期刊文献+
共找到7,804篇文章
< 1 2 250 >
每页显示 20 50 100
Recension of boron nitride phase diagram based on high-pressure and high-temperature experiments
1
作者 Ruike Zhang Ruiang Guo +3 位作者 Qian Li Shuaiqi Li Haidong Long Duanwei He 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第10期450-457,共8页
Cubic boron nitride and hexagonal boron nitride are the two predominant crystalline structures of boron nitride.They can interconvert under varying pressure and temperature conditions.However,this transformation requi... Cubic boron nitride and hexagonal boron nitride are the two predominant crystalline structures of boron nitride.They can interconvert under varying pressure and temperature conditions.However,this transformation requires overcoming significant potential barriers in dynamics,which poses great difficulty in determining the c-BN/h-BN phase boundary.This study used high-pressure in situ differential thermal measurements to ascertain the temperature of h-BN/c-BN conversion within the commonly used pressure range(3-6 GPa)for the industrial synthesis of c-BN to constrain the P-T phase boundary of h-BN/c-BN in the pressure-temperature range as much as possible.Based on the analysis of the experimental data,it is determined that the relationship between pressure and temperature conforms to the following equation:P=a+1/bT.Here,P denotes the pressure(GPa)and T is the temperature(K).The coefficients are a=-3.8±0.8 GPa and b=229.8±17.1 GPa/K.These findings call into question existing high-pressure and high-temperature phase diagrams of boron nitride,which seem to overstate the phase boundary temperature between c-BN and h-BN.The BN phase diagram obtained from this study can provide critical temperature and pressure condition guidance for the industrial synthesis of c-BN,thus optimizing synthesis efficiency and product performance. 展开更多
关键词 hexagonal boron nitride phase diagram high temperature and high pressure cubic boron nitride phase transition differential thermal analysis
下载PDF
Determination of critical state line(CSL)for silty-sandy iron ore tailings subjected to low-high confining pressures
2
作者 Nilo Cesar Consoli João Vítor de Azambuja Carvalho +4 位作者 Alexia Cindy Wagner Hugo Carlos Scheuermann Filho Inácio Carvalho Pedro Pazzoto Cacciari João Paulo de Sousa Silva 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第5期1684-1695,共12页
The disposal of filtered tailings in high dry stacks can induce particle breakage,changing the material's behaviour during the structure's lifetime.The grading changes influence material properties at the crit... The disposal of filtered tailings in high dry stacks can induce particle breakage,changing the material's behaviour during the structure's lifetime.The grading changes influence material properties at the critical state,and this is not mature for intermediate artificial soils(tailings)in a broad range of confining pressures.In this paper,it aims to describe the behaviour of iron ore tailings in a spectrum of confining pressures broader than the reported in previous studies.A series of consolidated drained(CD)triaxial tests was carried out with confining pressures ranging from 0.075 MPa to 120 MPa.These results show that the amount of breakage plays an essential role in the response of iron ore tailings.The existence of curved critical state line(CSL)in both specific volume(ν)-logarithm of mean effective stress(p′)and deviatoric stress(q)-mean effective stress(p′)planes,and different responses in the deviatoric stress-axial strain-volumetric strain curves were verified.An inverse S-shaped equation was proposed to represent the silty-sandy tailings'behaviour up to high pressures onν-lnp′plane.The proposed equation provides a basis for enhancing constitutive models and considers the evolution of the grading up to severe loading conditions.The adjustment considered three regions with different responses associated with particle breakage at different pressure levels. 展开更多
关键词 TAILINGS Iron ore tailings dry stacking Silty-sandy material Critical state soil mechanics high confining pressures Particle breakage
下载PDF
Mechanical Analysis of a Multi-Test String in High-Temperature and High-Pressure Deep Wells
3
作者 Zubing Tang 《Fluid Dynamics & Materials Processing》 EI 2023年第8期2161-2170,共10页
