A new method for producing higher density PM parts, high velocity compaction (HVC), was presented in the paper. Using water atomized pure iron powder without lubricant admixed as the staring material, ring samples w...A new method for producing higher density PM parts, high velocity compaction (HVC), was presented in the paper. Using water atomized pure iron powder without lubricant admixed as the staring material, ring samples were compacted by the technique. Scanning electron microscopy (SEM) and a computer controlled universal testing machine were used to investigate the morphologies and the mechanical properties of samples, respectively. The relationships among the impact velocity, the green density, the sintered density, the bending strength and the tensile strength were discussed, The results show that with increasing impact velocity, the green density and the bending strength increase gradually, so the sintered density does. In addition, the tensile strength of sintered material is improved continuously with the sintered density enhancing. In the study, the sintered density of 7.545 g/cm^3 and the tensile strength of 190 MPa are achieved at the optimal impact velocity of 9.8 m/s.展开更多
基金supported by National 973 Program (No.2006CB605207)MOE Program for Changjiang Scholars and Innovative Research Team in Universityof China (No.I2P407)
文摘A new method for producing higher density PM parts, high velocity compaction (HVC), was presented in the paper. Using water atomized pure iron powder without lubricant admixed as the staring material, ring samples were compacted by the technique. Scanning electron microscopy (SEM) and a computer controlled universal testing machine were used to investigate the morphologies and the mechanical properties of samples, respectively. The relationships among the impact velocity, the green density, the sintered density, the bending strength and the tensile strength were discussed, The results show that with increasing impact velocity, the green density and the bending strength increase gradually, so the sintered density does. In addition, the tensile strength of sintered material is improved continuously with the sintered density enhancing. In the study, the sintered density of 7.545 g/cm^3 and the tensile strength of 190 MPa are achieved at the optimal impact velocity of 9.8 m/s.
基金Project(2020YFC1909800) supported by the National Key R&D program of ChinaProject(1053320210076) supported by the Fundamental Research Funds for the Central Universities,ChinaProject supported by the State Key Laboratory of Powder Metallurgy,China。
文摘在本研究中,以铁品位为68.38%、硅含量为2.33%的优质磁铁精矿为原料通过反浮选获得了铁品位为72.12%、硅含量为0.09%的超纯磁铁精矿。以超纯磁铁精矿为原料,在1075℃下煤基还原18 h、850℃下氢气还原50 min制备了铁品位为99.06%的高纯还原铁粉。高纯还原铁粉的松装密度、流动性和压缩性分别为2.34 g/cm^(3),9.01 s/(50 g)和6.55 g/cm^(3),达到了粉末冶金用铁粉企业标准(MHF/QB-2016)中MHF80·235(优等)级。用高纯还原铁粉通过共沉淀法制备磷酸铁锂,其首次充电比容量达168.20 m A·h/g。铁鳞经过1075℃煤基还原36 h、14 m T磁选、850℃氢气还原60 min得到铁品位为98.47%的二次还原铁粉,其松装密度、流动性和压缩性分别为2.30 g/cm^(3),10.39 s/(50 g)和6.41 g/cm^(3)。与铁鳞相比,超纯磁铁精矿不仅可省去赫格纳斯工艺中的磁选环节,而且其煤基还原和氢气还原环节所需的时间更短,得到的还原铁粉铁品位更高、工艺性能更佳。本文提出了还原铁粉工艺性能的改善机理:还原铁粉的粗颗粒占比和铁品位的提高可以明显改善其松装密度和压缩性,粗颗粒占比的增加也会改善还原铁粉的流动性。