The observation of geomagnetic field variations is an important approach to studying earthquake precursors.Since 1987,the China Earthquake Administration has explored this seismomagnetic relationship.In particular,the...The observation of geomagnetic field variations is an important approach to studying earthquake precursors.Since 1987,the China Earthquake Administration has explored this seismomagnetic relationship.In particular,they studied local magnetic field anomalies over the Chinese mainland for earthquake prediction.Owing to the years of research on the seismomagnetic relationship,earthquake prediction experts have concluded that the compressive magnetic effect,tectonic magnetic effect,electric magnetic fluid effect,and other factors contribute to preearthquake magnetic anomalies.However,this involves a small magnitude of magnetic field changes.It is difficult to relate them to the abnormal changes of the extremely large magnetic field in regions with extreme earthquakes owing to the high cost of professional geomagnetic equipment,thereby limiting large-scale deployment.Moreover,it is difficult to obtain strong magnetic field changes before an earthquake.The Tianjin Earthquake Agency has developed low-cost geomagnetic field observation equipment through the Beijing–Tianjin–Hebei geomagnetic equipment test project.The new system was used to test the availability of equipment and determine the findings based on big data..展开更多
High-density poly-ethylene (HDPE) is a nonbiodegradable recyclable plastic which is widely utilized in single use packaging applications. Consequently, it constitutes a significant amount of plastic waste found in lan...High-density poly-ethylene (HDPE) is a nonbiodegradable recyclable plastic which is widely utilized in single use packaging applications. Consequently, it constitutes a significant amount of plastic waste found in landfills. From literature, it has been shown that parts produced using composites of HDPE with carbohydrate-based polymers, such as thermoplastic starch (TPS), experience mechanical degradation through hydrolytic degradation process. The possible utilization of recycled-HDPE (rHDPE) and TPS composite in nonconventional manufacturing processes such as Fused filament fabrication (FFF) has however not been explored. This study explores the potential application of rHDPE and TPS composites in FFF and optimizes the extrusion process parameters used in rHDPE-TPS filament production process. Taguchi method was utilized to analyze the extrusion process. The extrusion process parameters studied were the spooling speed, extrusion speed and the extrusion temperatures. The response variable studied was the filament diameter. In this research, the maximum TPS content achieved during filament production was 40 wt%. This filament was however challenging to use in FFF printers due to frequent nozzle clogging. Printing was therefore done with filaments that contained 0 - 30 wt% TPS. The experimental results showed that the most significant parameter in extrusion process was the spooling speed, followed by extrusion speed. Extrusion temperature had the least significant influence on the filament diameter. It was observed that increase in TPS content resulted in reduced warping and increased rate of hydrolytic degradation. Mechanical properties of printed parts were investigated and the results showed that increasing TPS content resulted in reduction in tensile strength, reduction in compression strength and increase in stiffness. The findings of this research provide valuable insights to plastic recycling industries and researchers regarding the utilization of recycled HDPE and TPS composites as substitute materials in FFF.展开更多
The structural changes around a crack tip in a high density polyethylene were investigated by means of scanning synchrotron microfocus small-angle X-ray scattering technique. The scattering data confirm the process of...The structural changes around a crack tip in a high density polyethylene were investigated by means of scanning synchrotron microfocus small-angle X-ray scattering technique. The scattering data confirm the process of craze structure development near a crack tip based on the evolution of voids. In addition, it was found that the main stress in the plastic zone near a crack tip exhibited a gradient distribution with respect to its strength and direction. The whole damaged area showed a strain distribution indicating a flow behavior toward the crack tip.展开更多
High density polyethylene (HDPE)/polyethylene-block-poly(ethylene glycol) (PE-b-PEG) blend porous membranes were prepared via thermally induced phase separation (TIPS) process using diphenyl ether (DPE) as d...High density polyethylene (HDPE)/polyethylene-block-poly(ethylene glycol) (PE-b-PEG) blend porous membranes were prepared via thermally induced phase separation (TIPS) process using diphenyl ether (DPE) as diluent. The phase diagrams of HDPE/PE-b-PEG/DPE systems were determined by optical microscopy and differential scanning calorimetry (DSC). By varying the content of PE-b-PEG, the effects of PE-b-PEG copolymer on morphology and crystalline structure of membranes were studied by scanning electron microscopy (SEM) and wide angle X-ray diffraction (WAXD). The chemical compositions of whole membranes and surface layers were characterized by elementary analysis, Fourier transform infrared spectroscopy-attenuated total reflection (FTIR-ATR) and X-ray photoelectron spectroscopy (XPS). Water contact angle, static protein adsorption and water flux experiments were used to evaluate the hydrophilicity, antifouling and water permeation properties of the membranes. It was found that the addition of PE-b-PEG increased the pore size of the obtained blend membranes. In the investigated range of PE-b-PEG content, the PEG blocks could not aggregate into obviously separated domains in membrane matrix. More importantly, PE-b-PEG could not only be retained stably in the membrane matrix during membrane formation, but also enrich at the membrane surface layer. Such stability and surface enrichment of PE-b-PEG endowed the blend membranes with improved hydrophilicity, protein absorption resistance and water permeation properties, which would be substantially beneficial to HDPE membranes for water treatment application.展开更多