The mechanical behavior of the test string in deep wells is generally relatively complex as a result of the high temperature and high pressure,severe dogleg and buckling effects,which in some circumstances can even le... The mechanical behavior of the test string in deep wells is generally relatively complex as a result of the high temperature and high pressure,severe dogleg and buckling effects,which in some circumstances can even lead to string failure.Traditional computational methods for the analysis of these behaviors are often inaccurate.For this reason,here a more accurate mechanical model of the test string is introduced by considering variables such as temperature,pressure,wellbore trajectory,and buckling,as well as combining them with the deformation and string constraint conditions brought in by changes in temperature and pressure during the tripping,setting,and test operations.The model is validated by applying it to a specific high-pressure gas well(located in Northeast Sichuan). 展开更多
关键词 test string high temperature and high pressure BUCKLING subdividing operation process mechanical model
下载PDF
Various admixtures to mitigate the long-term strength retrogression of Portland cement cured under high pressure and high temperature conditions 被引量:2
4
作者 Jiankun Qin Xueyu Pang +2 位作者 Ashok Santra Guodong Cheng Hailong Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第1期191-203,共13页
In order to investigate the problem of long-term strength retrogression in oil well cement systems exposed to high pressure and high temperature(HPHT)curing conditions,various influencing factors,including cement sour... In order to investigate the problem of long-term strength retrogression in oil well cement systems exposed to high pressure and high temperature(HPHT)curing conditions,various influencing factors,including cement sources,particle sizes of silica flour,and additions of silica fume,alumina,colloidal iron oxide and nano-graphene,were investigated.To simulate the environment of cementing geothermal wells and deep wells,cement slurries were directly cured at 50 MPa and 200?C.Mineral compositions(as determined by X-ray diffraction Rietveld refinement),water permeability,compressive strength and Young’s modulus were used to evaluate the qualities of the set cement.Short-term curing(2e30 d)test results indicated that the adoption of 6 m m ultrafine crystalline silica played the most important role in stabilizing the mechanical properties of oil well cement systems,while the addition of silica fume had a detrimental effect on strength stability.Long-term curing(2e180 d)test results indicated that nano-graphene could stabilize the Young’s modulus of oil well cement systems.However,none of the ad-mixtures studied here can completely prevent the strength retrogression phenomenon due to their inability to stop the conversion of amorphous to crystalline phases. 展开更多
关键词 high pressure and high temperature(HPHT) Strength retrogression Young’s modulus Water permeability Rietveld method
下载PDF
High-pressure and high-temperature sintering of pure cubic silicon carbide:A study on stress-strain and densification
5
作者 刘金鑫 彭放 +5 位作者 马国龙 梁文嘉 何瑞琦 管诗雪 唐越 向晓君 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第9期498-505,共8页
Silicon carbide(SiC)is a high-performance structural ceramic material with excellent comprehensive properties,and is unmatched by metals and other structural materials.In this paper,raw SiC powder with an average grai... Silicon carbide(SiC)is a high-performance structural ceramic material with excellent comprehensive properties,and is unmatched by metals and other structural materials.In this paper,raw SiC powder with an average grain size of 5μm was sintered by an isothermal-compression process at 5.0 GPa and 1500?C;the maximum hardness of the sintered samples was31.3 GPa.Subsequently,scanning electron microscopy was used to observe the microscopic morphology of the recovered SiC samples treated in a temperature and extended pressure range of 0-1500?C and 0-16.0 GPa,respectively.Defects and plastic deformation in the SiC grains were further analyzed by transmission electron microscopy.Further,high-pressure in situ synchrotron radiation x-ray diffraction was used to study the intergranular stress distribution and yield strength under non-hydrostatic compression.This study provides a new viewpoint for the sintering of pure phase micron-sized SiC particles. 展开更多
关键词 high pressure and high temperature silicon carbide stress analysis DEFECT
下载PDF
A Comprehensive Method for the Optimization of Cement Slurry and to Avoid Air Channeling in High Temperature and High-Pressure Conditions
6
作者 Yanjun Li Wandong Zhang +3 位作者 Jiang Wu Yuhao Yang Chao Zhang Huanqiang Yang 《Fluid Dynamics & Materials Processing》 EI 2023年第5期1237-1248,共12页
