer characteristics of the channel are studied in the range of Re=10,000-40,000 and Ro=0-1.23 under the channel orientation of 90°and 135°,which represent the basic one and realistic one,respectively.The experimental results indicate that for the trailing wall,the 90°channel shows a typical large range enhancement of rotational heat transfer,while the rotational effect becomes negative in most areas at 135°case.As the rotation number exceeds 0.7,the heat transfer of the trailing surface is greatly improved by rotational effect in 90°channel.When the channel was orientated at 135°,the leading surface heat transfer is more sensitive to rotation under the low rotation number(Ro<0.3),and 20%-30%worse than non-rotating cases.The averaged Nusselt ratios correlations under the channel orientation of 90°and 135°have been developed for further engineering applications.
基金This work was supported by the National Natural Science Foundation of China(No.91960203).
文摘Hovering ability forms the basis for space operations of Micro Aerial Vehicles(MAVs).The problem of uneven load puts high demands on the wing design.In this paper,a new hovering-mode for MAVs,inspired by flapping flight in bees and hummingbirds but using high-aspect-ratio and low-stress wings,is proposed.Different from the flapping actuations that occur at the wing roots,the two wings are driven back and forth in a straight line.To simplify the design and control the angle of attack,passive wing rotation is employed.The numerical results and analysis show that the maximum stress of the oscillating wing is approximately 1/6 of that of the flapping wing when the lift of the oscillating wing is twice that of the flapping wing.A theoretical aerodynamic model of the kinematics of the vehicle's driving mechanism was developed to fulfill its design.Force measurements indicate that the vehicle generates a sufficiently high cycle-averaged vertical thrust(71 g)for liftoff at a maximum frequency of 5.56 Hz,thereby validating the proposed aerodynamic model.Moreover,liftoff performance is presented to visually demonstrate the vertical take-off capabilities and hovering potential of the aeromechanical solution.