Low density polyethylene(LDPE)/lignin blends were prepared using melt blending.Two kinds of compatibilizers, ethylene-vinylacetate(EVA) which is softer than LDPE and polyethylene grafted with maleic anhydride(PE-g-MA)...Low density polyethylene(LDPE)/lignin blends were prepared using melt blending.Two kinds of compatibilizers, ethylene-vinylacetate(EVA) which is softer than LDPE and polyethylene grafted with maleic anhydride(PE-g-MA) which is harder than LDPE were used to improve the interfacial adhesion.Scanning electron microscope(SEM) was used to investigate the dispersion of lignin in LDPE matrix.The results showed that both of the compatibilizers could improve the interaction between the low density polyethylene and l...展开更多
Objective: To introduce the clinical effect among patients who received an unwrapped orbital implant with high density porous polyethylene material (Medpor) after enucleation or evisceration. Methods: Retrospective an...Objective: To introduce the clinical effect among patients who received an unwrapped orbital implant with high density porous polyethylene material (Medpor) after enucleation or evisceration. Methods: Retrospective analysis of a series of 302 patients with anophthalmia who underwent placement of an unwrapped high density porous polyethylene orbital implant. We compared the patients (n=180) who accepted primary implant placement with those (n=122) who accepted secondary implant placement. Parameters evaluated included: age at time of surgery, date of surgery, sex, implant type and size, surgery type, the surgical procedure and technique performed, and complications. Results: The time of follow-up ranged from 2.0 to 58.0 months (mean 32.5 months). A total of 5 of 302 (1.66%) cases had documented postoperative complications. The following problems were noted after surgery: implant exposure, 3 patients (0.99%); implant removed due to orbital infection, 1 patient (0.34%); ptosis, 1 patient (0.34%). There were no significant complications observed in other 297 cases and all implants showed good orbital mo- tility. The clinical effect of primary implant placement is better than that of secondary placement. Conclusion: High density porous polyethylene material can be used successfully as an unwrapped orbital implant in anopthalmic socket surgery with minimal complications. The material is well tolerated, nonantigenic and has low rate of infection and migration.展开更多
The basic mechanical behaviors of high density polyethylene electrofusion welded joint at different temperatures were studied by using differently designed specimens in this paper. The results show that the strength o...The basic mechanical behaviors of high density polyethylene electrofusion welded joint at different temperatures were studied by using differently designed specimens in this paper. The results show that the strength of weld bonding plane is higher than that of the pipe and socket materials at room temperature. In order to get the shear strength of electrofusion welded joint, the effective bond lengths were reduced by cutting artificial groove through the socket. The effective bonding length of welded joint to get the shear strength is decreased with decreasing testing temperature. The shear strength and the sensibility to sharp notch of HDPE material increased with decreasing temperature.展开更多
A detailed study was performed on the crystal structures of pan-milled high-density polyethylene (HDPE) using differential scanning calorimetry (DSC) and X-ray diffraction. The crystallinity of HDPE first decreased sl...A detailed study was performed on the crystal structures of pan-milled high-density polyethylene (HDPE) using differential scanning calorimetry (DSC) and X-ray diffraction. The crystallinity of HDPE first decreased slightly, followed by a gradual increase with increasing milling times. Monoclinic crystals appeared after 4 cycles of milling. With increasing times of milling, the proportion of monoclinic crystals increased significantly while the proportion of orthorhombic crystals decreased gradually. With increasing times of milling, the crystallite size of orthorhombic form decreased greatly, while the size of monoclinic crystallites kept almost constant during milling.展开更多
High-density polyethylene (HDPE) films were irradiated by 60Co gamma ray with a dose of 100 kGy in air and then immersed in aqueous solution of acrylic acid (AA) and sodium styrene sulfonate (SSS) at different tempera...High-density polyethylene (HDPE) films were irradiated by 60Co gamma ray with a dose of 100 kGy in air and then immersed in aqueous solution of acrylic acid (AA) and sodium styrene sulfonate (SSS) at different temperature. The effects of grafting conditions such as temperature, reaction time, Mohr’s salt concentration, and total concentration of monomer on grafting yield were studied. Both grafting yield of AA and SSS onto HDPE respectively increases with total concentration of monomers. The highest grafting yield was observed at 3 mol/L monomers where the grafted PE swelled to the largest extent in the monomers mixture. The grafting yield increases with reaction time and then levels off. At higher temperature, the grafting yield decreases with Mohr’s salt concentration, but increases at low temperature when Mohr’s salt concentration is 0.083%. Which can be interpreted that in the presence of Fe2+ diperoxides and hydroperoxides may decompose at low temperature to form radical which can initiate the grafting. The physical and chemical properties of grafting films were also investigated.展开更多