Air channeling in the annulus between the casing and the cement sheath and/or between the cement sheath and formation is the main factor affecting the safe operation of natural gas wells at high temperatures and press... Air channeling in the annulus between the casing and the cement sheath and/or between the cement sheath and formation is the main factor affecting the safe operation of natural gas wells at high temperatures and pressures.Prevention of this problem requires,in general,excellent anti-channeling performances of the cement sheath.Three methods to predict such anti-channeling performances are proposed here,which use the weightless pressure of cement slurry,the permeability of cement stone and the volume expansion rate of cement sheath as input parameters.Guided by this approach,the anti-channeling performances of the cement slurry are evaluated by means of indoor experiments,and the cement slurry is optimized accordingly.The results show that the dangerous transition time of the cement slurry with optimized dosage of admixture is only 76 min,the permeability of cement stone is 0.005 md,the volume shrinkage at final setting is only 0.72%,and the anti-channeling performances are therefore maximized.The effective utilization of the optimized cement slurry in some representative wells(LD10–1-A1 and LD10–1-A2 in LD10–1 gas field)is also discussed. 展开更多
关键词 high temperature and high pressure cement slurry anti-channeling weightlessness pressure PERMEABILITY volume shrinkage
下载PDF
Development of a High Temperature and High Pressure Oil-Based Drilling Fluid Emulsion Stability Tester
7
作者 Huaiyuan Long Wu Chen +3 位作者 Dichen Tan Lanping Yang Shunyuan Zhang Song Wang 《Open Journal of Yangtze Oil and Gas》 2021年第2期25-35,共11页
When drilling deep wells and ultra-deep wells, the downhole high temperature and high pressure environment will affect the emulsion stability of oil-based drilling fluids. Moreover, neither the demulsification voltage... When drilling deep wells and ultra-deep wells, the downhole high temperature and high pressure environment will affect the emulsion stability of oil-based drilling fluids. Moreover, neither the demulsification voltage method nor the centrifugal method currently used to evaluate the stability of oil-based drilling fluids can reflect the emulsification stability of drilling fluids under high temperature and high pressure on site. Therefore, a high-temperature and high-pressure oil-based drilling fluid emulsion stability evaluation instrument is studied, which is mainly composed of a high-temperature autoclave body, a test electrode, a temperature control system, a pressure control system, and a test system. The stability test results of the instrument show that the instrument can achieve stable testing and the test data has high reliability. This instrument is used to analyze the factors affecting the emulsion stability of oil-based drilling fluids. The experimental results show that under the same conditions, the higher the stirring speed, the better the emulsion stability of the drilling fluid;the longer the stirring time, the better the emulsion stability of the drilling fluid;the greater the oil-water ratio, the better the emulsion stability of the drilling fluid. And the test results of the emulsification stability of oil-based drilling fluids at high temperature and high pressure show that under the same pressure, as the temperature rises, the emulsion stability of oil-based drilling fluids is significantly reduced;at the same temperature, the With the increase in pressure, the emulsion stability of oil-based drilling fluids is in a downward trend, but the decline is not large. Relatively speaking, the influence of temperature on the emulsion stability of oil-based drilling fluids is greater than that of pressure. 展开更多
关键词 Oil-Based Drilling Fluid EMULSIFICATION Demulsification Voltage testER high temperature and high pressure
下载PDF
Reasons resulting in the collapsed tubing near wellhead in high pressure and high temperature deep well during well testing and measures to prevent the collapsing
8
作者 CHEN Mian JIANG Xue-hai 《Journal of Energy and Power Engineering》 2009年第9期41-44,66,共5页
