The high temperature deformation behaviors of α+β type titanium alloy TC11 (Ti-6.5Al-3.5Mo-1.5Zr-0.3Si) with coarse lamellar starting microstructure were investigated based on the hot compression tests in the tem...The high temperature deformation behaviors of α+β type titanium alloy TC11 (Ti-6.5Al-3.5Mo-1.5Zr-0.3Si) with coarse lamellar starting microstructure were investigated based on the hot compression tests in the temperature range of 950-1100 ℃ and the strain rate range of 0.001-10 s-1. The processing maps at different strains were then constructed based on the dynamic materials model, and the hot compression process parameters and deformation mechanism were optimized and analyzed, respectively. The results show that the processing maps exhibit two domains with a high efficiency of power dissipation and a flow instability domain with a less efficiency of power dissipation. The types of domains were characterized by convergence and divergence of the efficiency of power dissipation, respectively. The convergent domain in a+fl phase field is at the temperature of 950-990 ℃ and the strain rate of 0.001-0.01 s^-1, which correspond to a better hot compression process window of α+β phase field. The peak of efficiency of power dissipation in α+β phase field is at 950 ℃ and 0.001 s 1, which correspond to the best hot compression process parameters of α+β phase field. The convergent domain in β phase field is at the temperature of 1020-1080 ℃ and the strain rate of 0.001-0.1 s^-l, which correspond to a better hot compression process window of β phase field. The peak of efficiency of power dissipation in ℃ phase field occurs at 1050 ℃ over the strain rates from 0.001 s^-1 to 0.01 s^-1, which correspond to the best hot compression process parameters of ,8 phase field. The divergence domain occurs at the strain rates above 0.5 s^-1 and in all the tested temperature range, which correspond to flow instability that is manifested as flow localization and indicated by the flow softening phenomenon in stress-- strain curves. The deformation mechanisms of the optimized hot compression process windows in a+β and β phase fields are identified to be spheroidizing and dynamic recrystallizing controlled by self-diffusion mechanism, respectively. The microstructure observation of the deformed specimens in different domains matches very well with the optimized results.展开更多
A series of trial tests for high deformation (HD) X70 pipeline steel plates were performed in NISCO,and the technical routes as thermal mechanical controlled rolling process (TMCP),TMCP + Quenching (Q) and TMCP +Q &am...A series of trial tests for high deformation (HD) X70 pipeline steel plates were performed in NISCO,and the technical routes as thermal mechanical controlled rolling process (TMCP),TMCP + Quenching (Q) and TMCP +Q & tempering (T) were studied systematically through the plate shape quality,properties and microstructure characters.The results show that problems as plate shape and inhomogeneous microstructures are for finish rolling at low temperature and high cooling rate after the rolling by the route of TMCP.By the route of TMCP+Q,the yield strength (YS) of the trial steels is not sufficient.By the route of TMCP+QT,the YS is enhanced,as well as good toughness and plasticity due to the martensite decomposition at low temperature tempering process,and 4 sheets of HD X70 pipeline steel plates by the route TMCP+QT with superior plate shape quality,microstructure and comprehensive properties were successfully developed in NISCO.展开更多
Cylindrical samples of Ni-based GH4037 alloy were compressed at solid temperatures(1200,1250 and 1300℃) and semi-solid temperatures(1340,1350,1360,1370 and 1380℃) with different strain rates of 0.01,0.1 and 1 s-1.Hi...Cylindrical samples of Ni-based GH4037 alloy were compressed at solid temperatures(1200,1250 and 1300℃) and semi-solid temperatures(1340,1350,1360,1370 and 1380℃) with different strain rates of 0.01,0.1 and 1 s-1.High temperature deformation behavior and microstructure evolution of GH4037 alloy were investigated.The results indicated that flow stress decreased rapidly at semi-solid temperatures compared to that at solid temperatures.Besides,the flow stress continued to increase after reaching the initial peak stress at semi-solid temperatures when the strain rate was 1 s-1.With increasing the deformation temperature,the size of initial solid grains and recrystallized grains increased.At semi-solid temperatures,the grains were equiaxed,and liquid phase existed at the grain boundaries and inside the grains.Discontinuous dynamic recrystallization(DDRX) characterized by grain boundary bulging was the main nucleation mechanism for GH4037 alloy.展开更多
Recrystallized grains, less than 200 nm in diameter were observed in heavily shear zones of a high strength low alloy steel and a Ni-based alloy, and Also grain refinement, less than 3 μm in diameter was made in high...Recrystallized grains, less than 200 nm in diameter were observed in heavily shear zones of a high strength low alloy steel and a Ni-based alloy, and Also grain refinement, less than 3 μm in diameter was made in high purity aluminum by ECAE at ambient temperature. The experimental results showed that high strain rate and large deformation could induce dynamic recrystallization.Based on dislocation dynamics and grain orientation change enhanced by plastic deformation,a model for the recrystallization process is developed. The model is used to explain the ultra fine grains which are formed at a temperature still much lower than that for the conventional recrystallization展开更多