The rheological behavior of composites made with high-density polyethylene (HDPE) and different agro fiber by-products such as corncob (CCF), Rice hull (RHF), Flax shives (FSF) and Walnut shell (WSF) flour of 60 - 100...The rheological behavior of composites made with high-density polyethylene (HDPE) and different agro fiber by-products such as corncob (CCF), Rice hull (RHF), Flax shives (FSF) and Walnut shell (WSF) flour of 60 - 100 mesh were studied. The experimental results were obtained from samples containing 65 vol.% agro fiber and 3 wt.% lubricant. Particle sizes distribution of the agro fibers was in the range of 0.295 mm to ?0.125 mm. SEM showed evidence of complete matrix/fiber impregnation or wetting. The melt rheological data in terms of complex viscosity (η*), storage modulus (G'), loss modulus (G"), and loss tangent (tanδ) were evaluated and compared for different samples. Due to higher probability of agglomeration formation in the samples containing 65 vol.% of agro fillers, the storage modulus, loss modulus and complex viscosity of these samples were high. The unique change in all the samples is due to the particle size distribution of the agro fibers. The storage and loss modulus increased with increasing shear rates for all the composites, except for Walnut shell composite which exhibited unusual decrease in storage modulus with increasing shear rate. Damping factor (tanδ) decreased with increasing shear rate for all the composites at 65 vol.% filler load although there were differences among the composites. Maximum torque tended to increase at the 65 vol.% agro fiber load for all composites. Corncob and Walnut shell composites gave higher torque and steady state torque values in comparison with Flax shives and Rice hull composites due to differences in particle sizes distribution of the agro fibers.展开更多
The effect of pan-milling on the rheological properties of high density polyethylene (HDPE) was studied. An innovative milling apparatus, viz. an inlaid pan-mill, was used. Melt indexer, capillary rheometer, Haake Rhe...The effect of pan-milling on the rheological properties of high density polyethylene (HDPE) was studied. An innovative milling apparatus, viz. an inlaid pan-mill, was used. Melt indexer, capillary rheometer, Haake Rheocord 90 single-screw extruder and Brabender rheometer were used to evaluate the rheological properties of HDPE. HDPE with higher initial molecular weight and larger particle size was easier to degrade under pan-milling stress, as indicated by the melt index. Pressure oscillation in capillary flow occurred at significantly higher shear stress and shear rate for milled HDPE than for unmilled HDPE. The apparent shear viscosity of HDPE decreased with increasing times of milling. After milling, the flow activation energy decreased and thus the sensitivity of viscosity to temperature was reduced. Die pressure and torque during single screw extrusion were reduced significantly after milling. Plasticizing time as measured in a Brabander mixer decreased markedly with increasing milling times.展开更多
Crack opening displacement(COD) was applied to characterize the fracture initiation of the tough high density polyethylene. Normal single side notched three point bend specimens and silica rubber replica techniques ...Crack opening displacement(COD) was applied to characterize the fracture initiation of the tough high density polyethylene. Normal single side notched three point bend specimens and silica rubber replica techniques were used to study the characteristic COD of high density polyethylene pipe and its butt fusion joints including the weld fusion zone and heat affected zone at different temperature from -78 ℃ to 20 ℃ . Testing results show that the characteristic COD appears to depend on the structural features that are determined by welding process and the testing temperature. As the temperature is lowered, the characteristic COD of all zones studied decreases. Because the welding process significantly changes some structural feature of the material, characteristic COD of the weld fusion zone is the smallest one among those of the three zones. The results can be used for the engineering design and failure analysis of HDPE pipe.展开更多
The surface performances of directly fluorinated high density polyethylene (HDPE) are studied with Fourier transform infrared (FT-IR) spectra, scanning electron microscopy (SEM) and contact angle (CA) system. ...The surface performances of directly fluorinated high density polyethylene (HDPE) are studied with Fourier transform infrared (FT-IR) spectra, scanning electron microscopy (SEM) and contact angle (CA) system. The SEM images show that there is a three-layer structure called the reaction, virgin and boundary layer structure. The depth of fluorinated layer is 5.75 ~m with 1 h fluorination time and 7.86 b^m with 2 h. The depths are 5.46 /~m and 5.07 /~m when fluorine density is 2G and 1~/0, respectively. CA indicates that the HDPE surface property becomes more hydrophobic with the increasing water contact angle from 78.5~ to 104.5~. Oleophobic and hydrophobic features of HDPE are identified by comparison of mass change experiments. It is shown that the in- crement rate of fluorinated HDPE is much lower than that of un-fluorinated HDPE filled in neither distilled water nor jet fuel.展开更多
Metal hydroxides (MAH) consisting of magnesium hydroxide and aluminum hydroxide with a mass ratio of 1:2 were surface-modified by y-diethoxyphosphorous ester propyldiethoxymethylsilane, boric acid and diphenylsilan...Metal hydroxides (MAH) consisting of magnesium hydroxide and aluminum hydroxide with a mass ratio of 1:2 were surface-modified by y-diethoxyphosphorous ester propyldiethoxymethylsilane, boric acid and diphenylsilanediol in xylene under dibutyl tin dilaurate catalyst at 140 ℃. Phosphorus, silicon and boron elements covalently bonded to metal hydroxide particles were detected by X-ray photoelectron spectroscopy. The degradation behavior of the surface-modified MAH was characterized by thermogravimetric analysis. The results show that linear low density polyethylene (LLDPE) composite, filled with 50% (mass fraction) of MAH modified by 5.0% (mass fraction) of modifiers, passes the V-0 rating of UL-94 test and shows the limited oxygen index of 34%, and its heat release rate and average effective heat combustion in a cone calorimeter measurement decrease obviously; The mechanical properties of MAH can be improved by surface-modification. The uniform dispersion of particles and strong interfacial bonding between particles and matrix are obtained.展开更多