Because various reasons, the tubing near wellhead was collapsed during well testing in high pressure and high temperature deep well when the outer pressure was less than collapsing strength. To find the reasons in the... Because various reasons, the tubing near wellhead was collapsed during well testing in high pressure and high temperature deep well when the outer pressure was less than collapsing strength. To find the reasons in the abnormally collapse and countermeasures, first the quality of the tubing was checked. It was founded that the collapse was not resulted from the defect of the tubing. Then, force and stress exerted in the tubing was analyzed taking XS2 well as an example. The analysis results were concluded as follows. The collapsing strength of tubing decreased due to the axial tensile, which is seriously at the upper tubing especially. During injecting, the additional axial force that was caused by the temperature effect increased the tubing near wellhead to suffer axial tensile and further reduced the collapsing strength of tubing near wellhead. Reinforcing defect, prohibiting defect tubing to trip in hole, according to the calculation to impose appropriate annular pressure, selecting size nozzle to reverse pumping and controlling the reverse pumping speed and pressure, prohibiting to be opened flow and reducing or releasing the annular pressure can prevent the well testing tubing down-hole being collapsed at the wellhead. 展开更多
关键词 high pressure and high temperature deep well well testing: tubing COLLAPSE analysis
下载PDF
Development and application of multi-field coupled high-pressure triaxial apparatus for soil
9
作者 Xiu-yan Wang Lin Sun +6 位作者 Shuai-wei Wang Ming-yu Wang Jin-qiu Li Wei-chao Sun Jing-jing Wang Xi Zhu He Di 《Journal of Groundwater Science and Engineering》 2023年第3期308-316,共9页
The increasing severity of ground subsidence,ground fissure and other disasters caused by the excessive exploitation of deep underground resources has highlighted the pressing need for effective management.A significa... The increasing severity of ground subsidence,ground fissure and other disasters caused by the excessive exploitation of deep underground resources has highlighted the pressing need for effective management.A significant contributing factor to the challenges faced is the inadequacy of existing soil mechanics experimental instruments in providing effective indicators,creating a bottleneck in comprehensively understanding the mechanisms of land subsidence.It is urgent to develop a multi-field and multi-functional soil mechanics experimental system to address this issue.Based soil mechanics theories,the existing manufacturing capabilities of triaxial apparatus and the practical demands of the test system,a set of multi-field coupled high-pressure triaxial system is developed tailored for testing deep soils(at depths of approximately 3000 m)and soft rock.This system incorporates specialized design elements such as high-pressure chamber and horizontal deformation testing devices.In addition to the conventional triaxial tester functions,its distinctive feature encompass a horizontal deformation tracking measuring device,a water release testing device and temperature control device for the sample.This ensemble facilitates testing of horizontal and vertical deformation water release and other parameters of samples under a specified stress conditions,at constant or varying temperature ranging from-40℃–90℃.The accuracy of the tested parameters meets the requirements of relevant current specifications.The test system not only provides scientifically robust data for revealing the deformation and failure mechanism of soil subjected to extreme temperature,but also offers critical data support for major engineering projects,deep exploration and mitigation efforts related to soil deformation-induced disaster. 展开更多
关键词 Multi-field coupled triaxial test high and low temperature Horizontal deformation Compressed water release
下载PDF
High temperature and high pressure rheological properties of high-density water-based drilling fluids for deep wells 被引量:10
10
作者 Wang Fuhua Tan Xuechao +3 位作者 Wang Ruihe Sun Mingbo Wang Li Liu Jianghua 《Petroleum Science》 SCIE CAS CSCD 2012年第3期354-362,共9页
To maintain tight control over rheological properties of high-density water-based drilling fluids, it is essential to understand the factors influencing the theology of water-based drilling fluids. This paper examines... To maintain tight control over rheological properties of high-density water-based drilling fluids, it is essential to understand the factors influencing the theology of water-based drilling fluids. This paper examines temperature effects on the rheological properties of two types of high-density water-based drilling fluids (fresh water-based and brine-based) under high temperature and high pressure (HTHP) with a Fann 50SL rheometer. On the basis of the water-based drilling fluid systems formulated in laboratory, this paper mainly describes the influences of different types and concentration of clay, the content of a colloid