Fine grained Mg-7Gd-5Y-1.2Nd-0.5Zr alloy was investigated by dynamic compression tests using a Split Hopkinson Pressure Bar under the strain rates in the range 1000-2000 s^(-1) and the temperature range 293-573 K alon...Fine grained Mg-7Gd-5Y-1.2Nd-0.5Zr alloy was investigated by dynamic compression tests using a Split Hopkinson Pressure Bar under the strain rates in the range 1000-2000 s^(-1) and the temperature range 293-573 K along the normal direction.The microstructure was measured by optical microscopy,electron back-scattering diffraction,transmission electron microscopy and X-ray diffractometry.The results showed that Mg-7Gd-5Y-1.2Nd-0.5Zr alloy had the positive strain rate strengthening effect and thermal softening effect at high temperature.The solid solution of Gd and Y atoms in Mg-7Gd-5Y-1.2Nd-0.5Zr alloy reduced the asymmetry of α-Mg crystals and changed the critical shear stress of various deformation mechanisms.The main deformation mechanisms were prismatic slip and pyramidal(a)slip,{102}tension twinning,and dynamic recrystallization caused by local deformation such as particle-stimulated nucleation.c 2020 Published by Elsevier B.V.on behalf of Chongqing University.展开更多
The behavior of high temperature deformation and recrystallization of W9Mo3Cr4V steel have been studied in this paper. Dynamic precipitation during deformation has also been investigated. In W9Mo3Cr4V steel, stress ...The behavior of high temperature deformation and recrystallization of W9Mo3Cr4V steel have been studied in this paper. Dynamic precipitation during deformation has also been investigated. In W9Mo3Cr4V steel, stress strain curves exhibit many features. The deformation structures and the effects of deformation parameters on dynamic recrystallization are more complicated than those in low alloy steels. For W9Mo3Cr4V steel, there is a large number of residual carbides on the matrix at high temperature. Also, many second carbides precipitate from the matrix during high temperature deformation. These two kinds of carbides (especially the latter) make the behavior of deformation and dynamic recrystallization in W9Mo3Cr4V steel different from those in low alloy steels. ABSTRACT:The behavior of high temperature deformation and recrystallization of W9Mo3Cr4V steel have been studied in this paper. Dynamic precipitation during deformation has also been investigated. In W9Mo3Cr4V steel, stress strain curves exhibit many features. The deformation structures and the effects of deformation parameters on dynamic recrystallization are more complicated than those in low alloy steels. For W9Mo3Cr4V steel, there is a large number of residual carbides on the matrix at high temperature. Also, many second carbides precipitate from the matrix during high temperature deformation. These two kinds of carbides (especially the latter) make the behavior of deformation and dynamic recrystallization in W9Mo3Cr4V steel different from those in low alloy steels.展开更多
The behavior of TiAl interrnetallic compound of Ll_0 type under compressive deformation at high temperatures and its recrystallization microstructure have been studied.The compressive proof stress of the polycrystalli...The behavior of TiAl interrnetallic compound of Ll_0 type under compressive deformation at high temperatures and its recrystallization microstructure have been studied.The compressive proof stress of the polycrystalline TiAl was found to be positive temperature dependence as same as the single crystai one.The correlation of the flow stress together with strain rate and deformation temperature is in good agreement with the expression: ε=Aσ_p^nexp(-Q/RT) Adjusting the deformation temperature and strain rate to a decrease in flow stress of alloy down to below its brittle fracture stress may improve successfully not only the hot working of the TiAl-base alloy but also the fineness of the recrystallized grains.展开更多
The effects of plastic deformation and H2 S on fracture toughness of high strength casing steel(C110 steel) were investigated. The studied casing specimens are as follows: original casing, plastic deformation(PD)...The effects of plastic deformation and H2 S on fracture toughness of high strength casing steel(C110 steel) were investigated. The studied casing specimens are as follows: original casing, plastic deformation(PD) casing and PD casing after being immersed in NACE A solution saturated with H2S(PD+H2S). Instrumented impact method was employed to evaluate the impact behaviors of the specimens, meanwhile, dynamic fracture toughness(JId) was calculated by using Rice model and Schindler model. The experimental results show that dynamic fracture toughness of the casing decreases after plastic deformation. Compared with that of the original casing and PD casing, the dynamic fracture toughness decreases further when the PD casing immersed in H2 S, moreover, there are ridge-shaped feature and many secondary cracks present on the fracture surface of the specimens. Impact fracture mechanism of the casing is proposed as follows: the plastic deformation results in the increase of defect density of materials where the atomic hydrogen can accumulate in reversible or irreversible traps and even recombine to form molecular hydrogen, subsequently, the casing material toughness decreases greatly.展开更多
This work concerns with the high temperature deformation of internally oxidized Al2O3/Cu composites. The investigation revealed that dispersive alumina can obstruct dislocation sliding and define the subgrain size the...This work concerns with the high temperature deformation of internally oxidized Al2O3/Cu composites. The investigation revealed that dispersive alumina can obstruct dislocation sliding and define the subgrain size thereby improve significantly the strength of the materials at high temperature. The sliding of dislocations is a main deformation mechanism in the given temperature range. The sliding of grain boundary and diffusive creep play important roles at high temperature and low strain rate. The dispersoids can raise the recrystallization temperature to higher than 1223 K. Dynamic recovery is a main softening way under the experimental conditions. Higher deformation rate and lower deformation temperature imply a higher flow stress.展开更多