Polymer nanocomposites have been used for various important industrial applications. The preparation of high density polyethylene composed with Na-montmorillonite nanofiller using melt compounding method for different...Polymer nanocomposites have been used for various important industrial applications. The preparation of high density polyethylene composed with Na-montmorillonite nanofiller using melt compounding method for different concentrations of clay-nanofiller of 0%, 2%, 6%, 10%, and 15% has been successfully done. The morphology of the obtained samples was optimized and characterized by scanning electron microscope showing the formation of the polymer nanocomposites. The thermal stability and dielectric properties were measured for the prepared samples. Thermal gravimetric analysis results show that thermal stability in polymer nanocomposites is more than that in the base polymer. It has been shown that the polymer nanocomposites exhibit some very different dielectric characteristics when compared to the base polymer. The dielectric breakdown strength is enhanced by the addition of clay-nanofiller. The dielectric constant (εr) and dissipation factor (Tan δ) have been studied in the frequency range 200 Hz to 2 MHz at room temperature indicating that enhancements have been occurred in εr and Tan δ by the addition of clay-nanofiller in the polymer material when compared with the pure material.展开更多
Melt extrusion was used to prepare binary nanocomposites of ethylene copolymers and organoclay and trinary nanocomposites of low-density polyethylene (LDPE), ethylene copolymer and organoclay. X-ray diffraction (XR...Melt extrusion was used to prepare binary nanocomposites of ethylene copolymers and organoclay and trinary nanocomposites of low-density polyethylene (LDPE), ethylene copolymer and organoclay. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to analyze the structure of the clay phase and the morphology of the nanocomposites. Influences of the comonomer in the copolymer and the content of the copolymer on the morphology of the resulting nanocomposites were discussed. The binary and the trinary composites may form intercalated or exfoliated structures depending on the interaction between the copolymer and the clay layers and the content of the copolymer.展开更多
The experimental observations about remarkable influence of the substrates on the isothermal crystallization rate of a high density polyethylene(HDPE) were presented.Two methods were used to characterize the crystalli...The experimental observations about remarkable influence of the substrates on the isothermal crystallization rate of a high density polyethylene(HDPE) were presented.Two methods were used to characterize the crystallization rate:the change of turbidity of the HDPE specimen and the changes of the complex viscosity and storage modulus measured by a rotational rheometer,which gave consistent results showing that the isothermal crystallization rate decreased in sequence as the specimen contacted with aluminum,brass and stainless steel plates,respectively.As to the dominant influence factor,the chemical composition of the substrates can be excluded via insulating the plate by an aluminum foil.Instead,we propose the plate's ability of removing the latent heat of crystallization from the specimen.Rheological measurement is sensitive to the crystallization process.The colloid like model proposed by BOUTAHAR et al for the crystallization of HDPE gives reasonable predictions of the crystallized fraction from the measured storage modulus.展开更多
High density polyethylene (HDPE) samples, containing different concentrations of prodegradant additive d2w?, were prepared. The properties of the samples were evaluated through differential scanning calorimetry (DSC),...High density polyethylene (HDPE) samples, containing different concentrations of prodegradant additive d2w?, were prepared. The properties of the samples were evaluated through differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), rheometry, and scanning electron microscopy (SEM). The work contributes to decreasing the products made of non-biodegradable polymeric materials derived from fossil sources which are have become a problem due to their increasingly inappropriate disposal and long degradation time in the environment. The obtained results indicated that there was no degradation of the samples due to processing. No significant changes in melting temperature, crystallinity, viscoelastic behavior, molecular weight and chemical composition were observed. Images from SEM analysis showed particles on HDPE surface, attributed to prodegradant additive d2w?. Oxidation Onset Temperature (OOT) results showed that the additive d2w? accelerated the degradation of HDPE. The activation energy (Ea) was determined by Ozawa-Wall-Flynn method. The obtained values were used for lifetime estimation of the samples. At 25°C, HDPE with d2w? showed a lifetime 50% higher than that of HDPE without this additive. This fact is attributed to the presence of stabilizers in masterbatch d2w? and the absence of oxygen in thermogravimetric analysis.展开更多
This research work developed and evaluated the mechanical properties of coconut fibre reinforced low density polyethylene (LPDE) composite material. The effect of fibre loading on the mechanical properties: tensile, f...This research work developed and evaluated the mechanical properties of coconut fibre reinforced low density polyethylene (LPDE) composite material. The effect of fibre loading on the mechanical properties: tensile, flexural, and impact of the developed composite material have been investigated. Also carried out was the effect of fibre loading on the water absorptivity of the developed material. Sample categories of the developed composite were prepared by varying the fibre contents by weight at 0%, 10%, 20%, and 30%. The aim is to reduce the excessive waste disposal of LDPE materials that are largely found in the form of disposed water package materials (or pure water sachets) that usually affects the environment in the form of pollution. The water retting process was applied in extracting and cleaning fibre (or coir), while the mixed coir-LDPE (or developed composite material) was prepared by Compression Moulding Technique (CMT). The tensile and flexural properties were tested using Hounsfield Monsanto Tensometer (type w) while the impact properties were tested using the Charpy Impact testing machine. The microstructure of the composite was investigated using Scanning Electron Microscopy (SEM). The fractured surface morphology of the composite samples indicated a homogeneous mixture of the coir fibre and LDPE matrix. However, weak interfacial bonding between the coir fibre and LDPE matrix was also observed. The analysis of the water absorptivity showed that the developed composite materials have low water absorptivity at low fibre loading. However, at higher fibre loading, the water absorptivity increases significantly.展开更多
基金supported by the Spark Program of Earthquake Science and Technology(No.XH23003C).