stabilizer named GHJ-1 and fluid density on the rheological parameters such as viscosity and shear stress. In addition, the effects of aging temperature and aging time of the drilling fluid on these parameters were also examined. Clay content and proportions for different densities of brine-based fluids were recommended to effectively regulate the rheological properties. Four theological models, the Bingham, power law, Casson and H-B models, were employed to fit the rheological parameters. It turns out that the H-B model was the best one to describe the rheological properties of the high-density drilling fluid under HTHP conditions and power law model produced the worst fit. In addition, a new mathematical model that describes the apparent viscosity as a function of temperature and pressure was established and has been applied on site. 展开更多
关键词 high-density water-based drilling fluid rheological behavior CLAY high temperature high pressure linear fitting rheological model mathematical model
下载PDF
A new and reliable model for predicting methane viscosity at high pressures and high temperatures 被引量:6
11
作者 Ehsan Heidaryan Jamshid Moghadasi Amir Salarabadi 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2010年第5期552-556,共5页
In recent years, there has been an increase of interest in the flow of gases at relatively high pressures and high temperatures. Hydrodynamic calculation of the energy losses in the flow of gases in conduits, as well ... In recent years, there has been an increase of interest in the flow of gases at relatively high pressures and high temperatures. Hydrodynamic calculation of the energy losses in the flow of gases in conduits, as well as through the porous media constituting natural petroleum reservoirs, requires knowledge of the viscosity of the fluid at the pressure and temperature involved. Although there are numerous publications concerning the viscosity of methane at atmospheric pressure, there appears to be little information available relating to the effect of pressure and temperature upon the viscosity. A survey of the literature reveals that the disagreements between published data on the viscosity of methane are common and that most investigations have been conducted over restricted temperature and pressure ranges. Experimental viscosity data for methane are presented for temperatures from 320 to 400 K and pressures from 3000 to 140000 kPa by using falling body viscometer. A summary is given to evaluate the available data for methane, and a comparison is presented for that data common to the experimental range reported in this paper. A new and reliable correlation for methane gas viscosity is presented. Predicted values are given for temperatures up to 400 K and pressures up to 140000 kPa with Average Absolute Percent Relative Error (EABS) of 0.794. 展开更多
关键词 METHANE VISCOSITY falling body viscometer high pressures high temperatures CORRELATION
下载PDF
Pressure Prediction for High-Temperature and High-Pressure Formation and Its Application to Drilling in the Northern South China Sea 被引量:4
12
作者 WANGZhenfeng XIEXinong 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2004年第3期640-643,共4页
There are plentiful potential hydrocarbon resources in the Yinggehai and Qiongdongnan basins in the northern South China Sea. However, the special petrol-geological condition with high formation temperature and pressu... There are plentiful potential hydrocarbon resources in the Yinggehai and Qiongdongnan basins in the northern South China Sea. However, the special petrol-geological condition with high formation temperature and pressure greatly blocked hydrocarbon exploration. The conventional means of drills, including methods in the prediction and monitoring of underground strata pressure, can no longer meet the requirements in this area. The China National Offshore Oil Corporation has allocated one well with a designed depth of 3200 m and pressure coefficient of 2.3 in the Yinggehai Basin (called test well in the paper) in order to find gas reservoirs in middle-deep section in the Miocene Huangliu and Meishan formations at the depth below 3000 m. Therefore, combined with the '863' national high-tech project, the authors analyzed the distribution of overpressure in the Yinggehai and Qiongdongnan basins, and set up a series of key technologies and methods to predict and monitor formation pressure, and then apply the results to pressure prediction of the test well. Because of the exact pressure prediction before and during drilling, associated procedure design of casing and their allocation in test well has been ensured to be more rational. This well is successfully drilled to the depth of 3485 m (nearly 300 m deeper than the designed depth) under the formation pressure about 2.3 SG (EMW), which indicate that a new step in the technology of drilling in higher temperature and pressure has been reached in the China National Offshore Oil Corporation. 展开更多