The security of use for Al-Li alloy will be greatly influenced by the damage degree of plastic deformation within i t at high temperature . Based on continuum damage mechanics theory, the damage e volution of Al-5.4...The security of use for Al-Li alloy will be greatly influenced by the damage degree of plastic deformation within i t at high temperature . Based on continuum damage mechanics theory, the damage e volution of Al-5.44Mg-2.15Li-0.12Zr alloy during plastic deforming at high te mperature is simulated by using the damage evolution model of high temperature p lastic deformation. The changing rule of its inner damage with deformation tempe rature, strain rate and strain is gained in this paper. The equation of damage e volution for high temperature plastic deformation is developed, providing an aca demic basis for the technology of plastic process of Al-Li alloys.展开更多
The computer simulation of Al three-dimensional crystallite containing grain boundary of special type was carried out and its behaviour under high rate loading was investigated. The molecular dynamics method was used ...The computer simulation of Al three-dimensional crystallite containing grain boundary of special type was carried out and its behaviour under high rate loading was investigated. The molecular dynamics method was used and interaction betwen atoms was described based on pseudopotential method. Vortical character of the atom movements in the grain boundary region is realized under shear loading in certain directions. Back and forth movements of atoms in the direction which is perpendicular to the shear also arise. Amplitude of such movements is approximately equal to an interplanar distance in this direction.展开更多
Yielding support is often used in the squeezing tunnel to prevent damage to the lining induced by large deformation of the surrounding rock.Highly Deformable Elements(HDE)which is often installed along the circumferen...Yielding support is often used in the squeezing tunnel to prevent damage to the lining induced by large deformation of the surrounding rock.Highly Deformable Elements(HDE)which is often installed along the circumferential direction of the shotcrete lining is a common type of yielding support.To determine the yield parameters of HDE,the support characteristic of the lining using HDE and the ground pressure considering strain-softening of soft rock were analyzed by an analytical method.The analytical solution showed that when considering the strain-softening of squeezing ground,the ground pressure has a non-zero minimum value.The minimum value of ground stress can be used to determine the constant yield stress of the HDE,and the corresponding deformation of the minimum ground pressure can be used to determine the deformation capacity of the HDE.Based on the variation in the design constant yield stress and yield displacement of HDE with the in-situ stress and the mechanical parameters of the soft rock,equations were proposed for determining of the yield parameters of the HDE.展开更多
The hot deformation behavior of homogenized zinc alloy was investigated through uniaxial compression test on a Gleeble-1500 thermal-mechanical simulator within a temperature range of 230-380°C and a strain rate r...The hot deformation behavior of homogenized zinc alloy was investigated through uniaxial compression test on a Gleeble-1500 thermal-mechanical simulator within a temperature range of 230-380°C and a strain rate range of 0.01-10 s -1 ,the corresponding flow curves and their characters were determined and analyzed,and microstructures were studied by optical,SEM and TEM microscopy.The results indicated that the microstructure evolution of zinc alloy during hot deformation involves the spheroidization of the phase of TiZn15,coarsening of the precipitated phase and dynamic recrystallization(DRX)of the phase of matrix,leading to the formation of the polyphase(η+ε+TiZn15)structure.The spheroidization of the phase of TiZn15 during hot deformation was beneficial to the particle nucleation stimulated and then promoted to DRX of matrix.The dynamic recrystallization grain size of the matrix phase decreased firstly and then increased with elevating the temperature,and the degree of DRX became more complete when the strain rate and strain became larger.Hot deformation accelerated the diffusion of Cu atom,which resulted in the coarsening of the precipitated phase.Thus,the microstructure was refined owing to the pinning effect of the precipitated phase.展开更多
The Ailaoshan-Red River(ASRR) shear zone is one of the major Southeast Asian tectonic discontinuities that have figured the present tectonic framework of the eastern Tibet.Several metamorphic massifs are distributed...The Ailaoshan-Red River(ASRR) shear zone is one of the major Southeast Asian tectonic discontinuities that have figured the present tectonic framework of the eastern Tibet.Several metamorphic massifs are distributed linearly along the shear zone,e.g.Xuelongshan,Diancangshan, Ailaoshan and Day Nui Con Voi from north to south.They bear a lot of lines of evidence for the tectonic evolution of the eastern Tibetan at different crustal levels in different tectonic stages.Controversy still exists on the deformation structures,microstructures and their relationship with metamorphisms along the ASRR.In this paper detailed microstructural and EBSD(Electron Backscattered Diffraction) fabric analysis of some highly sheared granitic rocks from different massifs along the ASRR are conducted.High temperature structures and microstructures are preserved in unsheared gneisses,in weakly sheared xenoliths or in some parts of the highly sheared rocks(mylonites).Several types of high temperature quartz c-axis fabrics show symmetrical patterns or transitions from symmetrical to asymmetrical patterns.The former are attributed to coaxial deformation during regional shortening in an early stage of the Indian-Eurasian tectonic interaction and the latter are related to the transitions from coaxial compression to noncoaxial shearing during the post-collisional ASRR left lateral shearing.展开更多