文摘The observation of geomagnetic field variations is an important approach to studying earthquake precursors.Since 1987,the China Earthquake Administration has explored this seismomagnetic relationship.In particular,they studied local magnetic field anomalies over the Chinese mainland for earthquake prediction.Owing to the years of research on the seismomagnetic relationship,earthquake prediction experts have concluded that the compressive magnetic effect,tectonic magnetic effect,electric magnetic fluid effect,and other factors contribute to preearthquake magnetic anomalies.However,this involves a small magnitude of magnetic field changes.It is difficult to relate them to the abnormal changes of the extremely large magnetic field in regions with extreme earthquakes owing to the high cost of professional geomagnetic equipment,thereby limiting large-scale deployment.Moreover,it is difficult to obtain strong magnetic field changes before an earthquake.The Tianjin Earthquake Agency has developed low-cost geomagnetic field observation equipment through the Beijing–Tianjin–Hebei geomagnetic equipment test project.The new system was used to test the availability of equipment and determine the findings based on big data..
文摘High-density poly-ethylene (HDPE) is a nonbiodegradable recyclable plastic which is widely utilized in single use packaging applications. Consequently, it constitutes a significant amount of plastic waste found in landfills. From literature, it has been shown that parts produced using composites of HDPE with carbohydrate-based polymers, such as thermoplastic starch (TPS), experience mechanical degradation through hydrolytic degradation process. The possible utilization of recycled-HDPE (rHDPE) and TPS composite in nonconventional manufacturing processes such as Fused filament fabrication (FFF) has however not been explored. This study explores the potential application of rHDPE and TPS composites in FFF and optimizes the extrusion process parameters used in rHDPE-TPS filament production process. Taguchi method was utilized to analyze the extrusion process. The extrusion process parameters studied were the spooling speed, extrusion speed and the extrusion temperatures. The response variable studied was the filament diameter. In this research, the maximum TPS content achieved during filament production was 40 wt%. This filament was however challenging to use in FFF printers due to frequent nozzle clogging. Printing was therefore done with filaments that contained 0 - 30 wt% TPS. The experimental results showed that the most significant parameter in extrusion process was the spooling speed, followed by extrusion speed. Extrusion temperature had the least significant influence on the filament diameter. It was observed that increase in TPS content resulted in reduced warping and increased rate of hydrolytic degradation. Mechanical properties of printed parts were investigated and the results showed that increasing TPS content resulted in reduction in tensile strength, reduction in compression strength and increase in stiffness. The findings of this research provide valuable insights to plastic recycling industries and researchers regarding the utilization of recycled HDPE and TPS composites as substitute materials in FFF.
基金supported by the"Hundred Talents Project"of the Chinese Academy of Sciences,the National Basic Research Program of China(No.2005CB623800)National Natural Science Foundation of China(Nos.50603024, 50621302) and HASYLAB projectⅡ-20052011
文摘The structural changes around a crack tip in a high density polyethylene were investigated by means of scanning synchrotron microfocus small-angle X-ray scattering technique. The scattering data confirm the process of craze structure development near a crack tip based on the evolution of voids. In addition, it was found that the main stress in the plastic zone near a crack tip exhibited a gradient distribution with respect to its strength and direction. The whole damaged area showed a strain distribution indicating a flow behavior toward the crack tip.