关键词 formation pressure high temperature OVERpressure pressure prediction Yinggehai Basin South China Sea
下载PDF
Experimental Study on the Electrical Conductivity of Orthopyroxene at High Temperature and High Pressure under Different Oxygen Fugacities 被引量:4
13
作者 DAI Lidong LI Heping +3 位作者 LIU Congqiang SHAN Shuangming CUI Tongdi SU Genli 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2005年第6期803-809,共7页
At presure 1.0-4.0 GPa and temperature 1073-1423 K and under oxygen partial pressure conditions, a YJ-3000t multi-anvil solid high-pressure apparatus and Sarltron-1260 Impedance/Gain-Phase analyzer were employed to co... At presure 1.0-4.0 GPa and temperature 1073-1423 K and under oxygen partial pressure conditions, a YJ-3000t multi-anvil solid high-pressure apparatus and Sarltron-1260 Impedance/Gain-Phase analyzer were employed to conduct an in-situ measurement of the electrical conductivity of orthopyroxene. The buffering reagents consist of Ni+NiO, Fe+Fe3O4, Fe+FeO and Mo+MoO2 in order to control the environmental oxygen fugacity. Experimental results made clear that: (1) within the measuring frequency range from 10-1 to 106 Hz, the complex impedance (R) is of intensive dependence on the frequency; (2) The electrical conductivity (a) tends to increase along to the rise of temperature (T), and Log a vs. 1/ T fit the Arrenhius linear relations; (3) Under the control of oxygen buffer Fe+Fe3O4, with the rise of pressure, the activation enthalpy tends to increase whereas the electrical conductivity tends to decrease. The activation energy and activation volume of the main current carders of orthopyroxene have been obtained, which are (1.715±0.035) eV and (0.03±0.01) cm^3/mol, respectively; (4) Under given pressure and temperature, the electrical conductivity tends to increase with increasing oxygen fugacity, while under given pressure the activation enthalpy tends to decrease with increasing oxygen fugacity; and (5) The sample's small polarons mechanism has provided a reasonable explanations to the conduction behavior at high temperature and high pressure. 展开更多
关键词 ORTHOPYROXENE high temperature and high pressure electrical conductivity oxygen fugacity small polaron
下载PDF
Rheological properties of oil-based drilling fluids at high temperature and high pressure 被引量:3
14
作者 赵胜英 鄢捷年 +1 位作者 舒勇 张洪霞 《Journal of Central South University》 SCIE EI CAS 2008年第S1期457-461,共5页
The rheological properties of two kinds of oil-based drilling fluids with typically composition were studied at pressures up to 138 MPa and temperatures up to 204 ℃ using the RheoChan 7400 Rheometer.The experimental ... The rheological properties of two kinds of oil-based drilling fluids with typically composition were studied at pressures up to 138 MPa and temperatures up to 204 ℃ using the RheoChan 7400 Rheometer.The experimental results show that the apparent viscosity,plastic viscosity and yield point decrease with the increase of temperature,and increase with the increase of pressure.The effect of pressure on the apparent viscosity,plastic viscosity and yield point is considerable at ambient temperature.However,this effect gradually reduces with the increase of temperature.The major factor influencing the rheological properties of oil-based drilling fluids is temperature instead of pressure in the deep sections of oil wells.On the basis of numerous experiments,the model for predict the apparent viscosity,plastic viscosity and yield point of oil-based drilling fluids at high temperature and pressure was established using the method of regressive analysis.It is confirmed that the calculated data are in good agreement with the measured data,and the correlation coefficients are more than 0.98.The model is convenient for use and suitable for the application in drilling operations. 展开更多
关键词 OIL-BASED DRILLING FLUIDS high temperature high pressure RHEOLOGICAL property MATHEMATICAL model
下载PDF
Gas-Liquid Mass Transfer in a Slurry Bubble Column Reactor under High Temperature and High Pressure 被引量:6
15
作者 杨卫国 王金福 金涌 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2001年第3期253-257,共5页