To control the superplastic flow and fracture and examine the variation in deformation energy,the stress and grain size of Mg-7.28Li-2.19Al-0.091Y alloy were obtained using tensile testing and microstructure quantific...To control the superplastic flow and fracture and examine the variation in deformation energy,the stress and grain size of Mg-7.28Li-2.19Al-0.091Y alloy were obtained using tensile testing and microstructure quantification,and new high temperature deformation energy models were established.Results show that the grain interior deformation energy increases with increasing the strain rate and decreases with increasing the temperature.The variation in the grain boundary deformation energy is opposite to that in the grain interior deformation energy.At a given temperature,critical cavity nucleation energy decreases with increasing strain rate and cavity nucleation becomes easy,whereas at a given strain rate,critical cavity nucleation energy increases with increasing temperature and cavity nucleation becomes difficult.The newly established models of the critical cavity nucleation radius and energy provide a way for predicting the initiation of microcrack and improving the service life of the forming parts.展开更多
Static recrystallization of a high strain rate compressed Mg-1 Zn(wt.%)alloy was investigated using electron backscattered diffraction(EBSD).A novel 53°1010 structure was observed in the as-deformed alloy,which s...Static recrystallization of a high strain rate compressed Mg-1 Zn(wt.%)alloy was investigated using electron backscattered diffraction(EBSD).A novel 53°1010 structure was observed in the as-deformed alloy,which showed a{1012}-{1012}double twin relationship with the matrix.When the as-deformed alloy was annealed at 200°C,the{1011}compression twins and{1011}-{1012}double twins showed a higher priority to recrystallize.In addition,the coarse{1012}tension twins and their inner double twins were preferentially to recrystallize,while the lenticular tension twins had little impact on the recrystallization.Therefore,obtaining more compression twins or coarse twins instead of lenticular tension twins can be an effective approach to manipulate recrystallization process in deformed Mg alloys.展开更多
With TEM、SEM, various high temperature deformed structures in W9Mo3Cr4V steel were investigated. The sub structures,recrystallized nuclei, as well as the dynamic precipitation were also studied and analyzed. The r...With TEM、SEM, various high temperature deformed structures in W9Mo3Cr4V steel were investigated. The sub structures,recrystallized nuclei, as well as the dynamic precipitation were also studied and analyzed. The relationship between recrystallized structures and dynamic precipitation was discussed. The results showed that the deformed structures in W9Mo3Cr4V steel are more complicated than those in low alloy steels. Because W9Mo3Cr4V steel is a high speed steel, there are a large number of residual carbides on the matrix. Also, much dynamic precipitating carbides will precipitate during deformation at high temperature.展开更多
The hot deformation behavior of TiNiFe shape memory alloy was studied by isothermal compression tests.It was performed on a Gleeble-3500 thermal simulation machine at deformation temperature of 750 to 1050 ℃ and stra...The hot deformation behavior of TiNiFe shape memory alloy was studied by isothermal compression tests.It was performed on a Gleeble-3500 thermal simulation machine at deformation temperature of 750 to 1050 ℃ and strain rate of 0.01 to 10.00 s^(-1) with maximum strain of 0.8.Deformation mechanism was investigated by the aid of true stress-true strain curves,kinetic analysis and processing map.The constitutive relationship was established in the form of Arrhenius-type hyperbolic-sine equation,and the apparent activation energy was calculated to be approximately 200 kJ·mol^(-1).The processing maps of TiNiFe alloy were appreciably influenced by true strain.展开更多
In order to investigate the physical and mechanical properties of sandstone containing fissures after exposure to high temperatures,fissures with different angles α were prefabricated in the plate sandstone samples,a...In order to investigate the physical and mechanical properties of sandstone containing fissures after exposure to high temperatures,fissures with different angles α were prefabricated in the plate sandstone samples,and the processed samples were then heated at 5 different temperatures.Indoor uniaxial compression was conducted to analyze the change rules of physical properties of sandstone after exposure to high temperature,and the deformation,strength and failure characteristics of sandstone containing fissures.The results show that,with increasing temperature,the volume of sandstone increases gradually while the quality and density decrease gradually,and the color of sandstone remains basically unchanged while the brightness increases markedly when the temperature is higher than 585 ℃;the peak strength of sandstone containing fissures first decreases then increases when the temperature is between 25℃and 400℃.The peak strain of sandstone containing fissures increases gradually while the average modulus decreases gradually with increasing temperature,and the mechanical properties of sandstone show obvious deterioration after 400 ℃.The peak strain of sandstone containing fissures increases gradually while the average modulus decreases gradually with increasing temperature;with increasing angle αof the fissure,the evolution characteristics of the macro-mechanical parameters of sandstone are closely related to the their own mechanical properties.When the temperature is 800 ℃,the correlation between the peak strength and average modulus of sandstone and the angle α of the fissure is obviously weakened.The failure modes of sandstone containing fissures after high temperature exposure are of three different kinds including:tensile crack failure,tensile and shear cracks mixed failure,and shear crack failure.Tensile and shear crack mixed failure occur mainly at low temperatures and small angles;tensile crack failure occurs at high temperatures and large angles.展开更多