基金supported by the 863 program(No.2006AA03Z233)973 program(No.2009CB623402) of China
文摘High density polyethylene (HDPE)/polyethylene-block-poly(ethylene glycol) (PE-b-PEG) blend porous membranes were prepared via thermally induced phase separation (TIPS) process using diphenyl ether (DPE) as diluent. The phase diagrams of HDPE/PE-b-PEG/DPE systems were determined by optical microscopy and differential scanning calorimetry (DSC). By varying the content of PE-b-PEG, the effects of PE-b-PEG copolymer on morphology and crystalline structure of membranes were studied by scanning electron microscopy (SEM) and wide angle X-ray diffraction (WAXD). The chemical compositions of whole membranes and surface layers were characterized by elementary analysis, Fourier transform infrared spectroscopy-attenuated total reflection (FTIR-ATR) and X-ray photoelectron spectroscopy (XPS). Water contact angle, static protein adsorption and water flux experiments were used to evaluate the hydrophilicity, antifouling and water permeation properties of the membranes. It was found that the addition of PE-b-PEG increased the pore size of the obtained blend membranes. In the investigated range of PE-b-PEG content, the PEG blocks could not aggregate into obviously separated domains in membrane matrix. More importantly, PE-b-PEG could not only be retained stably in the membrane matrix during membrane formation, but also enrich at the membrane surface layer. Such stability and surface enrichment of PE-b-PEG endowed the blend membranes with improved hydrophilicity, protein absorption resistance and water permeation properties, which would be substantially beneficial to HDPE membranes for water treatment application.
基金supported by the National Natural Science Foundation of China(Nos.50533050,20634050)
文摘Low density polyethylene(LDPE)/lignin blends were prepared using melt blending.Two kinds of compatibilizers, ethylene-vinylacetate(EVA) which is softer than LDPE and polyethylene grafted with maleic anhydride(PE-g-MA) which is harder than LDPE were used to improve the interfacial adhesion.Scanning electron microscope(SEM) was used to investigate the dispersion of lignin in LDPE matrix.The results showed that both of the compatibilizers could improve the interaction between the low density polyethylene and l...
文摘Objective: To introduce the clinical effect among patients who received an unwrapped orbital implant with high density porous polyethylene material (Medpor) after enucleation or evisceration. Methods: Retrospective analysis of a series of 302 patients with anophthalmia who underwent placement of an unwrapped high density porous polyethylene orbital implant. We compared the patients (n=180) who accepted primary implant placement with those (n=122) who accepted secondary implant placement. Parameters evaluated included: age at time of surgery, date of surgery, sex, implant type and size, surgery type, the surgical procedure and technique performed, and complications. Results: The time of follow-up ranged from 2.0 to 58.0 months (mean 32.5 months). A total of 5 of 302 (1.66%) cases had documented postoperative complications. The following problems were noted after surgery: implant exposure, 3 patients (0.99%); implant removed due to orbital infection, 1 patient (0.34%); ptosis, 1 patient (0.34%). There were no significant complications observed in other 297 cases and all implants showed good orbital mo- tility. The clinical effect of primary implant placement is better than that of secondary placement. Conclusion: High density porous polyethylene material can be used successfully as an unwrapped orbital implant in anopthalmic socket surgery with minimal complications. The material is well tolerated, nonantigenic and has low rate of infection and migration.
基金This work was supported by the National Natural Science Foundation of China under grant No.50075061.
文摘The basic mechanical behaviors of high density polyethylene electrofusion welded joint at different temperatures were studied by using differently designed specimens in this paper. The results show that the strength of weld bonding plane is higher than that of the pipe and socket materials at room temperature. In order to get the shear strength of electrofusion welded joint, the effective bond lengths were reduced by cutting artificial groove through the socket. The effective bonding length of welded joint to get the shear strength is decreased with decreasing testing temperature. The shear strength and the sensibility to sharp notch of HDPE material increased with decreasing temperature.
文摘A detailed study was performed on the crystal structures of pan-milled high-density polyethylene (HDPE) using differential scanning calorimetry (DSC) and X-ray diffraction. The crystallinity of HDPE first decreased slightly, followed by a gradual increase with increasing milling times. Monoclinic crystals appeared after 4 cycles of milling. With increasing times of milling, the proportion of monoclinic crystals increased significantly while the proportion of orthorhombic crystals decreased gradually. With increasing times of milling, the crystallite size of orthorhombic form decreased greatly, while the size of monoclinic crystallites kept almost constant during milling.
文摘High-density polyethylene (HDPE) films were irradiated by 60Co gamma ray with a dose of 100 kGy in air and then immersed in aqueous solution of acrylic acid (AA) and sodium styrene sulfonate (SSS) at different temperature. The effects of grafting conditions such as temperature, reaction time, Mohr’s salt concentration, and total concentration of monomer on grafting yield were studied. Both grafting yield of AA and SSS onto HDPE respectively increases with total concentration of monomers. The highest grafting yield was observed at 3 mol/L monomers where the grafted PE swelled to the largest extent in the monomers mixture. The grafting yield increases with reaction time and then levels off. At higher temperature, the grafting yield decreases with Mohr’s salt concentration, but increases at low temperature when Mohr’s salt concentration is 0.083%. Which can be interpreted that in the presence of Fe2+ diperoxides and hydroperoxides may decompose at low temperature to form radical which can initiate the grafting. The physical and chemical properties of grafting films were also investigated.
