This work aims to investigate the effect of main inclusions on crack initiation in bearing steel in the very high cycle fatigue(VHCF) regime. The size and type of inclusions in the steel were quantitatively analyzed...This work aims to investigate the effect of main inclusions on crack initiation in bearing steel in the very high cycle fatigue(VHCF) regime. The size and type of inclusions in the steel were quantitatively analyzed, and VHCF tests were performed. Some fatigue cracks were found to be initiated in the gaps between inclusions(Al2 O3, Mg O-Al2 O3) and the matrix, while other cracks originated from the interior of inclusions(Ti N, Mn S). To explain the related mechanism, the tessellated stresses between inclusions and the matrix were calculated and compared with the yield stress of the matrix. Results revealed that the inclusions could be classified into two types under VHCF; of these two, only one type could be regarded as holes. Findings in this research provide a better understanding of how inclusions affect the high cycle fatigue properties of bearing steel.展开更多
High boron bearing steel, in which boron homogeneously distributed, wassuccessfully produced in the vacuum induction furnace. The microstructural observations of cast andhot rolled steels showed that the addition of t...High boron bearing steel, in which boron homogeneously distributed, wassuccessfully produced in the vacuum induction furnace. The microstructural observations of cast andhot rolled steels showed that the addition of titanium can eliminate the quantity of ferrous boridesprecipitated at the grain boundaries and break the net microstructure, as a result, its hotworkability is improved. The titanium boride TiB_2 homogeneously distributes in the matrix ofalpha-Fe. The parameters of hot rolling process, including preheated temperature, initial rollingtemperature, finished rolling temperature and the total deformation, have been optimized.展开更多
The effect of Cr/Mn segregation on the abnormal banded structure of high carbon bearing steel was studied by reheating and hot rolling.With the use of an optical microscope, scanning electron microscope, transmission ...The effect of Cr/Mn segregation on the abnormal banded structure of high carbon bearing steel was studied by reheating and hot rolling.With the use of an optical microscope, scanning electron microscope, transmission electron microscope, and electron probe microanalyzer, the segregation characteristics of alloying elements in cast billet and their relationship with hot-rolled plate banded structure were revealed.The formation causes of an abnormal banded structure and the elimination methods were analyzed.Results indicate the serious positive segregation of C, Cr, and Mn alloy elements in the billet.Even distribution of Cr/Mn elements could not be achieved after 10 h of heat preservation at 1200℃, and the spacing of the element aggregation area increased, but the segregation index of alloy elements decreased.Obvious alloying element segregation characteristics are present in the banded structure of the hot-rolled plate.This distinct white band is composed of martensitic phases.The formation of this abnormal pearlite–martensite banded structure is due to the interaction between the undercooled austenite transformation behavior of hot-rolled metal and the segregation of its alloying elements.Under the air cooling after rolling, controlling the segregation index of alloy elements can reduce or eliminate the abnormal banded structure.展开更多
基金financially supported by the State Key Laboratory for Advanced Metallurgy Foundation (No.41614014)the National Natural Science Foundation of China (No.51774031)
文摘This work aims to investigate the effect of main inclusions on crack initiation in bearing steel in the very high cycle fatigue(VHCF) regime. The size and type of inclusions in the steel were quantitatively analyzed, and VHCF tests were performed. Some fatigue cracks were found to be initiated in the gaps between inclusions(Al2 O3, Mg O-Al2 O3) and the matrix, while other cracks originated from the interior of inclusions(Ti N, Mn S). To explain the related mechanism, the tessellated stresses between inclusions and the matrix were calculated and compared with the yield stress of the matrix. Results revealed that the inclusions could be classified into two types under VHCF; of these two, only one type could be regarded as holes. Findings in this research provide a better understanding of how inclusions affect the high cycle fatigue properties of bearing steel.
基金This work was stLPPorted by the Foundation of Key Teacher Of State Education Min-istry, China.
文摘High boron bearing steel, in which boron homogeneously distributed, wassuccessfully produced in the vacuum induction furnace. The microstructural observations of cast andhot rolled steels showed that the addition of titanium can eliminate the quantity of ferrous boridesprecipitated at the grain boundaries and break the net microstructure, as a result, its hotworkability is improved. The titanium boride TiB_2 homogeneously distributes in the matrix ofalpha-Fe. The parameters of hot rolling process, including preheated temperature, initial rollingtemperature, finished rolling temperature and the total deformation, have been optimized.
文摘The effect of Cr/Mn segregation on the abnormal banded structure of high carbon bearing steel was studied by reheating and hot rolling.With the use of an optical microscope, scanning electron microscope, transmission electron microscope, and electron probe microanalyzer, the segregation characteristics of alloying elements in cast billet and their relationship with hot-rolled plate banded structure were revealed.The formation causes of an abnormal banded structure and the elimination methods were analyzed.Results indicate the serious positive segregation of C, Cr, and Mn alloy elements in the billet.Even distribution of Cr/Mn elements could not be achieved after 10 h of heat preservation at 1200℃, and the spacing of the element aggregation area increased, but the segregation index of alloy elements decreased.Obvious alloying element segregation characteristics are present in the banded structure of the hot-rolled plate.This distinct white band is composed of martensitic phases.The formation of this abnormal pearlite–martensite banded structure is due to the interaction between the undercooled austenite transformation behavior of hot-rolled metal and the segregation of its alloying elements.Under the air cooling after rolling, controlling the segregation index of alloy elements can reduce or eliminate the abnormal banded structure.