On the basis of the data obtained on Gleeble 1500 Thermal Simulator, the predicting models for the relation between stable flow stress during high temperature plastic deformation and deformation strain, strain rate an...On the basis of the data obtained on Gleeble 1500 Thermal Simulator, the predicting models for the relation between stable flow stress during high temperature plastic deformation and deformation strain, strain rate and temperature for 1420 Al Li alloy have been developed with BP artificial neural networks method. The results show that the model on basis of BPNN is practical and it reflects the actual feature of the deforming process. It states that the difference between the actual value and the output of the model is in order of 5%. [展开更多
基金Project (51005112) supported by the National Natural Science Foundation of ChinaProject (2010ZF56019) supported by the Aviation Science Foundation of China+1 种基金Project (GJJ11156) supported by the Education Commission of Jiangxi Province, ChinaProject(GF200901008) supported by the Open Fund of National Defense Key Disciplines Laboratory of Light Alloy Processing Science and Technology, China
文摘The high temperature deformation behaviors of α+β type titanium alloy TC11 (Ti-6.5Al-3.5Mo-1.5Zr-0.3Si) with coarse lamellar starting microstructure were investigated based on the hot compression tests in the temperature range of 950-1100 ℃ and the strain rate range of 0.001-10 s-1. The processing maps at different strains were then constructed based on the dynamic materials model, and the hot compression process parameters and deformation mechanism were optimized and analyzed, respectively. The results show that the processing maps exhibit two domains with a high efficiency of power dissipation and a flow instability domain with a less efficiency of power dissipation. The types of domains were characterized by convergence and divergence of the efficiency of power dissipation, respectively. The convergent domain in a+fl phase field is at the temperature of 950-990 ℃ and the strain rate of 0.001-0.01 s^-1, which correspond to a better hot compression process window of α+β phase field. The peak of efficiency of power dissipation in α+β phase field is at 950 ℃ and 0.001 s 1, which correspond to the best hot compression process parameters of α+β phase field. The convergent domain in β phase field is at the temperature of 1020-1080 ℃ and the strain rate of 0.001-0.1 s^-l, which correspond to a better hot compression process window of β phase field. The peak of efficiency of power dissipation in ℃ phase field occurs at 1050 ℃ over the strain rates from 0.001 s^-1 to 0.01 s^-1, which correspond to the best hot compression process parameters of ,8 phase field. The divergence domain occurs at the strain rates above 0.5 s^-1 and in all the tested temperature range, which correspond to flow instability that is manifested as flow localization and indicated by the flow softening phenomenon in stress-- strain curves. The deformation mechanisms of the optimized hot compression process windows in a+β and β phase fields are identified to be spheroidizing and dynamic recrystallizing controlled by self-diffusion mechanism, respectively. The microstructure observation of the deformed specimens in different domains matches very well with the optimized results.
文摘A series of trial tests for high deformation (HD) X70 pipeline steel plates were performed in NISCO,and the technical routes as thermal mechanical controlled rolling process (TMCP),TMCP + Quenching (Q) and TMCP +Q & tempering (T) were studied systematically through the plate shape quality,properties and microstructure characters.The results show that problems as plate shape and inhomogeneous microstructures are for finish rolling at low temperature and high cooling rate after the rolling by the route of TMCP.By the route of TMCP+Q,the yield strength (YS) of the trial steels is not sufficient.By the route of TMCP+QT,the YS is enhanced,as well as good toughness and plasticity due to the martensite decomposition at low temperature tempering process,and 4 sheets of HD X70 pipeline steel plates by the route TMCP+QT with superior plate shape quality,microstructure and comprehensive properties were successfully developed in NISCO.
基金Project(51575127)supported by the National Natural Science Foundation of China
文摘Cylindrical samples of Ni-based GH4037 alloy were compressed at solid temperatures(1200,1250 and 1300℃) and semi-solid temperatures(1340,1350,1360,1370 and 1380℃) with different strain rates of 0.01,0.1 and 1 s-1.High temperature deformation behavior and microstructure evolution of GH4037 alloy were investigated.The results indicated that flow stress decreased rapidly at semi-solid temperatures compared to that at solid temperatures.Besides,the flow stress continued to increase after reaching the initial peak stress at semi-solid temperatures when the strain rate was 1 s-1.With increasing the deformation temperature,the size of initial solid grains and recrystallized grains increased.At semi-solid temperatures,the grains were equiaxed,and liquid phase existed at the grain boundaries and inside the grains.Discontinuous dynamic recrystallization(DDRX) characterized by grain boundary bulging was the main nucleation mechanism for GH4037 alloy.
