The power Internet of Things(IoT)is a significant trend in technology and a requirement for national strategic development.With the deepening digital transformation of the power grid,China’s power system has initiall...The power Internet of Things(IoT)is a significant trend in technology and a requirement for national strategic development.With the deepening digital transformation of the power grid,China’s power system has initially built a power IoT architecture comprising a perception,network,and platform application layer.However,owing to the structural complexity of the power system,the construction of the power IoT continues to face problems such as complex access management of massive heterogeneous equipment,diverse IoT protocol access methods,high concurrency of network communications,and weak data security protection.To address these issues,this study optimizes the existing architecture of the power IoT and designs an integrated management framework for the access of multi-source heterogeneous data in the power IoT,comprising cloud,pipe,edge,and terminal parts.It further reviews and analyzes the key technologies involved in the power IoT,such as the unified management of the physical model,high concurrent access,multi-protocol access,multi-source heterogeneous data storage management,and data security control,to provide a more flexible,efficient,secure,and easy-to-use solution for multi-source heterogeneous data access in the power IoT.展开更多
Extendible hashing is an effective way to manage increasingly large file system metadata,but it suffers from low concurrency and lack of optimization for non-volatile memory(NVM).In this paper,a multilevel hash direct...Extendible hashing is an effective way to manage increasingly large file system metadata,but it suffers from low concurrency and lack of optimization for non-volatile memory(NVM).In this paper,a multilevel hash directory based on lazy expansion is designed to improve the concurrency and efficiency of extendible hashing,and a hash bucket management algorithm based on groups is presented to improve the efficiency of hash key management by reducing the size of the hash bucket,thereby improving the performance of extendible hashing.Meanwhile,a hierarchical storage strategy of extendible hashing for NVM is given to take advantage of dynamic random access memory(DRAM)and NVM.Furthermore,on the basis of the device driver for Intel Optane DC Persistent Memory,the prototype of high-concurrency extendible hashing named NEHASH is implemented.Yahoo cloud serving benchmark(YCSB)is used to test and compare with CCEH,level hashing,and cuckoo hashing.The results show that NEHASH can improve read throughput by up to 16.5%and write throughput by 19.3%.展开更多
基金supported by the National Key Research and Development Program of China(grant number 2019YFE0123600)。
文摘The power Internet of Things(IoT)is a significant trend in technology and a requirement for national strategic development.With the deepening digital transformation of the power grid,China’s power system has initially built a power IoT architecture comprising a perception,network,and platform application layer.However,owing to the structural complexity of the power system,the construction of the power IoT continues to face problems such as complex access management of massive heterogeneous equipment,diverse IoT protocol access methods,high concurrency of network communications,and weak data security protection.To address these issues,this study optimizes the existing architecture of the power IoT and designs an integrated management framework for the access of multi-source heterogeneous data in the power IoT,comprising cloud,pipe,edge,and terminal parts.It further reviews and analyzes the key technologies involved in the power IoT,such as the unified management of the physical model,high concurrent access,multi-protocol access,multi-source heterogeneous data storage management,and data security control,to provide a more flexible,efficient,secure,and easy-to-use solution for multi-source heterogeneous data access in the power IoT.
基金Project supported by the National Natural Science Foundation of China(No.61806086)the National Key R&D Program of China(No.2018YFB0804204)。
文摘Extendible hashing is an effective way to manage increasingly large file system metadata,but it suffers from low concurrency and lack of optimization for non-volatile memory(NVM).In this paper,a multilevel hash directory based on lazy expansion is designed to improve the concurrency and efficiency of extendible hashing,and a hash bucket management algorithm based on groups is presented to improve the efficiency of hash key management by reducing the size of the hash bucket,thereby improving the performance of extendible hashing.Meanwhile,a hierarchical storage strategy of extendible hashing for NVM is given to take advantage of dynamic random access memory(DRAM)and NVM.Furthermore,on the basis of the device driver for Intel Optane DC Persistent Memory,the prototype of high-concurrency extendible hashing named NEHASH is implemented.Yahoo cloud serving benchmark(YCSB)is used to test and compare with CCEH,level hashing,and cuckoo hashing.The results show that NEHASH can improve read throughput by up to 16.5%and write throughput by 19.3%.