The gas-liquid mass transfer of H2 and CO in a high temperature and high-pressure three-phase slurry bubble column reactor is studied. The gas-liquid volumetric mass transfer coefficients kLa are obtained by measuring... The gas-liquid mass transfer of H2 and CO in a high temperature and high-pressure three-phase slurry bubble column reactor is studied. The gas-liquid volumetric mass transfer coefficients kLa are obtained by measuring the dissolution rate of H2 and CO. The influences of the main operation conditions, such as temperature, pressure, superficial gas velocity and solid concentration, are studied systematically. Two empirical correlations are proposed to predict kLa values for H2 and CO in liquid paraffin/solid particles slurry bubble column reactors. 展开更多
关键词 gas-liquid mass transfer high temperature high pressure slurry bubble column
下载PDF
Growth and annealing study of hydrogen-doped single diamond crystals under high pressure and high temperature 被引量:4
16
作者 李勇 贾晓鹏 +5 位作者 胡美华 刘晓兵 颜丙敏 周振翔 张壮飞 马红安 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第5期652-656,共5页
A series of diamond crystals doped with hydrogen is successfully synthesized using LiH as the hydrogen source in a catalyst-carbon system at a pressure of 6.0 GPa and temperature ranging from 1255 C to 1350 C.It is sh... A series of diamond crystals doped with hydrogen is successfully synthesized using LiH as the hydrogen source in a catalyst-carbon system at a pressure of 6.0 GPa and temperature ranging from 1255 C to 1350 C.It is shown that the high temperature plays a key role in the incorporation of hydrogen atoms during diamond crystallization.Fourier transform infrared micro-spectroscopy reveals that most of the hydrogen atoms in the synthesized diamond are incorporated into the crystal structure as sp 3-CH 2-symmetric(2850 cm-1) and sp 3 CH 2-antisymmetric vibrations(2920 cm-1).The intensities of these peaks increase gradually with an increase in the content of the hydrogen source in the catalyst.The incorporation of hydrogen impurity leads to a significant shift towards higher frequencies of the Raman peak from 1332.06 cm-1 to 1333.05 cm-1 and gives rise to some compressive stress in the diamond crystal lattice.Furthermore,hydrogen to carbon bonds are evident in the annealed diamond,indicating that the bonds that remain throughout the annealing process and the vibration frequencies centred at 2850 and 2920 cm-1 have no observable shift.Therefore,we suggest that the sp 3 C-H bond is rather stable in diamond crystals. 展开更多
关键词 high pressure and high temperature hydrogen-doped diamond crystals ANNEALING LiH additives
下载PDF
Polycrystalline cubic boron nitride prepared with cubic-hexagonal boron nitride under high pressure and high temperature 被引量:4
17
作者 Ming Yang Zi-Li Kou +8 位作者 Teng Liu Jing-Rui Lu Fang-Ming Liu Yin-Juan Liu Lei Qi Wei Ding Hong-Xia Gong Xiao-Lin Ni Duan-Wei He 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第5期424-429,共6页
Polycrystalline cubic boron nitride(Pc BN)compacts,using the mixture of submicron cubic boron nitride(c BN)powder and hexagonal BN(h BN)powder as starting materials,were sintered at pressures of 6.5–10.0 GPa and temp... Polycrystalline cubic boron nitride(Pc BN)compacts,using the mixture of submicron cubic boron nitride(c BN)powder and hexagonal BN(h BN)powder as starting materials,were sintered at pressures of 6.5–10.0 GPa and temperature of1750℃without additives.In this paper,the sintering behavior and mechanical properties of samples were investigated.The XRD patterns of samples reveal that single cubic phase was observed when the sintering pressure exceeded 7.5 GPa and h BN contents ranged from 20 vol.%to 24 vol.%,which is ascribed to like-internal pressure generated at grain-to-grain contact under high pressure.Transmission electron microscopy(TEM)analysis shows that after high pressure and high temperature(HPHT)treatments,the submicron c BN grains abounded with high-density nanotwins and stacking faults,and this contributed to the outstanding mechanical properties of Pc BN.The pure bulk Pc BN that was obtained at 7.7 GPa/1750℃possessed the outstanding properties,including a high Vickers hardness(~61.5 GPa),thermal stability(~1290℃in air),and high density(~3.46 g/cm^(3)). 展开更多
关键词 PcBN compact high temperature and high pressure sintering PcBN without additive
下载PDF
Effects of FeNi-phosphorus-carbon system on crystal growth of diamond under high pressure and high temperature conditions 被引量:2
18
作者 胡美华 毕宁 +5 位作者 李尚升 宿太超 周爱国 胡强 贾晓鹏 马红安 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第3期398-401,共4页