文摘Recrystallized grains, less than 200 nm in diameter were observed in heavily shear zones of a high strength low alloy steel and a Ni-based alloy, and Also grain refinement, less than 3 μm in diameter was made in high purity aluminum by ECAE at ambient temperature. The experimental results showed that high strain rate and large deformation could induce dynamic recrystallization.Based on dislocation dynamics and grain orientation change enhanced by plastic deformation,a model for the recrystallization process is developed. The model is used to explain the ultra fine grains which are formed at a temperature still much lower than that for the conventional recrystallization
基金National Natural Science Foundation of China(Nos.51571145,51404137)City of Ningbo"science and technology innovation 2025"major special project(new energy vehicle lightweight magnesium alloy material precision forming technology)(No.2018B10045).
文摘Fine grained Mg-7Gd-5Y-1.2Nd-0.5Zr alloy was investigated by dynamic compression tests using a Split Hopkinson Pressure Bar under the strain rates in the range 1000-2000 s^(-1) and the temperature range 293-573 K along the normal direction.The microstructure was measured by optical microscopy,electron back-scattering diffraction,transmission electron microscopy and X-ray diffractometry.The results showed that Mg-7Gd-5Y-1.2Nd-0.5Zr alloy had the positive strain rate strengthening effect and thermal softening effect at high temperature.The solid solution of Gd and Y atoms in Mg-7Gd-5Y-1.2Nd-0.5Zr alloy reduced the asymmetry of α-Mg crystals and changed the critical shear stress of various deformation mechanisms.The main deformation mechanisms were prismatic slip and pyramidal(a)slip,{102}tension twinning,and dynamic recrystallization caused by local deformation such as particle-stimulated nucleation.c 2020 Published by Elsevier B.V.on behalf of Chongqing University.
文摘The behavior of high temperature deformation and recrystallization of W9Mo3Cr4V steel have been studied in this paper. Dynamic precipitation during deformation has also been investigated. In W9Mo3Cr4V steel, stress strain curves exhibit many features. The deformation structures and the effects of deformation parameters on dynamic recrystallization are more complicated than those in low alloy steels. For W9Mo3Cr4V steel, there is a large number of residual carbides on the matrix at high temperature. Also, many second carbides precipitate from the matrix during high temperature deformation. These two kinds of carbides (especially the latter) make the behavior of deformation and dynamic recrystallization in W9Mo3Cr4V steel different from those in low alloy steels. ABSTRACT:The behavior of high temperature deformation and recrystallization of W9Mo3Cr4V steel have been studied in this paper. Dynamic precipitation during deformation has also been investigated. In W9Mo3Cr4V steel, stress strain curves exhibit many features. The deformation structures and the effects of deformation parameters on dynamic recrystallization are more complicated than those in low alloy steels. For W9Mo3Cr4V steel, there is a large number of residual carbides on the matrix at high temperature. Also, many second carbides precipitate from the matrix during high temperature deformation. These two kinds of carbides (especially the latter) make the behavior of deformation and dynamic recrystallization in W9Mo3Cr4V steel different from those in low alloy steels.
文摘The behavior of TiAl interrnetallic compound of Ll_0 type under compressive deformation at high temperatures and its recrystallization microstructure have been studied.The compressive proof stress of the polycrystalline TiAl was found to be positive temperature dependence as same as the single crystai one.The correlation of the flow stress together with strain rate and deformation temperature is in good agreement with the expression: ε=Aσ_p^nexp(-Q/RT) Adjusting the deformation temperature and strain rate to a decrease in flow stress of alloy down to below its brittle fracture stress may improve successfully not only the hot working of the TiAl-base alloy but also the fineness of the recrystallized grains.
基金Funded by the Construction of Key Disciplines for Young Teacher Science Foundation of the Southwest Petroleum University(No.P209)the Research Fund for the Doctoral Program of Higher Education(No.20105121120002)the National Natural Science Foundation of China(Nos.51004084 and 51374177)
文摘The effects of plastic deformation and H2 S on fracture toughness of high strength casing steel(C110 steel) were investigated. The studied casing specimens are as follows: original casing, plastic deformation(PD) casing and PD casing after being immersed in NACE A solution saturated with H2S(PD+H2S). Instrumented impact method was employed to evaluate the impact behaviors of the specimens, meanwhile, dynamic fracture toughness(JId) was calculated by using Rice model and Schindler model. The experimental results show that dynamic fracture toughness of the casing decreases after plastic deformation. Compared with that of the original casing and PD casing, the dynamic fracture toughness decreases further when the PD casing immersed in H2 S, moreover, there are ridge-shaped feature and many secondary cracks present on the fracture surface of the specimens. Impact fracture mechanism of the casing is proposed as follows: the plastic deformation results in the increase of defect density of materials where the atomic hydrogen can accumulate in reversible or irreversible traps and even recombine to form molecular hydrogen, subsequently, the casing material toughness decreases greatly.
基金The work was financiaIly supported hy the NaturalScience Foundation of Hebei Province (No.94087) alld Pd-ucation Conlmittee of
文摘This work concerns with the high temperature deformation of internally oxidized Al2O3/Cu composites. The investigation revealed that dispersive alumina can obstruct dislocation sliding and define the subgrain size thereby improve significantly the strength of the materials at high temperature. The sliding of dislocations is a main deformation mechanism in the given temperature range. The sliding of grain boundary and diffusive creep play important roles at high temperature and low strain rate. The dispersoids can raise the recrystallization temperature to higher than 1223 K. Dynamic recovery is a main softening way under the experimental conditions. Higher deformation rate and lower deformation temperature imply a higher flow stress.