文摘The rheological behavior of composites made with high-density polyethylene (HDPE) and different agro fiber by-products such as corncob (CCF), Rice hull (RHF), Flax shives (FSF) and Walnut shell (WSF) flour of 60 - 100 mesh were studied. The experimental results were obtained from samples containing 65 vol.% agro fiber and 3 wt.% lubricant. Particle sizes distribution of the agro fibers was in the range of 0.295 mm to ?0.125 mm. SEM showed evidence of complete matrix/fiber impregnation or wetting. The melt rheological data in terms of complex viscosity (η*), storage modulus (G'), loss modulus (G"), and loss tangent (tanδ) were evaluated and compared for different samples. Due to higher probability of agglomeration formation in the samples containing 65 vol.% of agro fillers, the storage modulus, loss modulus and complex viscosity of these samples were high. The unique change in all the samples is due to the particle size distribution of the agro fibers. The storage and loss modulus increased with increasing shear rates for all the composites, except for Walnut shell composite which exhibited unusual decrease in storage modulus with increasing shear rate. Damping factor (tanδ) decreased with increasing shear rate for all the composites at 65 vol.% filler load although there were differences among the composites. Maximum torque tended to increase at the 65 vol.% agro fiber load for all composites. Corncob and Walnut shell composites gave higher torque and steady state torque values in comparison with Flax shives and Rice hull composites due to differences in particle sizes distribution of the agro fibers.
文摘The effect of pan-milling on the rheological properties of high density polyethylene (HDPE) was studied. An innovative milling apparatus, viz. an inlaid pan-mill, was used. Melt indexer, capillary rheometer, Haake Rheocord 90 single-screw extruder and Brabender rheometer were used to evaluate the rheological properties of HDPE. HDPE with higher initial molecular weight and larger particle size was easier to degrade under pan-milling stress, as indicated by the melt index. Pressure oscillation in capillary flow occurred at significantly higher shear stress and shear rate for milled HDPE than for unmilled HDPE. The apparent shear viscosity of HDPE decreased with increasing times of milling. After milling, the flow activation energy decreased and thus the sensitivity of viscosity to temperature was reduced. Die pressure and torque during single screw extrusion were reduced significantly after milling. Plasticizing time as measured in a Brabander mixer decreased markedly with increasing milling times.
文摘Crack opening displacement(COD) was applied to characterize the fracture initiation of the tough high density polyethylene. Normal single side notched three point bend specimens and silica rubber replica techniques were used to study the characteristic COD of high density polyethylene pipe and its butt fusion joints including the weld fusion zone and heat affected zone at different temperature from -78 ℃ to 20 ℃ . Testing results show that the characteristic COD appears to depend on the structural features that are determined by welding process and the testing temperature. As the temperature is lowered, the characteristic COD of all zones studied decreases. Because the welding process significantly changes some structural feature of the material, characteristic COD of the weld fusion zone is the smallest one among those of the three zones. The results can be used for the engineering design and failure analysis of HDPE pipe.
基金Supported by the National Natural Science Foundation of China for Innovative Research Group(50921002)the Quartermaster Materials and Fuel Ministry of PLA Air Force Logistics Department(BKJ10C043)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘The surface performances of directly fluorinated high density polyethylene (HDPE) are studied with Fourier transform infrared (FT-IR) spectra, scanning electron microscopy (SEM) and contact angle (CA) system. The SEM images show that there is a three-layer structure called the reaction, virgin and boundary layer structure. The depth of fluorinated layer is 5.75 ~m with 1 h fluorination time and 7.86 b^m with 2 h. The depths are 5.46 /~m and 5.07 /~m when fluorine density is 2G and 1~/0, respectively. CA indicates that the HDPE surface property becomes more hydrophobic with the increasing water contact angle from 78.5~ to 104.5~. Oleophobic and hydrophobic features of HDPE are identified by comparison of mass change experiments. It is shown that the in- crement rate of fluorinated HDPE is much lower than that of un-fluorinated HDPE filled in neither distilled water nor jet fuel.
基金Project(20574020) supported by the National Natural Science Foundation of ChinaProject(20061001) supported by the Opening Project of the Key Laboratory of Polymer Processing Engineering, Ministry of Education, ChinaProject (20060106-2) supported by Guangdong Key Projects
文摘Metal hydroxides (MAH) consisting of magnesium hydroxide and aluminum hydroxide with a mass ratio of 1:2 were surface-modified by y-diethoxyphosphorous ester propyldiethoxymethylsilane, boric acid and diphenylsilanediol in xylene under dibutyl tin dilaurate catalyst at 140 ℃. Phosphorus, silicon and boron elements covalently bonded to metal hydroxide particles were detected by X-ray photoelectron spectroscopy. The degradation behavior of the surface-modified MAH was characterized by thermogravimetric analysis. The results show that linear low density polyethylene (LLDPE) composite, filled with 50% (mass fraction) of MAH modified by 5.0% (mass fraction) of modifiers, passes the V-0 rating of UL-94 test and shows the limited oxygen index of 34%, and its heat release rate and average effective heat combustion in a cone calorimeter measurement decrease obviously; The mechanical properties of MAH can be improved by surface-modification. The uniform dispersion of particles and strong interfacial bonding between particles and matrix are obtained.