This paper reports the crystal growth of diamond from the Fe Ni–Carbon system with additive phosphorus at high pressures and high temperatures of 5.4–5.8 GPa and 1280–1360°C. Attributed to the presence of addi... This paper reports the crystal growth of diamond from the Fe Ni–Carbon system with additive phosphorus at high pressures and high temperatures of 5.4–5.8 GPa and 1280–1360°C. Attributed to the presence of additive phosphorus,the pressure and temperature condition, morphology, and color of diamond crystals change obviously. The pressure and temperature condition of diamond growth increases evidently with the increase of additive phosphorus content and results in the moving up of the V-shape region. The surfaces of the diamonds also become coarse as the additive phosphorus added in the growth system. Raman spectra indicate that diamonds grown from the Fe Ni-phosphorus-carbon system have more crystal defects and impurities. This work provides a new way to enrich the doping of diamond and improve the experimental exploration for future material applications. 展开更多
关键词 DIAMOND high pressure and high temperature additive phosphorus
下载PDF
Prospect of HDR geothermal energy exploitation in Yangbajing,Tibet,China,and experimental investigation of granite under high temperature and high pressure 被引量:2
19
作者 Yangsheng Zhao Zijun Feng +3 位作者 Baoping Xi Jinchang Zhao Zhijun Wan Anchao Zhou 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2011年第3期260-269,共10页
Hot dry rock (HDR) geothermal energy, almost inexhaustible green energy, was first put forward in the 1970s. The development and testing of HDR geothermal energy are well reported in USA, Japan, UK, France and other... Hot dry rock (HDR) geothermal energy, almost inexhaustible green energy, was first put forward in the 1970s. The development and testing of HDR geothermal energy are well reported in USA, Japan, UK, France and other countries or regions. In this paper, the geological characters of Yangbajing basin were first analyzed, including the continental dynamic environments to form HDR geothermal fields in Tibet, the tectonic characteristics of south slope of Nyainqentanglha and Dangxiong-Yangbajing basin, and the in-situ stresses based on the investigations conducted, and then the site-specific mining scheme of HDR geothermal resources was proposed. For the potential development of HDR geothermal energy, a series of experiments were conducted on large-scale granite samples, 200 mm in diameter and 400 mm in length, at high temperature and high triaxial pressure for cutting fragmentation and borehole stability. For the borehole stability test, a hole of 40 mm in diameter and 400 mm in length was aforehand drilled in the prepared intact granite sample. The results indicate that the cutting velocity obviously increases with temperature when bit pressure is over a certain value, while the unit rock-breaking energy consumption decreases and the rock-breaking efficiency increases with temperature at the triaxial pressure of 100 MPa. The critical temperature and pressure that can result in intensive damage to granite are 400-500℃ and 100-125 MPa, respectively. 展开更多
关键词 hot dry rock (HDR) geothermal energy exploitation high temperature and high pressure cutting fragmentation borehole stability
下载PDF
B-C Bond in Diamond Single Crystal Synthesized with h-BN Additive at High Pressure and High Temperature 被引量:2
20
作者 李勇 周振翔 +4 位作者 管学茂 李尚升 王应 贾晓鹏 马红安 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第2期137-140,共4页
The synthesis of diamond single crystal in the Fe64Ni36-C system with h-BN additive is investigated at pressure 6.5 GPa and temperature range of 1300-1400℃. The color of the obtained diamond crystals translates from ... The synthesis of diamond single crystal in the Fe64Ni36-C system with h-BN additive is investigated at pressure 6.5 GPa and temperature range of 1300-1400℃. The color of the obtained diamond crystals translates from yellow to dark green with increasing the h-BN addition. Fourier-transform infrared (FTIR) results indicate that sp2 hybridization B-N-B and B-N structures generate when the additive content reaches a certain value in the system. The two peaks are located at 745 and 1425cm-1, respectively. Fhrthermore, the FTIR characteristic peak resulting from nitrogen pairs is noticed and it tends to vanish when the h-BN addition reaches 1.1 wt%. Furthermore, Raman peak of the synthesized diamond shifts down to a lower wavenumber with increasing the h-BN ~ddition content in the synthesis system. 展开更多
关键词 BN in of B-C Bond in Diamond Single Crystal Synthesized with h-BN Additive at high pressure and high temperature with
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部