文摘The security of use for Al-Li alloy will be greatly influenced by the damage degree of plastic deformation within i t at high temperature . Based on continuum damage mechanics theory, the damage e volution of Al-5.44Mg-2.15Li-0.12Zr alloy during plastic deforming at high te mperature is simulated by using the damage evolution model of high temperature p lastic deformation. The changing rule of its inner damage with deformation tempe rature, strain rate and strain is gained in this paper. The equation of damage e volution for high temperature plastic deformation is developed, providing an aca demic basis for the technology of plastic process of Al-Li alloys.
文摘The computer simulation of Al three-dimensional crystallite containing grain boundary of special type was carried out and its behaviour under high rate loading was investigated. The molecular dynamics method was used and interaction betwen atoms was described based on pseudopotential method. Vortical character of the atom movements in the grain boundary region is realized under shear loading in certain directions. Back and forth movements of atoms in the direction which is perpendicular to the shear also arise. Amplitude of such movements is approximately equal to an interplanar distance in this direction.
基金the support of the National Natural Science Foundation of China(Grant Nos.52179113,51991392 and 52279119)the Second Comprehensive Scientific Expedition on the Tibetan Plateau(No.2019QZKK0904)。
文摘Yielding support is often used in the squeezing tunnel to prevent damage to the lining induced by large deformation of the surrounding rock.Highly Deformable Elements(HDE)which is often installed along the circumferential direction of the shotcrete lining is a common type of yielding support.To determine the yield parameters of HDE,the support characteristic of the lining using HDE and the ground pressure considering strain-softening of soft rock were analyzed by an analytical method.The analytical solution showed that when considering the strain-softening of squeezing ground,the ground pressure has a non-zero minimum value.The minimum value of ground stress can be used to determine the constant yield stress of the HDE,and the corresponding deformation of the minimum ground pressure can be used to determine the deformation capacity of the HDE.Based on the variation in the design constant yield stress and yield displacement of HDE with the in-situ stress and the mechanical parameters of the soft rock,equations were proposed for determining of the yield parameters of the HDE.
基金Project(2009BAE71B03)supported by the National Key Technology Support Program of China During the 11th Five-year Plan Period
文摘The hot deformation behavior of homogenized zinc alloy was investigated through uniaxial compression test on a Gleeble-1500 thermal-mechanical simulator within a temperature range of 230-380°C and a strain rate range of 0.01-10 s -1 ,the corresponding flow curves and their characters were determined and analyzed,and microstructures were studied by optical,SEM and TEM microscopy.The results indicated that the microstructure evolution of zinc alloy during hot deformation involves the spheroidization of the phase of TiZn15,coarsening of the precipitated phase and dynamic recrystallization(DRX)of the phase of matrix,leading to the formation of the polyphase(η+ε+TiZn15)structure.The spheroidization of the phase of TiZn15 during hot deformation was beneficial to the particle nucleation stimulated and then promoted to DRX of matrix.The dynamic recrystallization grain size of the matrix phase decreased firstly and then increased with elevating the temperature,and the degree of DRX became more complete when the strain rate and strain became larger.Hot deformation accelerated the diffusion of Cu atom,which resulted in the coarsening of the precipitated phase.Thus,the microstructure was refined owing to the pinning effect of the precipitated phase.
基金supported by the National Key Basic Research and Development(973) Project (2009CB421001)National Natural Science Foundation of China(40872139)+2 种基金China Geological Survey (1212010661311)Ministry of Land and Resources (200811008)the Ministry of Education,Proiect 111 (B07011)
文摘The Ailaoshan-Red River(ASRR) shear zone is one of the major Southeast Asian tectonic discontinuities that have figured the present tectonic framework of the eastern Tibet.Several metamorphic massifs are distributed linearly along the shear zone,e.g.Xuelongshan,Diancangshan, Ailaoshan and Day Nui Con Voi from north to south.They bear a lot of lines of evidence for the tectonic evolution of the eastern Tibetan at different crustal levels in different tectonic stages.Controversy still exists on the deformation structures,microstructures and their relationship with metamorphisms along the ASRR.In this paper detailed microstructural and EBSD(Electron Backscattered Diffraction) fabric analysis of some highly sheared granitic rocks from different massifs along the ASRR are conducted.High temperature structures and microstructures are preserved in unsheared gneisses,in weakly sheared xenoliths or in some parts of the highly sheared rocks(mylonites).Several types of high temperature quartz c-axis fabrics show symmetrical patterns or transitions from symmetrical to asymmetrical patterns.The former are attributed to coaxial deformation during regional shortening in an early stage of the Indian-Eurasian tectonic interaction and the latter are related to the transitions from coaxial compression to noncoaxial shearing during the post-collisional ASRR left lateral shearing.