文摘Polymer nanocomposites have been used for various important industrial applications. The preparation of high density polyethylene composed with Na-montmorillonite nanofiller using melt compounding method for different concentrations of clay-nanofiller of 0%, 2%, 6%, 10%, and 15% has been successfully done. The morphology of the obtained samples was optimized and characterized by scanning electron microscope showing the formation of the polymer nanocomposites. The thermal stability and dielectric properties were measured for the prepared samples. Thermal gravimetric analysis results show that thermal stability in polymer nanocomposites is more than that in the base polymer. It has been shown that the polymer nanocomposites exhibit some very different dielectric characteristics when compared to the base polymer. The dielectric breakdown strength is enhanced by the addition of clay-nanofiller. The dielectric constant (εr) and dissipation factor (Tan δ) have been studied in the frequency range 200 Hz to 2 MHz at room temperature indicating that enhancements have been occurred in εr and Tan δ by the addition of clay-nanofiller in the polymer material when compared with the pure material.
基金This work was supported by the National Science Fund for Distinguished Young Scholars (No. 50125312)Key Program of the National Natural Science Foundation of China (No. 50133020)National Natural Science Foundation of China (No.50373037)
文摘Melt extrusion was used to prepare binary nanocomposites of ethylene copolymers and organoclay and trinary nanocomposites of low-density polyethylene (LDPE), ethylene copolymer and organoclay. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to analyze the structure of the clay phase and the morphology of the nanocomposites. Influences of the comonomer in the copolymer and the content of the copolymer on the morphology of the resulting nanocomposites were discussed. The binary and the trinary composites may form intercalated or exfoliated structures depending on the interaction between the copolymer and the clay layers and the content of the copolymer.
基金Project(20050335050) supported by the Special Foundation of Education Ministry of ChinaProject(10472105) supported by the National Natural Science Foundation of China
文摘The experimental observations about remarkable influence of the substrates on the isothermal crystallization rate of a high density polyethylene(HDPE) were presented.Two methods were used to characterize the crystallization rate:the change of turbidity of the HDPE specimen and the changes of the complex viscosity and storage modulus measured by a rotational rheometer,which gave consistent results showing that the isothermal crystallization rate decreased in sequence as the specimen contacted with aluminum,brass and stainless steel plates,respectively.As to the dominant influence factor,the chemical composition of the substrates can be excluded via insulating the plate by an aluminum foil.Instead,we propose the plate's ability of removing the latent heat of crystallization from the specimen.Rheological measurement is sensitive to the crystallization process.The colloid like model proposed by BOUTAHAR et al for the crystallization of HDPE gives reasonable predictions of the crystallized fraction from the measured storage modulus.
文摘High density polyethylene (HDPE) samples, containing different concentrations of prodegradant additive d2w?, were prepared. The properties of the samples were evaluated through differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), rheometry, and scanning electron microscopy (SEM). The work contributes to decreasing the products made of non-biodegradable polymeric materials derived from fossil sources which are have become a problem due to their increasingly inappropriate disposal and long degradation time in the environment. The obtained results indicated that there was no degradation of the samples due to processing. No significant changes in melting temperature, crystallinity, viscoelastic behavior, molecular weight and chemical composition were observed. Images from SEM analysis showed particles on HDPE surface, attributed to prodegradant additive d2w?. Oxidation Onset Temperature (OOT) results showed that the additive d2w? accelerated the degradation of HDPE. The activation energy (Ea) was determined by Ozawa-Wall-Flynn method. The obtained values were used for lifetime estimation of the samples. At 25°C, HDPE with d2w? showed a lifetime 50% higher than that of HDPE without this additive. This fact is attributed to the presence of stabilizers in masterbatch d2w? and the absence of oxygen in thermogravimetric analysis.
文摘This research work developed and evaluated the mechanical properties of coconut fibre reinforced low density polyethylene (LPDE) composite material. The effect of fibre loading on the mechanical properties: tensile, flexural, and impact of the developed composite material have been investigated. Also carried out was the effect of fibre loading on the water absorptivity of the developed material. Sample categories of the developed composite were prepared by varying the fibre contents by weight at 0%, 10%, 20%, and 30%. The aim is to reduce the excessive waste disposal of LDPE materials that are largely found in the form of disposed water package materials (or pure water sachets) that usually affects the environment in the form of pollution. The water retting process was applied in extracting and cleaning fibre (or coir), while the mixed coir-LDPE (or developed composite material) was prepared by Compression Moulding Technique (CMT). The tensile and flexural properties were tested using Hounsfield Monsanto Tensometer (type w) while the impact properties were tested using the Charpy Impact testing machine. The microstructure of the composite was investigated using Scanning Electron Microscopy (SEM). The fractured surface morphology of the composite samples indicated a homogeneous mixture of the coir fibre and LDPE matrix. However, weak interfacial bonding between the coir fibre and LDPE matrix was also observed. The analysis of the water absorptivity showed that the developed composite materials have low water absorptivity at low fibre loading. However, at higher fibre loading, the water absorptivity increases significantly.