基金Project(51334006)supported by the National Natural Science Foundation of China
文摘To control the superplastic flow and fracture and examine the variation in deformation energy,the stress and grain size of Mg-7.28Li-2.19Al-0.091Y alloy were obtained using tensile testing and microstructure quantification,and new high temperature deformation energy models were established.Results show that the grain interior deformation energy increases with increasing the strain rate and decreases with increasing the temperature.The variation in the grain boundary deformation energy is opposite to that in the grain interior deformation energy.At a given temperature,critical cavity nucleation energy decreases with increasing strain rate and cavity nucleation becomes easy,whereas at a given strain rate,critical cavity nucleation energy increases with increasing temperature and cavity nucleation becomes difficult.The newly established models of the critical cavity nucleation radius and energy provide a way for predicting the initiation of microcrack and improving the service life of the forming parts.
基金financially supported by National Natural Science Foundation of China(No.51701121,No.51825101)Shanghai Sailing Program(17YF1408800)+2 种基金Science and Technology Commission of Shanghai Municipality(No.18511109302)Qinghai Provincial Science and Technology Key Program(No.2018-GX-A1)Startup Fund for Youngman Research at SJTU(No.18X100040022)
文摘Static recrystallization of a high strain rate compressed Mg-1 Zn(wt.%)alloy was investigated using electron backscattered diffraction(EBSD).A novel 53°1010 structure was observed in the as-deformed alloy,which showed a{1012}-{1012}double twin relationship with the matrix.When the as-deformed alloy was annealed at 200°C,the{1011}compression twins and{1011}-{1012}double twins showed a higher priority to recrystallize.In addition,the coarse{1012}tension twins and their inner double twins were preferentially to recrystallize,while the lenticular tension twins had little impact on the recrystallization.Therefore,obtaining more compression twins or coarse twins instead of lenticular tension twins can be an effective approach to manipulate recrystallization process in deformed Mg alloys.
基金Project Sponsored by Ministry of Science and Technology of China(G1998061513)
文摘With TEM、SEM, various high temperature deformed structures in W9Mo3Cr4V steel were investigated. The sub structures,recrystallized nuclei, as well as the dynamic precipitation were also studied and analyzed. The relationship between recrystallized structures and dynamic precipitation was discussed. The results showed that the deformed structures in W9Mo3Cr4V steel are more complicated than those in low alloy steels. Because W9Mo3Cr4V steel is a high speed steel, there are a large number of residual carbides on the matrix. Also, much dynamic precipitating carbides will precipitate during deformation at high temperature.
基金supported by the Basic Research Program (973 Program) of China (No. 2010CB735811)
文摘The hot deformation behavior of TiNiFe shape memory alloy was studied by isothermal compression tests.It was performed on a Gleeble-3500 thermal simulation machine at deformation temperature of 750 to 1050 ℃ and strain rate of 0.01 to 10.00 s^(-1) with maximum strain of 0.8.Deformation mechanism was investigated by the aid of true stress-true strain curves,kinetic analysis and processing map.The constitutive relationship was established in the form of Arrhenius-type hyperbolic-sine equation,and the apparent activation energy was calculated to be approximately 200 kJ·mol^(-1).The processing maps of TiNiFe alloy were appreciably influenced by true strain.
基金supported by the State Key Development Program for Basic Research of China(No.2013CB036003)the National Natural Science Foundation of China(No.51374198)the CUMT Innovation and Entrepreneurship Fund for Undergraduates(No.201509)
文摘In order to investigate the physical and mechanical properties of sandstone containing fissures after exposure to high temperatures,fissures with different angles α were prefabricated in the plate sandstone samples,and the processed samples were then heated at 5 different temperatures.Indoor uniaxial compression was conducted to analyze the change rules of physical properties of sandstone after exposure to high temperature,and the deformation,strength and failure characteristics of sandstone containing fissures.The results show that,with increasing temperature,the volume of sandstone increases gradually while the quality and density decrease gradually,and the color of sandstone remains basically unchanged while the brightness increases markedly when the temperature is higher than 585 ℃;the peak strength of sandstone containing fissures first decreases then increases when the temperature is between 25℃and 400℃.The peak strain of sandstone containing fissures increases gradually while the average modulus decreases gradually with increasing temperature,and the mechanical properties of sandstone show obvious deterioration after 400 ℃.The peak strain of sandstone containing fissures increases gradually while the average modulus decreases gradually with increasing temperature;with increasing angle αof the fissure,the evolution characteristics of the macro-mechanical parameters of sandstone are closely related to the their own mechanical properties.When the temperature is 800 ℃,the correlation between the peak strength and average modulus of sandstone and the angle α of the fissure is obviously weakened.The failure modes of sandstone containing fissures after high temperature exposure are of three different kinds including:tensile crack failure,tensile and shear cracks mixed failure,and shear crack failure.Tensile and shear crack mixed failure occur mainly at low temperatures and small angles;tensile crack failure occurs at high temperatures and large angles.
文摘On the basis of the data obtained on Gleeble 1500 Thermal Simulator, the predicting models for the relation between stable flow stress during high temperature plastic deformation and deformation strain, strain rate and temperature for 1420 Al Li alloy have been developed with BP artificial neural networks method. The results show that the model on basis of BPNN is practical and it reflects the actual feature of the deforming process. It states that the difference between the actual value and the output of the model is in order of 5%. [